
Sparse interpolation over the integers with an application

Bruno Grenet
1

LJK – Université Grenoble-Alpes

Séminaire Maths Info, Toulouse

May 23., 2024

1

Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

2/34

(Vague) definition of the problem

Sparse interpolation

Inputs: A way to evaluate a sparse polynomial f ∈ R[x]
Bounds D ≥ deg(f), H ≥ f∞ and/or T ≥ f# (optional)

Output: The sparse representation of f

Sparse representation

f =
t−1∑
i=0

cix
ei , ci ∈ R ̸=0

Degree: deg(f) = maxi ei

Sparsity: f# = t

Height: f∞ = maxi H(ci) where H(pi/qi) = max(|pi|, |qi|) if ci ∈ Q

3/34

Many variants

Ring of coefficients

▶ Z or Q size growth → modular techniques

▶ R or C precision issues

▶ Finite fields large/small size/characteristic

▶ Modular rings non-units

Number of variables

▶ Univariate polynomials

▶ Multivariate polynomials Kronecker substitution → univariate case

Input representation

▶ Fixed evaluations

▶ Black box

▶ Arithmetic circuit / SLP

3/34

Many variants

Ring of coefficients

▶ Z or Q size growth → modular techniques

▶ R or C precision issues

▶ Finite fields large/small size/characteristic

▶ Modular rings non-units

Number of variables

▶ Univariate polynomials

▶ Multivariate polynomials Kronecker substitution → univariate case

Input representation

▶ Fixed evaluations

▶ Black box

▶ Arithmetic circuit / SLP

4/34

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

5/34

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

6/34

Sparse polynomials & linearly recurrent sequences

f =
t−1∑
i=0

cix
ei →


f (1)
f (ω)

.

.

.

f (ωn)

 =


1 · · · 1

ωe0 · · · ωet−1

.

.

.

.

.

.

ωne0 · · · ωnet−1




c0

c1

.

.

.

ct−1


Theorem [Blahut (1979)]

Let f =
∑

t−1

i=0
cix

ei ∈ R[X]<D where R is an integral domain and ω ∈ R be a principal root of

unity of order ≥ D. Then the minimal polynomial of (f (ωj))j≥0 is Λ(x) =
∏

t−1

i=0
(x − ωei).

Proof sketch

▶ Minimal polynomial of (ciω
jei)j : x − ωei

▶ Minimal polynomial of a sum = lcm of their minimal polynomials

From

−→
F = (f (1), . . . , f (ω2t−1)), compute Λ =

∏
t−1

i=0
(x − ωei) to get e0, . . . , et−1

7/34

Sparse interpolation with known exponents

f =
t−1∑
i=0

cix
ei →


f (1)
f (ω)

.

.

.

f (ωn)

 =


1 · · · 1

ωe0 · · · ωet−1

.

.

.

.

.

.

ωne0 · · · ωnet−1




c0

c1

.

.

.

ct−1


Remark

Sparse interpolation on geometric sequence with known exponents

⇐⇒ transposed Vandermonde system solving

Fast algorithm

▶ Vandermonde system solving ⇐⇒ (dense) polynomial interpolation

▶ O(M(t) log t) [Borodin-Moenck (1974)]

▶ Transposition → same complexity [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

From

−→
F and e0, . . . , et−1, compute c0, . . . , ct−1

8/34

Algorithm à la Prony / Ben-Or–Tiwari [Prony (1795), Ben-Or–Tiwari (1988), . . .]

Algorithm

Inputs: Black box for f ∈ Fq[x], q ≥ deg(f)
Bound T ≥ f#

1. Evaluate f at 1, ω, . . . , ω2T−1
where ω has order ≥ 2T

2. Compute the minimal polynomial Λ of (f (ωj))j

3. Compute its roots β0, . . . , βt−1 and obtain the exponents e0, . . . , et−1

4. Solve the transposed Vandermonde system to get the coefficients c0, . . . , ct−1

Complexity analysis

1. 2T black box evaluations

2. O(M(T) log T) [Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)]

3. i. O(M(t) log t log q) [Berlekamp (1970), Rabin (1980)]

ii. O(
√

D) [Shanks (1971), Heiman (1992)]

4. O(M(t) log t) [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

8/34

Algorithm à la Prony / Ben-Or–Tiwari [Prony (1795), Ben-Or–Tiwari (1988), . . .]

