Hardness of the resultant

Bruno Grenet with Pascal Koiran and Natacha Portier

dix

Laboratoire de l'Informatique du Parallélisme, ÉNS Lyon

http://perso.ens-lyon.fr/bruno.grenet/

Visitors Seminar Series Thematic Program on the Foundations of Computational Mathematics Fields Institute, Toronto – September 30, 2009 • Resultant: Has a system of polynomials a solution?

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: *n* homogeneous polynomials in *n* variables

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: *n* homogeneous polynomials in *n* variables
- Canny (1987): Resultant \in PSPACE

Introduction

- Resultant: Has a system of polynomials a solution?
- Here: *n* homogeneous polynomials in *n* variables
- Canny (1987): Resultant ∈ PSPACE
- What is the exact (boolean) complexity of this problem?

1 Statement of the problem and upper bound

Resultant is NP-hard 2

- ... under randomized reduction
- ... under deterministic reduction

Outline

1 Statement of the problem and upper bound

Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

• Inputs:

Bruno Grenet (LIP – ÉNS Lyon)

• Inputs:

• $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$

- $\operatorname{HN}_{\mathbb{C}}: f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- $H_2N_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$;
- ▶ $H_2N_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous; ▶ $H_2N_{\mathbb{C}}^{\square}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$;
- ▶ $H_2N_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous; ▶ $H_2N_{\mathbb{C}}^{\square}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:

- $\models \text{ HN}_{\mathbb{C}}: f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- $H_2\mathbb{N}_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\mathbb{H}_2\mathbb{N}_{\mathbb{C}}^{\square}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- $H_2\mathbb{N}_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\operatorname{H}_2\mathbb{N}^{\square}_{\mathbb{C}}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?
 - Homogeneous cases: $\bar{a} \neq (0, \dots, 0)$

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- $H_2\mathbb{N}_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\operatorname{H}_2\mathbb{N}_{\mathbb{C}}^{\square}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?
 - Homogeneous cases: $\bar{a} \neq (0, \dots, 0)$
- Boolean versions HN, H_2N , H_2N^{\Box} :

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- ▶ $H_2N_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\operatorname{H}_2\mathbb{N}^{\square}_{\mathbb{C}}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?
 - Homogeneous cases: $\bar{a} \neq (0, \dots, 0)$
- Boolean versions HN, H_2N , H_2N^{\Box} :
 - Polynomials with integer coefficients

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- $\operatorname{H}_2\mathbb{N}_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\operatorname{H}_2\mathbb{N}^{\square}_{\mathbb{C}}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - ▶ Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?
 - Homogeneous cases: $\bar{a} \neq (0, \dots, 0)$
- Boolean versions HN, H_2N , H_2N^{\Box} :
 - Polynomials with integer coefficients
 - Complex roots?

- $\operatorname{HN}_{\mathbb{C}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n];$
- ▶ $H_2N_{\underline{\mathbb{C}}}$: $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- $\operatorname{H}_2\mathbb{N}_{\mathbb{C}}^{\square}$: $f_1, \ldots, f_n \in \mathbb{C}[X_1, \ldots, X_n]$, homogeneous;
- Questions:
 - Does there exist $(a_1, \ldots, a_n) \in \mathbb{C}$ s.t. $f_i(\bar{a}) = 0$ for all *i*?
 - Homogeneous cases: $\bar{a} \neq (0, \dots, 0)$
- Boolean versions HN, H_2N , H_2N^{\Box} :
 - Polynomials with integer coefficients
 - Complex roots?
- Resultant: H_2N^{\square}

Theorem

Under Generalized Riemann Hypothesis, $H_2 N^{\Box} \in AM$.

Theorem

Under Generalized Riemann Hypothesis, $H_2 \mathbb{N}^{\square} \in AM$.

• Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.

Theorem

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n])$.

Theorem

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n])$.
- \mathcal{T} : instance of HN with

Theorem

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n])$.
- \mathcal{T} : instance of HN with
 - new variables Y_1, \ldots, Y_n

Theorem

Under Generalized Riemann Hypothesis, $H_2 N^{\Box} \in AM$.

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n]).$
- \mathcal{T} : instance of HN with

• new variables
$$Y_1, \ldots, Y_n$$

• new equation
$$\sum_{i=1} X_i Y_i = 1$$

Bruno Grenet (LIP – ÉNS Lyon)

Theorem

Under Generalized Riemann Hypothesis, $H_2 \mathbb{N}^{\square} \in AM$.

