Hardness of the resultant

Bruno Grenet
with Pascal Koiran and Natacha Portier

Laboratoire de l'Informatique du Parallélisme, ÉNS Lyon http://perso.ens-lyon.fr/bruno.grenet/

Visitors Seminar Series

Thematic Program on the Foundations of Computational Mathematics Fields Institute, Toronto - September 30, 2009

Introduction

- Resultant: Has a system of polynomials a solution?

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: n homogeneous polynomials in n variables

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: n homogeneous polynomials in n variables
- Canny (1987): Resultant \in PSPACE

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: n homogeneous polynomials in n variables
- Canny (1987): Resultant \in PSPACE
- What is the exact (boolean) complexity of this problem?

Outline

(1) Statement of the problem and upper bound
(2) Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

Outline

(1) Statement of the problem and upper bound

(2) Resultant is NP-hard

- ... under randomized reduction
- . . . under deterministic reduction

Definitions

- Inputs:

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?
- Homogeneous cases: $\bar{a} \neq(0, \ldots, 0)$

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?
- Homogeneous cases: $\bar{a} \neq(0, \ldots, 0)$
- Boolean versions $\mathrm{HN}, \mathrm{H}_{2} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}^{\square}$:

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?
- Homogeneous cases: $\bar{a} \neq(0, \ldots, 0)$
- Boolean versions $\mathrm{HN}, \mathrm{H}_{2} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}^{\square}$:
- Polynomials with integer coefficients

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\square}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?
- Homogeneous cases: $\bar{a} \neq(0, \ldots, 0)$
- Boolean versions $\mathrm{HN}, \mathrm{H}_{2} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}^{\square}$:
- Polynomials with integer coefficients
- Complex roots?

Definitions

- Inputs:
- $\mathrm{HN}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] ;$
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}: f_{1}, \ldots, f_{s} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- $\mathrm{H}_{2} \mathrm{~N}_{\mathbb{C}}^{\mathbb{C}}: f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, homogeneous;
- Questions:
- Does there exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}$ s.t. $f_{i}(\bar{a})=0$ for all i ?
- Homogeneous cases: $\bar{a} \neq(0, \ldots, 0)$
- Boolean versions $\mathrm{HN}, \mathrm{H}_{2} \mathrm{~N}, \mathrm{H}_{2} \mathrm{~N}^{\square}$:
- Polynomials with integer coefficients
- Complex roots?
- Resultant: $\mathrm{H}_{2} \mathrm{~N}^{\square}$

Upper bound

Theorem
Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

Upper bound

Theorem
Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN \in AM.

Upper bound

Theorem
Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN $\in A M$.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.

Upper bound

Theorem
Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN $\in A M$.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.
- \mathcal{T} : instance of HN with

Upper bound

Theorem

Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN \in AM.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.
- \mathcal{T} : instance of HN with
- new variables Y_{1}, \ldots, Y_{n}

Upper bound

Theorem

Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN $\in A M$.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.
- \mathcal{T} : instance of HN with
- new variables Y_{1}, \ldots, Y_{n}
- new equation $\sum_{i=1}^{n} X_{i} Y_{i}=1$

Upper bound

Theorem

Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN \in AM.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.
- \mathcal{T} : instance of HN with
- new variables Y_{1}, \ldots, Y_{n}
- new equation $\sum_{i=1}^{n} X_{i} Y_{i}=1$
- $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{S}_{\text {true }} \Longrightarrow\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0,1 / a_{i_{0}}, 0, \ldots, 0\right) \in \mathcal{T}_{\text {true }}$

Upper bound

Theorem

Under Generalized Riemann Hypothesis, $H_{2} N^{\square} \in \mathrm{AM}$.