Algorithm

Inputs: Black box for f ∈ Fq[x], q ≥ deg(f)
Bound T ≥ f#

1. Evaluate f at 1, ω, . . . , ω2T−1
where ω has order ≥ 2T

2. Compute the minimal polynomial Λ of (f (ωj))j

3. Compute its roots β0, . . . , βt−1 and obtain the exponents e0, . . . , et−1

4. Solve the transposed Vandermonde system to get the coefficients c0, . . . , ct−1

Complexity analysis

1. 2T black box evaluations

2. O(M(T) log T) [Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)]

3. i. O(M(t) log t log q) [Berlekamp (1970), Rabin (1980)]

ii. O(
√

D) [Shanks (1971), Heiman (1992)]

4. O(M(t) log t) [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

9/34

Remarks on Prony / Ben-Or–Tiwari algorithm

Complexity

▶ Quasi-linear in T , linear (optimal) number of evaluations

▶ Polynomial in D, rather than logD → not polynomial in the output size

▶ Bound T ≥ f# not required → early termination [Kaltofen-Lee (2003)]

Other base rings

▶ Original Ben-Or–Tiwari’s algorithm for Z[x1, . . . , xn]
▶ large evaluations → bit size O(D)
▶ replace ω by (p1, . . . , pn)

▶ Small finite fields → use an extension extended black box

▶ Rings: works as long as ω is a principal root of unity of large order

▶ Fast variant over Q [Kaltofen (1988/2010)]

▶ Compute modulo p where p− 1 is smooth

▶ Use fast discrete logarithm [Pohlig-Hellman (1978)]

▶ Complexity polynomial in T and logD

10/34

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

11/34

Using cyclic extensions

▶ From an SLP, f can be computed explicitly in time O(D) expression swell

▶ Compute f mod x
p − 1 =

∑
i
cix

ei mod p
for some prime p [Garg-Schost (2009)]

Loss of information

▶ Exponents known only modulo p

▶ Possible collisions between monomials

Reconstruction of full exponents

▶ Use several pj’s and (polynomial) Chinese remaindering, diversification, . . .

[Garg-Schost (2009), Giesbrecht-Roche (2011), . . .]

▶ Embed exponents into coefficients [Arnold-Roche (2015), Huang (2019)]

Deal with collisions

▶ Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

▶ Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

11/34

Using cyclic extensions

▶ From an SLP, f can be computed explicitly in time O(D) expression swell

▶ Compute f mod x
p − 1 =

∑
i
cix

ei mod p
for some prime p [Garg-Schost (2009)]

Loss of information

▶ Exponents known only modulo p

▶ Possible collisions between monomials

Reconstruction of full exponents

▶ Use several pj’s and (polynomial) Chinese remaindering, diversification, . . .

[Garg-Schost (2009), Giesbrecht-Roche (2011), . . .]

▶ Embed exponents into coefficients [Arnold-Roche (2015), Huang (2019)]

Deal with collisions

▶ Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

▶ Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

12/34

Embedding exponents into coefficients

Using derivatives [Huang 2019]

▶ If f =
∑

i
cix

ei
, x · f ′(x) =

∑
i
cieix

ei

▶ Use of automatic differentiation [Baur–Strassen (1983)]

À la Paillier [Arnold–Roche (2015)]

▶ If f ∈ Fq[x], evaluate f ((1 + q)x) over Z/q
2Z

▶ Modulo q
2
, (1 + q)ei = 1 + eiq

f (x) =
∑

i

cix
ei ⇝ f ((1 + q)x) =

∑
i

ci(1 + eiq)x
ei

▶ Remark: f ((1 + q)x)− f (x) =
∑

i
cieiqx

ei = qx · f ′(x)