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n]).$
- \mathcal{T} : instance of HN with

new variables Y₁,..., Y_n
new equation
$$\sum_{i=1}^{n} X_i Y_i = 1$$
 $(a_1, \ldots, a_n) \in S_{\text{true}} \implies (a_1, \ldots, a_n, 0, \ldots, 0, 1/a_{i_0}, 0, \ldots, 0) \in T_{\text{true}}$

6 / 21

Theorem

- Koiran (1996): Under GRH, $\mathtt{HN} \in \mathsf{AM}$.
- S: instance of $\mathbb{H}_2\mathbb{N}^{\square}$ $(f_1, \ldots, f_n \in \mathbb{Z}[X_1, \ldots, X_n]).$
- \mathcal{T} : instance of HN with

$$\begin{array}{l} \bullet \ (a_1,\ldots,a_n)\in \mathcal{S}_{\mathsf{true}} \implies (a_1,\ldots,a_n,0,\ldots,0,1/a_{i_0},0,\ldots,0)\in \mathcal{T}_{\mathsf{true}} \\ \bullet \ (a_1,\ldots,a_n,b_1,\ldots,b_n)\in \mathcal{T}_{\mathsf{true}} \implies \bar{a}\neq \bar{0} \implies \bar{a}\in \mathcal{S}_{\mathsf{true}} \end{array}$$

Outline

Statement of the problem and upper bound

2 Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

Theorem

 $H_2 \mathbb{N}^{\square}$ is NP-hard.

• 3-SAT \leq_m Boolsys \leq_m H₂N $\leq_?$ H₂N^{\Box}

Bruno Grenet (LIP – ÉNS Lyon)

Theorem

 $H_2 \mathbb{N}^{\square}$ is NP-hard under randomized reduction.

- 3-SAT \leq_m Boolsys \leq_m H₂N \leq_r H₂N
- Randomized reduction: less polynomials ("less rows")

Bruno Grenet (LIP – ÉNS Lyon)

Theorem

 $H_2 \mathbb{N}^{\square}$ is NP-hard under deterministic reduction.

- $3-SAT \leq_m Boolsys \leq_m H_2 N \leq_m H_2 N^{\Box}$
- Randomized reduction: less polynomials ("less rows")
- Deterministic reduction: more variables ("more columns")

Theorem

 $H_2 N^{\square}$ is NP-hard.

- 3-SAT \leq_m Boolsys \leq_m H₂N $\leq_?$ H₂N^{igstarrow}
- Randomized reduction: less polynomials ("less rows")
- Deterministic reduction: more variables ("more columns")

$\texttt{Boolsys} \leqslant_m \texttt{H}_2\texttt{N}$

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations

$$X_i = \text{True}$$

$$X_i = \neg X_j$$

$$X_i = X_j \lor X_k$$

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations

$$X_i = \text{True}$$

$$X_i = \neg X_j$$

$$X_i = X_i \lor X_k$$

H₂N

- Complex variables x₀ and
 - x_1, \ldots, x_n
- Equations

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations
 - $X_i = \text{True}$ $X_i = \neg X_j$ $X_i = X_i \lor X_k$

H₂N

- Complex variables x₀ and
 - x_1,\ldots,x_n
- Equations $x_0^2 = x_i^2$ for every i > 0 and

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations
 - $X_i = \text{True}$ $X_i = \neg X_j$ $X_i = X_i \lor X_k$

H₂N

- Complex variables x₀ and
 - x_1,\ldots,x_n
- Equations x₀² = x_i² for every i > 0 and
 (x_i + x₀)² = 0

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations
 - $X_i = \text{True}$ $X_i = \neg X_j$ $X_i = X_i \lor X_k$

H_2N

- Complex variables x₀ and
 - x_1,\ldots,x_n
- Equations $x_0^2 = x_i^2$ for every i > 0 and $(x_i + x_0)^2 = 0$ $(x_i + x_i)^2 = 0$

Bruno Grenet (LIP – ÉNS Lyon)
$\texttt{Boolsys} \leqslant_m \texttt{H}_2\texttt{N}$

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations
 - $X_i = \text{True}$ $X_i = \neg X_j$ $X_i = X_i \lor X_k$

H_2N

- Complex variables x₀ and
 - x_1,\ldots,x_n
- Equations $x_0^2 = x_i^2$ for every i > 0 and • $(x_i + x_0)^2 = 0$ • $(x_i + x_j)_{a}^2 = 0$
 - $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$

$\texttt{Boolsys} \leqslant_m \mathtt{H}_2 \mathtt{N}$

Boolsys

- Boolean variables X_1, \ldots, X_n
- Equations

$$X_i = \text{True}$$

$$X_i = \neg X_j$$

$$X_i = X_j \lor X_k$$

Remains to prove $H_2 \mathbb{N} \leq H_2 \mathbb{N}^{\square}$.