- Koiran (1996): Under GRH, HN $\in A M$.
- \mathcal{S} : instance of $\mathrm{H}_{2} \mathrm{~N}^{\square}\left(f_{1}, \ldots, f_{n} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]\right)$.
- \mathcal{T} : instance of HN with
- new variables Y_{1}, \ldots, Y_{n}
- new equation $\sum_{i=1}^{n} X_{i} Y_{i}=1$
- $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{S}_{\text {true }} \Longrightarrow\left(a_{1}, \ldots, a_{n}, 0, \ldots, 0,1 / a_{i_{0}}, 0, \ldots, 0\right) \in \mathcal{T}_{\text {true }}$
- $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \in \mathcal{T}_{\text {true }} \Longrightarrow \bar{a} \neq \overline{0} \Longrightarrow \bar{a} \in \mathcal{S}_{\text {true }}$

Outline

(1) Statement of the problem and upper bound

(2) Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

Lower bound

Theorem

$\mathrm{H}_{2} \mathrm{~N}^{\square}$ is NP-hard.

- 3-SAT $\leqslant m$ Boolsys $\leqslant_{m} \mathrm{H}_{2} \mathrm{~N} \leqslant$? $\mathrm{H}_{2} \mathrm{~N}^{\square}$

Lower bound

Theorem
$\mathrm{H}_{2} N^{\square}$ is NP-hard under randomized reduction.

- 3-SAT \leqslant_{m} Boolsys $\leqslant_{m} \mathrm{H}_{2} \mathrm{~N} \leqslant r \mathrm{H}_{2} \mathrm{~N}^{\square}$
- Randomized reduction: less polynomials ("less rows")

Lower bound

Theorem
$\mathrm{H}_{2} N^{\square}$ is NP-hard under deterministic reduction.

- 3-SAT \leqslant_{m} Boolsys $\leqslant_{m} \mathrm{H}_{2} \mathrm{~N} \leqslant \leqslant_{m} \mathrm{H}_{2} \mathrm{~N}^{\square}$
- Randomized reduction: less polynomials ("less rows")
- Deterministic reduction: more variables ("more columns")

Lower bound

Theorem
$\mathrm{H}_{2} N^{\square}$ is NP-hard.

- 3-SAT $\leqslant m$ Boolsys $\leqslant m H_{2} N \leqslant \mathrm{H}_{2} \mathrm{~N}^{\square}$
- Randomized reduction: less polynomials ("less rows")
- Deterministic reduction: more variables ("more columns")

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
& X_{i}=\text { True } \\
& X_{i}=\neg X_{j} \\
& X_{i}=X_{j} \vee X_{k}
\end{aligned}
$$

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
X_{i} & =\text { True } \\
X_{i} & =\neg X_{j} \\
X_{i} & =X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
X_{i} & =\text { True } \\
X_{i} & =\neg X_{j} \\
X_{i} & =X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}=x_{i}^{2}$ for every $i>0$ and

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
X_{i} & =\text { True } \\
X_{i} & =\neg X_{j} \\
X_{i} & =X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}=x_{i}^{2}$ for every $i>0$ and

$$
\left(x_{i}+x_{0}\right)^{2}=0
$$

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
X_{i} & =\text { True } \\
X_{i} & =\neg X_{j} \\
X_{i} & =X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}=x_{i}^{2}$ for every $i>0$ and

$$
\begin{aligned}
& \left(x_{i}+x_{0}\right)^{2}=0 \\
& \left(x_{i}+x_{j}\right)^{2}=0
\end{aligned}
$$

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
& X_{i}=\text { True } \\
& X_{i}=\neg X_{j} \\
& X_{i}=X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}=x_{i}^{2}$ for every $i>0$ and

$$
\begin{aligned}
& \left(x_{i}+x_{0}\right)^{2}=0 \\
& \left(x_{i}+x_{j}\right)^{2}=0 \\
& \left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)
\end{aligned}
$$

Boolsys $\leqslant m H_{2} \mathrm{~N}$

Boolsys

- Boolean variables X_{1}, \ldots, X_{n}
- Equations

$$
\begin{aligned}
& X_{i}=\text { True } \\
& X_{i}=\neg X_{j} \\
& X_{i}=X_{j} \vee X_{k}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}=x_{i}^{2}$ for every $i>0$ and

$$
\begin{aligned}
& \left(x_{i}+x_{0}\right)^{2}=0 \\
& \left(x_{i}+x_{j}\right)^{2}=0 \\
& \left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)
\end{aligned}
$$

Remains to prove $\mathrm{H}_{2} \mathrm{~N} \leqslant \mathrm{H}_{2} \mathrm{~N}^{\square}$.