Requirements

▶ Both techniques require ei to be exactly representable in Fq

▶ Fq should have characteristic ≥ deg(f)

13/34

Managing collisions

▶ Collision: monomials x
ei

, x
ej

such that ei ≡ ej mod p

▶ Collision-free monomial: x
ei

such that ei ̸≡ ej mod p for j ̸= i

Avoiding or limiting collisions

Let p be a random prime in [λ, 2λ]
▶ For λ = Ω(1

ε t
2 logD), there is no collision with prob. ≥ 1− ε

▶ For λ = Ω(1

ε t logD), there are ≥ 2

3
t collision-free monomials with prob. ≥ 1− ε

Dealing with collisions

▶ With ≥ 2

3
t collision-free monomials, there are at most

1

6
t collisions

▶ Each collision may produce one error

▶ If each collision-free monomial is correctly reconstructed, we get f
∗

such that

(f − f
∗)# ≤

1

3

f# +
1

6

f# =
1

2

f#

14/34

Algorithm à la Garg–Schost [Garg-Schost (2009), Huang (2019)]

Algorithm

Inputs: SLP for f ∈ Fq[x], char(Fq) ≥ deg(f)
Bounds T ≥ f#, D ≥ deg f

Output: The sparse representation of f w.h.p.

1. f
∗ ← 0

2. Repeat log(T) times:

3. p← random prime in [λ, 2λ] for λ = O(T logD log T)

4. (f
(0)

p , f
(1)

p)← (f mod x
p − 1, x · f ′ mod x

p − 1) SLP for f
′

+ dense arith.

5. For each pair

{
cx

d ∈ f
(0)

p

c
′
x

d ∈ f
(1)

p

: add c · xc
′/c

to f
∗

if c
′/c ∈ {0, . . . ,D − 1}

6. Return f
∗

Complexity analysis

▶ O(log T) probes of the circuit→ O(s ·M(p) · log(T)) s: SLP size

▶ Õ(sT logD) operations in Fq → Õ(sT logD log q) bit operations

15/34

Remarks on Garg–Schost algorithm

Almost quasi-linear!

▶ Output size: O(T (logD + log q)), complexity: Õ(T logD log q)
▶ Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

▶ Smaller characteristic

▶ No exponent embedding anymore

▶ Several techniques, such as diversification

▶ Best complexity: O(sT log2

D(logD + log q)) [Arnold-Giesbrecht-Roche (2014)]

▶ Over the integers

▶ Coefficient growth → modular techniques

▶ Best complexity: O(sT log3

D logH) where H ≥ f∞ [Perret du Cray (2023)]

16/34

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

17/34

Result

Inputs: Modular black box for f ∈ Z[x]
Bounds T ≥ f#, D ≥ deg(f), H ≥ f∞

Complexity: Õ(T (logD + logH)) bit operations

Modular black box

▶ Given α and m, compute f (α) mod m

▶ Can be implemented given an arithmetic circuit / SLP

▶ Pure black box: evaluations on Z \ {0,±1} have size Ω(D)

General idea

▶ General structure: à la Garg-Schost

▶ Computing f mod x
p − 1: à la Prony / Ben-Or–Tiwari

▶ Work over several rings of different sizes to make it efficient

18/34

First ingredient: compute exponents of f mod x
p − 1

Evaluations in a small field Fq

▶ If ω has order p in Fq, f (ωj) = (f mod x
p − 1)(ωj)

▶ Small q for efficiency reasons

▶ Only require coefficients to be nonzero modq q = poly(T logH)

▶ Prevent too many collisions p = O(T logD)

Algorithm

Input: a p-PRU ω ∈ Fq to be computed

1. Evaluate f at 1, ω, . . . , ω2T−1
2T queries

2. Compute the minimal polynomial of (f (ωj))j Õ(T log q)

3. Compute its roots and get the exponents by evaluation Õ(p log q)

Complexity analysis

2. Õ(T log(T logH))
3. Õ(T log(D) log(T logH)) → Õ(T logD log logH)

19/34

Second ingredient: compute f mod x
p − 1

Evaluations in a larger ring

▶ Fq is too small → coefficients known modulo q

▶ Use larger ring where coefficients can be represented

▶ Using large finite field is too costly (primality testing, etc.)