H_2N

• Complex variables x₀ and

 x_1,\ldots,x_n

- Equations $x_0^2 = x_i^2$ for every i > 0 and $(x_i + x_0)^2 = 0$ $(x_i + x_j)^2 = 0$
 - $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$

Outline

Statement of the problem and upper bound

2 Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

• Decrease the number of polynomials

- Decrease the number of polynomials
- If f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 1 \leqslant i \leqslant n$$

- Decrease the number of polynomials
- If f_1, \ldots, f_s homogeneous of degree 2,

4

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 1 \leqslant i \leqslant n$$

$$\forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \implies \bigwedge_{i} g_{i}(\bar{x}) = 0 \right)$$

- Decrease the number of polynomials
- If f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 1 \leqslant i \leqslant n$$

• If α_{ij} algebraically independent (over \mathbb{Q}), then

$$\forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \iff \bigwedge_{i} g_{i}(\bar{x}) = 0 \right)$$

Bruno Grenet (LIP – ÉNS Lyon)

- Decrease the number of polynomials
- If f_1, \ldots, f_s homogeneous of degree 2,

$$g_i := \sum_{j=1}^s \alpha_{ij} f_j, 1 \leqslant i \leqslant n$$

• If α_{ij} algebraically independent (over \mathbb{Q}), then

$$\forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \iff \bigwedge_{i} g_{i}(\bar{x}) = 0 \right)$$

• Replace α_{ij} by random integers, and use Schwartz-Lippel Lemma to conclude

$$\Phi(ar{lpha})\equiv orall ar{x}\left(igwedge f_j(ar{x})=0 \Longleftrightarrow igwedge f_i(ar{x})=0
ight)$$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \iff \bigvee_{k} \left(\bigwedge_{l} P_{kl}(\bar{\alpha}) = 0 \land \bigwedge_{m} Q_{km}(\bar{\alpha}) \neq 0 \right)$$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \iff \bigvee_{k} \left(\bigwedge_{l} P_{kl}(\bar{\alpha}) = 0 \land \bigwedge_{m} Q_{km}(\bar{\alpha}) \neq 0 \right)$$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \Leftarrow$$

 $\bigwedge_m Q_{km}(\bar{\alpha}) \neq 0$

Bruno Grenet (LIP – ÉNS Lyon)

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \Leftarrow$$

$$\prod_{m} Q_{km}(\bar{\alpha}) \neq 0$$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \Leftarrow$$

$$\prod_m Q_{km}(\bar{\alpha}) \neq 0$$

• [FGM90] Simply exponential bound on the degree of $\prod_{m} Q_{km}$

$$\Phi(\bar{\alpha}) \equiv \forall \bar{x} \left(\bigwedge_{j} f_{j}(\bar{x}) = 0 \longleftrightarrow \bigwedge_{i} \sum_{j} \alpha_{ij} f_{j}(\bar{x}) = 0 \right)$$

• Quantifier Elimination in $\Phi(\bar{\alpha})$:

$$\Phi(\bar{\alpha}) \Leftarrow$$

$$\prod_m Q_{km}(\bar{\alpha}) \neq 0$$

[FGM90] Simply exponential bound on the degree of Π_m Q_{km}
Schwartz-Zippel Lemma: Random α_{ii} of polynomial length work

• Instance of H₂N: more polynomials than variables, *i.e.* too many polynomials

- Instance of H₂N: more polynomials than variables, *i.e.* too many polynomials
- New system: linear combinations of the polynomials

- Instance of H₂N: more polynomials than variables, *i.e.* too many polynomials
- New system: linear combinations of the polynomials
- If combinations with algebraically independent coefficients, then equivalence