Outline

(1) Statement of the problem and upper bound

(2) Resultant is NP-hard

- ... under randomized reduction

General idea

- Decrease the number of polynomials

General idea

- Decrease the number of polynomials
- If f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 1 \leqslant i \leqslant n
$$

General idea

- Decrease the number of polynomials
- If f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
\begin{gathered}
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 1 \leqslant i \leqslant n \\
\forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longrightarrow \bigwedge_{i} g_{i}(\bar{x})=0\right)
\end{gathered}
$$

General idea

- Decrease the number of polynomials
- If f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 1 \leqslant i \leqslant n
$$

- If $\alpha_{i j}$ algebraically independent (over \mathbb{Q}), then

$$
\forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} g_{i}(\bar{x})=0\right)
$$

General idea

- Decrease the number of polynomials
- If f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 1 \leqslant i \leqslant n
$$

- If $\alpha_{i j}$ algebraically independent (over \mathbb{Q}), then

$$
\forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} g_{i}(\bar{x})=0\right)
$$

- Replace $\alpha_{i j}$ by random integers, and use Schwartz-Lippel Lemma to conclude

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} g_{i}(\bar{x})=0\right)
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftrightarrow \bigvee_{k}\left(\bigwedge_{I} P_{k l}(\bar{\alpha})=0 \wedge \bigwedge_{m} Q_{k m}(\bar{\alpha}) \neq 0\right)
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftrightarrow \bigvee_{k}\left(\bigwedge_{I} P_{k l}(\bar{\alpha})=0 \wedge \bigwedge_{m} Q_{k m}(\bar{\alpha}) \neq 0\right)
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftarrow
$$

$$
\bigwedge_{m} Q_{k m}(\bar{\alpha}) \neq 0
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftarrow
$$

$$
\prod_{m} Q_{k m}(\bar{\alpha}) \neq 0
$$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftarrow
$$

$$
\prod_{m} Q_{k m}(\bar{\alpha}) \neq 0
$$

- [FGM90] Simply exponential bound on the degree of $\prod Q_{k m}$

Random integers are sufficient

$$
\Phi(\bar{\alpha}) \equiv \forall \bar{x}\left(\bigwedge_{j} f_{j}(\bar{x})=0 \Longleftarrow \bigwedge_{i} \sum_{j} \alpha_{i j} f_{j}(\bar{x})=0\right)
$$

- Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$
\Phi(\bar{\alpha}) \Longleftarrow
$$

$$
\prod_{m} Q_{k m}(\bar{\alpha}) \neq 0
$$

- [FGM90] Simply exponential bound on the degree of $\prod Q_{k m}$
- Schwartz-Zippel Lemma: Random $\alpha_{i j}$ of polynomial length work

Summary of the randomized reduction

- Instance of $\mathrm{H}_{2} \mathrm{~N}$: more polynomials than variables, i.e. too many polynomials

Summary of the randomized reduction

- Instance of $\mathrm{H}_{2} \mathrm{~N}$: more polynomials than variables, i.e. too many polynomials
- New system: linear combinations of the polynomials

Summary of the randomized reduction

- Instance of $\mathrm{H}_{2} \mathrm{~N}$: more polynomials than variables, i.e. too many polynomials
- New system: linear combinations of the polynomials
- If combinations with algebraically independent coefficients, then equivalence

Summary of the randomized reduction

- Instance of $\mathrm{H}_{2} \mathrm{~N}$: more polynomials than variables, i.e. too many polynomials
- New system: linear combinations of the polynomials
- If combinations with algebraically independent coefficients, then equivalence
- Algebraically independent coefficients can be replaced by random integers

Outline

(1) Statement of the problem and upper bound

(2) Resultant is NP-hard

under randomized reduction

- ... under deterministic reduction

Introduction

- Instead of decreasing the number of polynomials, new variables are added

Introduction

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed

Introduction

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

Introduction

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}-x_{i}^{2}=0$ for every i
- $\left(x_{i}+x_{0}\right)^{2}=0$
- $\left(x_{i}+x_{j}\right)^{2}=0$
- $\left(x_{i}+x_{0}\right)^{2}-\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)=0$