→ Ring Z/q
kZ where q

k > 2H k = O(logH/ log q)

Algorithm

Input: a p-PRU ωk ∈ Z/q
kZ to be computed

1. Evaluate f at 1, ωk , . . . , ωT−1

k
T queries

2. Solve a transposed Vandermonde system, build using the exponents Õ(Tk log q)

Complexity analysis

2. Õ(T logH)

20/34

Third ingredient: Embed exponents into coefficients

Compute both f (x) and f ((1 + q
k)x) modulo ⟨xp − 1, q

2k⟩

Paillier-like embedding

▶ (1 + q
k)ei = 1 + eiq

k mod q
2k

▶ If f =
∑

i
cix

ei
,

f ((1 + q
k)x) mod ⟨q2k , x

p − 1⟩ =
∑

i

(ci(1 + eiq
k))xei mod p

Collisions

▶ If cix
ei

is collision-free modulo x
p − 1 → reconstruct both ci and ei

▶ Possibly noisy terms from collisions ei = ej mod p

→ Compute f
∗

such that (f − f
∗)# ≤ 1

2
f# w.h.p.

21/34

Fourth ingredient: p-PRU in Fq and Z/q
2kZ

Produce p, q and ω together

1. Sample a random prime p ∈ [λ, 2λ] with λ = O(T logD)
2. Sample a random prime q ∈ {kp + 1 : 1 ≤ k ≤ λ5} effective Dirichlet theorem

3. Sample a random α such that ω = α(q−1)/p ̸= 1

4. Return (p, q, ω)

Complexity: logO(1)(λ) = logO(1)(T logD)

Lift ω ∈ Fq to ω2k ∈ Z/q
2kZ

▶ If ω2i is a p-PRU modulo q
2i

, ω2i mod q
i

is a p-PRU modulo q
i

▶ Newton iteration to lift ω ∈ Fq to ω2k ∈ Z/q
2kZ

Complexity: Õ(k log p log q) = Õ(logH log(T logD))

22/34

Full algorithm

Algorithm

1. f
∗ ← 0

2. Repeat log T times :

3. Compute p, q, ω ∈ Fq, ω2k ∈ Z/q
2kZ Fourth ingredient

4. Compute exponents of (f − f
∗) mod ⟨xp − 1, q⟩ First ingredient

5. Compute (f − f
∗) mod ⟨xp − 1, q

2k⟩ Second ingredient

6. Compute (f − f
∗)((1 + q

k)x) mod ⟨xp − 1, q
2k⟩ Second ingredient

7. Reconstruct collision-free monomials plus some noise Third ingredient

8. Update f
∗

9. Return f
∗

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular black box for f ∈ Z[x] and bounds T , D, H, the algorithm returns the sparse

representation of f with probability ≥ 2

3
, and has bit complexity Õ(T (logD + logH))

23/34

Getting rid of the sparsity bound

Early termination technique

▶ Given (αj)j≥0, find its minimal polynomial without any bound on its degree

▶ Berlekamp–Massey with early termination [Kaltofen-Lee (2003)]

▶ Works over Fq with q = Ω(D4)
▶ Complexity: 2t evaluations and Õ(t) operations over Fq

And over Z?

▶ Perform early termination modulo q, where q = Ω(D4)
▶ Finding such a prime is too costly → O(log3

D)

Prime numbers without primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]

▶ Take a random number m and pretend it be prime

▶ With good prob., its largest prime factor is ≥
√

m

▶ For each test “a = 0 mod m?” → compute gcd(a,m) and update m

▶ We show that algorithms (even randomized) have the same behavior

24/34

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

25/34

What is the complexity of multiplying two degree-d polynomials over Z?