- Instance of H₂N: more polynomials than variables, *i.e.* too many polynomials
- New system: linear combinations of the polynomials
- If combinations with algebraically independent coefficients, then equivalence
- Algebraically independent coefficients can be replaced by random integers

Outline

Statement of the problem and upper bound

2 Resultant is NP-hard

- ... under randomized reduction
- ... under deterministic reduction

• Instead of decreasing the number of polynomials, new variables are added

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

$\mathrm{H}_2\mathrm{N}$

• Complex variables x₀ and x₁,..., x_n

• Equations
$$x_0^2 - x_i^2 = 0$$
 for every *i*

•
$$(x_i + x_0)^2 = 0$$

• $(x_i + x_j)^2 = 0$
• $(x_i + x_0)^2 - (x_j + x_0) \cdot (x_k + x_0) = 0$

- Instead of decreasing the number of polynomials, new variables are added
- Careful look to the equations is needed
- Key point: translation in terms of the rank of the Jacobian matrix

H_2N

• Complex variables
$$x_0$$
 and x_1, \ldots, x_n

• Equations
$$x_0^2 - x_i^2 = 0$$
 for every $i \rightarrow i$

$$\begin{array}{c} (x_i + x_0)^2 = 0 \\ (x_i + x_j)^2 = 0 \\ (x_i + x_0)^2 - (x_j + x_0) \cdot (x_k + x_0) = 0 \end{array} \right\} \rightarrow f_{n+1}, \dots, f_s$$

 f_1,\ldots,f_n

• New variables: y_1, \ldots, y_{s-n-1}

- New variables: y_1, \ldots, y_{s-n-1}
- Equations $f_i(\bar{x}) = x_0^2 x_i^2 = 0$ unchanged $(1 \le i \le n)$

- New variables: y_1, \ldots, y_{s-n-1}
- Equations $f_i(\bar{x}) = x_0^2 x_i^2 = 0$ unchanged $(1 \le i \le n)$
- $f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \le i \le s)$$

New system

$$\mathcal{S}_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \end{cases}$$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$$

New system

$$S_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 \end{cases}$$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$$

New system

$$S_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 \\ f_{n+2}(\bar{x}) - y_{1}^{2} + 13y_{2}^{2} = 0 \end{cases}$$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$$

New system

$$\mathcal{S}_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 \\ f_{n+2}(\bar{x}) - y_{1}^{2} + 13y_{2}^{2} = 0 \\ f_{n+3}(\bar{x}) - y_{2}^{2} + 13y_{3}^{2} = 0 \end{cases}$$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$$

New system

$$S_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 \\ f_{n+2}(\bar{x}) - y_{1}^{2} + 13y_{2}^{2} = 0 \\ f_{n+3}(\bar{x}) - y_{2}^{2} + 13y_{3}^{2} = 0 \\ \vdots \\ f_{s-1}(\bar{x}) - y_{s-n-2}^{2} + 13y_{s-n-1}^{2} = 0 \end{cases}$$

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations
$$f_i(\bar{x}) = x_0^2 - x_i^2 = 0$$
 unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \leq i \leq s)$$

New system

$$S_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 \\ f_{n+2}(\bar{x}) - y_{1}^{2} + 13y_{2}^{2} = 0 \\ f_{n+3}(\bar{x}) - y_{2}^{2} + 13y_{3}^{2} = 0 \\ \vdots \\ f_{s-1}(\bar{x}) - y_{s-n-2}^{2} + 13y_{s-n-1}^{2} = \\ f_{s}(\bar{x}) - y_{s-n-1}^{2} = 0 \end{cases}$$

Bruno Grenet (LIP – ÉNS Lyon)

Hardness of the resultant

0
Reduction

• New variables:
$$y_1, \ldots, y_{s-n-1}$$

• Equations $f_i(\bar{x}) = x_0^2 - x_i^2 = 0$ unchanged $(1 \le i \le n)$
• $f_i(\bar{x}) = x_0^2 - x_i^2 = 0$ unchanged $(1 \le i \le n)$

•
$$f_i(\bar{x}) \rightsquigarrow f_i(\bar{x}) - y_{i-n-1}^2 + 13y_{i-n}^2 (n+1 \le i \le s)$$