Introduction

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

$\mathrm{H}_{2} \mathrm{~N}$

- Complex variables x_{0} and x_{1}, \ldots, x_{n}
- Equations $x_{0}^{2}-x_{i}^{2}=0$ for every i

$$
\rightarrow f_{1}, \ldots, f_{n}
$$

- $\left(x_{i}+x_{0}\right)^{2}=0$
- $\left(x_{i}+x_{j}\right)^{2}=0$
$\rightarrow f_{n+1}, \ldots, f_{s}$
- $\left.\left(x_{i}+x_{0}\right)^{2}-\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)=0\right\}$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\left\{\begin{array}{c}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
\\
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
f_{n+2}(\bar{x})-y_{1}^{2}+13 y_{2}^{2}=0 \\
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
f_{n+2}(\bar{x})-y_{1}^{2}+13 y_{2}^{2}=0 \\
f_{n+3}(\bar{x})-y_{2}^{2}+13 y_{3}^{2}=0
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
f_{n+2}(\bar{x})-y_{1}^{2}+13 y_{2}^{2}=0 \\
f_{n+3}(\bar{x})-y_{2}^{2}+13 y_{3}^{2}=0 \\
\vdots \\
f_{s-1}(\bar{x})-y_{s-n-2}^{2}+13 y_{s-n-1}^{2}=0
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
f_{n+2}(\bar{x})-y_{1}^{2}+13 y_{2}^{2}=0 \\
f_{n+3}(\bar{x})-y_{2}^{2}+13 y_{3}^{2}=0 \\
\vdots \\
f_{s-1}(\bar{x})-y_{s-n-2}^{2}+13 y_{s-n-1}^{2}=0 \\
f_{s}(\bar{x})-y_{s-n-1}^{2}=0
\end{array}\right.
$$

Reduction

- New variables: y_{1}, \ldots, y_{s-n-1}
- Equations $f_{i}(\bar{x})=x_{0}^{2}-x_{i}^{2}=0$ unchanged $(1 \leqslant i \leqslant n)$
- $f_{i}(\bar{x}) \rightsquigarrow f_{i}(\bar{x})-y_{i-n-1}^{2}+13 y_{i-n}^{2}(n+1 \leqslant i \leqslant s)$

New system

$$
\begin{aligned}
& \mathcal{S}_{G}=\left\{\begin{array}{l}
f_{1}(\bar{x})=0 \\
\vdots \\
f_{n}(\bar{x})=0 \\
f_{n+1}(\bar{x})+13 y_{1}^{2}=0 \\
f_{n+2}(\bar{x})-y_{1}^{2}+13 y_{2}^{2}=0 \\
f_{n+3}(\bar{x})-y_{2}^{2}+13 y_{3}^{2}=0
\end{array}\right. \\
& \bar{a} \text { solution of } \mathcal{S}_{F} \\
& \Downarrow \\
& (\bar{a}, \overline{0}) \text { solution of } \mathcal{S}_{G} \\
& f_{s-1}(\bar{x})-y_{s-n-2}^{2}+13 y_{s-n-1}^{2}=0 \\
& f_{s}(\bar{x})-y_{s-n-1}^{2}=0
\end{aligned}
$$

Translation in terms of Jacobian matrices

Jacobian matrix
Let $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{s}$ s.t. $F(\bar{x})=\left(f_{1}(\bar{x}), \ldots, f_{s}(\bar{x})\right)^{t}$. Then J_{F} is defined by

$$
\left(J_{F}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}} .
$$

Translation in terms of Jacobian matrices

Jacobian matrix

Let $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{s}$ s.t. $F(\bar{x})=\left(f_{1}(\bar{x}), \ldots, f_{s}(\bar{x})\right)^{t}$. Then J_{F} is defined by

$$
\left(J_{F}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}} .
$$

Lemma

Let \mathcal{S}_{F} be a homogeneous polynomial system of s equations in $n+1$ variables. If \bar{a} is a non trivial solution of \mathcal{S}_{F}, then $J_{F}(\bar{a})$ has rank at most n.

Translation in terms of Jacobian matrices

Jacobian matrix

Let $F: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{s}$ s.t. $F(\bar{x})=\left(f_{1}(\bar{x}), \ldots, f_{s}(\bar{x})\right)^{t}$. Then J_{F} is defined by

$$
\left(J_{F}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}} .
$$

Lemma

Let \mathcal{S}_{F} be a homogeneous polynomial system of s equations in $n+1$ variables. If \bar{a} is a non trivial solution of \mathcal{S}_{F}, then $J_{F}(\bar{a})$ has rank at most n.

Proof. \mathcal{S}_{F} is homogeneous \Longrightarrow if \mathcal{S}_{F} has a non trivial solution, then there is a line of solutions.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let ā be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let \bar{a} be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$. Then for our system
(i) \bar{a} is solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n$;

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let \bar{a} be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$. Then for our system
(i) \bar{a} is solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n$;
(ii) \bar{a} is not solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n+1$.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let \bar{a} be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$. Then for our system
(i) \bar{a} is solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n$;
(ii) \bar{a} is not solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n+1$.

Proof.

- The first n rows are almost diagonal.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let \bar{a} be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$. Then for our system
(i) \bar{a} is solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n$;
(ii) \bar{a} is not solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n+1$.

Proof.

- The first n rows are almost diagonal.
- Exhaustive study of the Jacobian matrix: each equation is satisfied by \bar{a} iff the corresponding row is linearly dependent from the first n ones.

Particular case of our system

Our system $\mathcal{S}_{F}: x_{0}^{2}=x_{i}^{2},\left(x_{i}+x_{0}\right)^{2}=0,\left(x_{i}+x_{j}\right)^{2}=0$ and $\left(x_{i}+x_{0}\right)^{2}=\left(x_{j}+x_{0}\right) \cdot\left(x_{k}+x_{0}\right)$.

Lemma

Let \bar{a} be a $(n+1)$-tuple such that $a_{0}^{2}=\cdots=a_{n}^{2} \neq 0$. Then for our system
(i) \bar{a} is solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n$;
(ii) \bar{a} is not solution $\Longrightarrow r k\left(J_{F}(\bar{a})\right)=n+1$.

Proof.

- The first n rows are almost diagonal.
- Exhaustive study of the Jacobian matrix: each equation is satisfied by \bar{a} iff the corresponding row is linearly dependent from the first n ones. \rightsquigarrow Why is this true?

Equivalence of the old and new systems

$\mathcal{S}_{\mathcal{F}}$ infeasible $\left.\left.\Longrightarrow \mathrm{rk} J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?}$ rk $\left.J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.
$\operatorname{det}\left(\frac{1}{2} J_{G}(\bar{a}, \bar{b})\right)=\operatorname{det}\left(\begin{array}{cccc|ccc}1 & \pm 1 & & & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots & & \vdots \\ 1 & & & \pm 1 & 0 & \cdots & 0 \\ \hline & \|\cdot\|_{1} & \leqslant & 12 & & & \\ & & & & & & \\ & & & & & & 13 \\ & & & & -1\end{array}\right)$

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.
$\operatorname{det}\left(\frac{1}{2} J_{G}(\bar{a}, \bar{b})\right)=\operatorname{det}\left(\begin{array}{cccc|ccc}1 & \pm 1 & & & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots & & \vdots \\ 1 & & & \pm 1 & 0 & \cdots & 0 \\ \hline & \|\cdot\|_{1} & \leqslant & 12 & & & \\ & & & & & & \\ & & & & & & 13 \\ & & & & -1\end{array}\right)$

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.

$$
\operatorname{det}\left(\frac{1}{2} J_{G}(\bar{a}, \bar{b})\right)=\operatorname{det}\left(\begin{array}{cccc|ccc}
0 & \pm 1 & & & 0 & \cdots & 0 \\
\vdots & & \ddots & & \vdots & & \vdots \\
0 & & & \pm 1 & 0 & \cdots & 0 \\
\hline * & & & & 13 & & \\
\vdots & |*| & \leqslant & 12 & -1 & \ddots & \\
\vdots & & & & & \ddots & 13 \\
* & & & & & & -1
\end{array}\right)
$$