New system

$$\mathcal{S}_{G} = \begin{cases} f_{1}(\bar{x}) = 0 \\ \vdots \\ f_{n}(\bar{x}) = 0 \\ f_{n+1}(\bar{x}) + 13y_{1}^{2} = 0 & \bar{a} \text{ solution of } \mathcal{S}_{F} \\ f_{n+2}(\bar{x}) - y_{1}^{2} + 13y_{2}^{2} = 0 & \rightsquigarrow & \Downarrow \\ f_{n+3}(\bar{x}) - y_{2}^{2} + 13y_{3}^{2} = 0 & (\bar{a}, \bar{0}) \text{ solution of } \mathcal{S}_{G} \\ \vdots \\ f_{s-1}(\bar{x}) - y_{s-n-2}^{2} + 13y_{s-n-1}^{2} = 0 \\ f_{s}(\bar{x}) - y_{s-n-1}^{2} = 0 \end{cases}$$

Bruno Grenet (LIP – ÉNS Lyon)

Hardness of the resultant

Translation in terms of Jacobian matrices

Jacobian matrix Let $F : \mathbb{C}^{n+1} \to \mathbb{C}^s$ s.t. $F(\bar{x}) = (f_1(\bar{x}), \dots, f_s(\bar{x}))^t$. Then J_F is defined by $(J_F)_{ij} = \frac{\partial f_i}{\partial x_j}$.

Translation in terms of Jacobian matrices

Jacobian matrix

Let $F : \mathbb{C}^{n+1} \to \mathbb{C}^s$ s.t. $F(\bar{x}) = (f_1(\bar{x}), \dots, f_s(\bar{x}))^t$. Then J_F is defined by $(J_F)_{ij} = \frac{\partial f_i}{\partial x_j}$.

Lemma

Let S_F be a homogeneous polynomial system of s equations in n + 1 variables. If \bar{a} is a non trivial solution of S_F , then $J_F(\bar{a})$ has rank at most n.

Translation in terms of Jacobian matrices

Jacobian matrix

Let $F : \mathbb{C}^{n+1} \to \mathbb{C}^s$ s.t. $F(\bar{x}) = (f_1(\bar{x}), \dots, f_s(\bar{x}))^t$. Then J_F is defined by $(J_F)_{ij} = \frac{\partial f_i}{\partial x_j}$.

Lemma

Let S_F be a homogeneous polynomial system of s equations in n + 1 variables. If \bar{a} is a non trivial solution of S_F , then $J_F(\bar{a})$ has rank at most n.

Proof. S_F is homogeneous \implies if S_F has a non trivial solution, then there is a line of solutions.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$. Then for our system (i) \bar{a} is solution $\implies rk(J_F(\bar{a})) = n;$

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$. Then for our system (i) \bar{a} is solution $\implies rk(J_F(\bar{a})) = n$; (ii) \bar{a} is not solution $\implies rk(J_F(\bar{a})) = n + 1$.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$. Then for our system (i) \bar{a} is solution $\implies rk(J_F(\bar{a})) = n$; (ii) \bar{a} is not solution $\implies rk(J_F(\bar{a})) = n + 1$.

Proof.

• The first *n* rows are *almost* diagonal.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$. Then for our system (i) \bar{a} is solution $\implies rk(J_F(\bar{a})) = n;$ (ii) \bar{a} is not solution $\implies rk(J_F(\bar{a})) = n + 1.$

Proof.

- The first *n* rows are *almost* diagonal.
- Exhaustive study of the Jacobian matrix: each equation is satisfied by \bar{a} iff the corresponding row is linearly dependent from the first *n* ones.

Our system
$$S_F$$
: $x_0^2 = x_i^2$, $(x_i + x_0)^2 = 0$, $(x_i + x_j)^2 = 0$ and $(x_i + x_0)^2 = (x_j + x_0) \cdot (x_k + x_0)$.

Lemma

Let \bar{a} be a (n+1)-tuple such that $a_0^2 = \cdots = a_n^2 \neq 0$. Then for our system (i) \bar{a} is solution $\implies rk(J_F(\bar{a})) = n$; (ii) \bar{a} is not solution $\implies rk(J_F(\bar{a})) = n + 1$.

Proof.

- The first *n* rows are *almost* diagonal.
- Exhaustive study of the Jacobian matrix: each equation is satisfied by \bar{a} iff the corresponding row is linearly dependent from the first *n* ones... Why is this true?