Equivalence of the old and new systems

\mathcal{S}_{F} infeasible \Longrightarrow rk $\left.\left.J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.

$$
\operatorname{det}\left(\frac{1}{2} J_{G}(\bar{a}, \bar{b})\right)= \pm \operatorname{det}\left(\begin{array}{cccc}
c_{1} & 13 & & \\
\vdots & -1 & \ddots & \\
\vdots & & \ddots & 13 \\
c_{s-n} & & & -1
\end{array}\right)
$$

where $\left|c_{i}\right| \leqslant 12$. NB: $\left(c_{1}, \ldots, c_{n}\right)=\overline{0} \Longleftrightarrow$ rk $\left.J_{F}(\bar{a})\right)=n$.

Equivalence of the old and new systems

$\mathcal{S}_{\mathcal{F}}$ infeasible $\left.\left.\Longrightarrow \mathrm{rk} J_{F}(\bar{a})\right)=n+1 \xlongequal{?} \mathrm{rk} J_{G}(\bar{a}, \bar{b})\right)=s \Longrightarrow \mathcal{S}_{G}$ infeasible
Let $a_{0}=1$. Then for every $i, a_{i}= \pm 1$.

$$
\operatorname{det}\left(\frac{1}{2} J_{G}(\bar{a}, \bar{b})\right)= \pm \operatorname{det}\left(\begin{array}{cccc}
c_{1} & 13 & & \\
\vdots & -1 & \ddots & \\
\vdots & & \ddots & 13 \\
c_{s-n} & & & -1
\end{array}\right)
$$

where $\left|c_{i}\right| \leqslant 12$. NB: $\left(c_{1}, \ldots, c_{n}\right)=\overline{0} \Longleftrightarrow$ rk $\left.J_{F}(\bar{a})\right)=n$. The determinant is non zero, via the unicity of base-13 representation.

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.
- If \mathcal{S}_{F} has no solution, let $(\bar{a}, \bar{b}) \neq \overline{0}$:

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.
- If \mathcal{S}_{F} has no solution, let $(\bar{a}, \bar{b}) \neq \overline{0}$:
- The Jacobian matrix $J_{F}(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \overline{0}$).

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.
- If \mathcal{S}_{F} has no solution, let $(\bar{a}, \bar{b}) \neq \overline{0}$:
- The Jacobian matrix $J_{F}(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \overline{0}$).
- Then $J_{G}(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_{i} vanishes).

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.
- If \mathcal{S}_{F} has no solution, let $(\bar{a}, \bar{b}) \neq \overline{0}$:
- The Jacobian matrix $J_{F}(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \overline{0}$).
- Then $J_{G}(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_{i} vanishes).
- So \mathcal{S}_{G} cannot have non trivial solution.

Summary of the deterministic reduction

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of \mathcal{S}_{F}, then $(\bar{a}, \overline{0})$ is solution of \mathcal{S}_{G}.
- If \mathcal{S}_{F} has no solution, let $(\bar{a}, \bar{b}) \neq \overline{0}$:
- The Jacobian matrix $J_{F}(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \overline{0}$).
- Then $J_{G}(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_{i} vanishes).
- So \mathcal{S}_{G} cannot have non trivial solution.
$\mathrm{H}_{2} \mathrm{~N}^{\square}$ is NP-hard.

Conclusion

: Answer to Canny's question.

Conclusion

: Answer to Canny's question.
: - Upper (AM) and lower (NP) bounds are "almost equal".

Conclusion

- Answer to Canny's question.
- Upper (AM) and lower (NP) bounds are "almost equal".
: Why does it work?

Conclusion

- Answer to Canny's question.
: Upper (AM) and lower (NP) bounds are "almost equal".
: Why does it work?
: The method seems unable to prove results in algebraic complexity.

Conclusion

: Answer to Canny's question.
:- Upper (AM) and lower (NP) bounds are "almost equal".
: Why does it work?
: : The method seems unable to prove results in algebraic complexity.

Thank you!