 \mathcal{S}_F infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

Bruno Grenet (LIP – ÉNS Lyon)

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

Bruno Grenet (LIP – ÉNS Lyon)

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

$$\det\left(\frac{1}{2}J_{G}(\bar{a},\bar{b})\right) = \det\left(\begin{array}{ccccccc} 0 & \pm 1 & & 0 & \cdots & 0\\ \vdots & \ddots & & \vdots & & \vdots\\ 0 & \pm 1 & 0 & \cdots & 0\\ \hline * & & & 13\\ \vdots & |*| & \leqslant & 12 & -1 & \ddots\\ \vdots & & & & & 13\\ * & & & & & -1 \end{array}\right)$$

 \mathcal{S}_F infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

$$\det\left(\frac{1}{2}J_{G}(\bar{a},\bar{b})\right) = \pm \det\left(\begin{array}{ccc}c_{1} & 13 \\ \vdots & -1 & \ddots \\ \vdots & & \ddots & 13 \\ c_{s-n} & & & -1\end{array}\right)$$

where $|c_i| \leq 12$. NB: $(c_1, \ldots, c_n) = \overline{0} \iff \mathsf{rk} \ J_F(\overline{a})) = n$.

Bruno Grenet (LIP – ÉNS Lyon)

$$\mathcal{S}_F$$
 infeasible \implies rk $J_F(\bar{a})) = n + 1 \stackrel{?}{\implies}$ rk $J_G(\bar{a}, \bar{b})) = s \implies \mathcal{S}_G$ infeasible

Let $a_0 = 1$. Then for every *i*, $a_i = \pm 1$.

$$\det\left(\frac{1}{2}J_{G}(\bar{a},\bar{b})\right) = \pm \det\left(\begin{array}{ccc}c_{1} & 13 & & \\ \vdots & -1 & \ddots & \\ \vdots & & \ddots & 13 \\ c_{s-n} & & & -1\end{array}\right)$$

where $|c_i| \leq 12$. NB: $(c_1, \ldots, c_n) = \overline{0} \iff \text{rk } J_F(\overline{a})) = n$. The determinant is non zero, *via* the unicity of base-13 representation.

Bruno Grenet (LIP – ÉNS Lyon)

• New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_G.$

- New variables are added, and last equations are modified $\rightsquigarrow S_G$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .

- New variables are added, and last equations are modified $\rightsquigarrow S_G$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .
- If S_F has no solution, let $(\bar{a}, \bar{b}) \neq \bar{0}$:

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .
- If S_F has no solution, let $(\bar{a}, \bar{b}) \neq \bar{0}$:
 - The Jacobian matrix $J_F(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \bar{0}$).

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .
- If S_F has no solution, let $(\bar{a}, \bar{b}) \neq \bar{0}$:
 - The Jacobian matrix $J_F(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \bar{0}$).
 - ▶ Then $J_G(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_i vanishes).

- New variables are added, and last equations are modified $\rightsquigarrow \mathcal{S}_{G}$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .
- If S_F has no solution, let $(\bar{a}, \bar{b}) \neq \bar{0}$:
 - The Jacobian matrix $J_F(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \bar{0}$).
 - ▶ Then $J_G(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_i vanishes).
 - So S_G cannot have non trivial solution.

- New variables are added, and last equations are modified $\rightsquigarrow S_G$.
- If \bar{a} is solution of S_F , then $(\bar{a}, \bar{0})$ is solution of S_G .
- If S_F has no solution, let $(\bar{a}, \bar{b}) \neq \bar{0}$:
 - The Jacobian matrix $J_F(\bar{a})$ has maximal rank (as soon as $\bar{a} \neq \bar{0}$).
 - ▶ Then $J_G(\bar{a}, \bar{b})$ has maximal rank (with a slight modification if some b_i vanishes).
 - So S_G cannot have non trivial solution.

 $\mathbb{H}_2\mathbb{N}^{\square}$ is NP-hard.

- Onswer to Canny's question.
- Upper (AM) and lower (NP) bounds are "almost equal".

- Onswer to Canny's question.
- Upper (AM) and lower (NP) bounds are "almost equal".
- B Why does it work?

- Onswer to Canny's question.
- Upper (AM) and lower (NP) bounds are "almost equal".
- Over the second seco
- ^e The method seems unable to prove results in algebraic complexity.

- Onswer to Canny's question.
- Upper (AM) and lower (NP) bounds are "almost equal".
- Over the second seco
- B The method seems unable to prove results in algebraic complexity.

Thank you!