Algebraic complexity over a ring

▶ O(d2) [folklore]

▶ O(d 1.585), . . . , O(d 1+o(1)) [Karatsuba-Ofman (1962), Toom (1963), Cook (1966), . . .]

▶ O(d log d log log d) [Schönhage-Strassen (1971), Cantor-Kaltofen (1991)]

Bit complexity bounds

If g, h ∈ Z[x]≤d have height ≤ H, gh has height ≤ dH
2

1. Direct use of algebraic algorithms

▶ Algebraic complexity × O(log(dH) log log(dH)) [Harvey-van der Hoeven (2021)]

2. Computation modulo a prime p ≥ 2dH
2

▶ Algebraic complexity × Õ(log p) + Õ(log3

p) prime generation

3. Use Kronecker substitution (x 7→ 2dH
2
) and integer multiplication

▶ Multiplication of integers of size O(d log(dH))

Product of degree-d polynomials of height ≤ H in time Õ(d log(H))

26/34

The case of unbalanced polynomials

(x7 + 3x
6 + 213672289012x

5 − 3x
4 − 4x

3 − 7x
2 + x − 3)

× (x7 + 3x
6 − 213672289006x

5 − 3x
4 − 4x

3 − x
2 + x − 3)

= x
14 + 6x

13 + 15x
12 + 12x

11 − 45655847090345622202098x
10 − 50x

9 − 37x
8

+1282033734054x
7 + 28x

6 + 8x
5 + 17x

4 + 16x
3 + 25x

2 − 6x + 9

Quadratic complexity

▶ Let f =
∑

d

i=0
fix

i → s = bitlen(f) ≃
∑

i
log |fi|

▶ H = max |fi|→ d + logH ≤ s ≤ d logH

▶ Complexity Õ(d logH) = Õ(s2) if d ≃ logH

Can we multiply two polynomials of bit-length s in time Õ(s)?

26/34

The case of unbalanced polynomials

(x7 + 3x
6 + 213672289012x

5 − 3x
4 − 4x

3 − 7x
2 + x − 3)

× (x7 + 3x
6 − 213672289006x

5 − 3x
4 − 4x

3 − x
2 + x − 3)

= x
14 + 6x

13 + 15x
12 + 12x

11 − 45655847090345622202098x
10 − 50x

9 − 37x
8

+1282033734054x
7 + 28x

6 + 8x
5 + 17x

4 + 16x
3 + 25x

2 − 6x + 9

Quadratic complexity

▶ Let f =
∑

d

i=0
fix

i → s = bitlen(f) ≃
∑

i
log |fi|

▶ H = max |fi|→ d + logH ≤ s ≤ d logH

▶ Complexity Õ(d logH) = Õ(s2) if d ≃ logH

Can we multiply two polynomials of bit-length s in time Õ(s)?

27/34

Interpolation-based multiplication

The problem

Given g, h ∈ Z[x]
Compute f = g × h

Reinterpretation

Given an implicit representation of f ∈ Z[x] as g × h

Compute the explicit (dense or sparse) representation of f

New problem

Given a way to evaluate f ∈ Z[x]
Interpolate f in dense or sparse representation

Remarks

▶ The polynomial f can be unbalanced

▶ Complexity should be quasi-linear in s = bitlen(f)
▶ Evaluations of g and h are not for free!

28/34

Interpolation of unbalanced polynomials first try

Given a modular black box for f ∈ Z[x], compute f

Natural approach

1. Interpolate f
∗ = f mod m for some smallish m

▶ f
∗

contains the small coefficients of f

▶ f − f
∗

is sparser than f

2. Recursively compute (f − f
∗) mod m for increasing values of m

▶ Use sparse interpolation in rings Z/mZ
▶ Ring size increases while sparsity decreases

It does not work. . .

▶ At some point we know f
∗

of small height

▶ We need to interpolate (f − f
∗) mod m for some large m

▶ Requires to evaluate f
∗

on some large values → Õ(s2)

29/34

Interpolation of unbalanced polynomials second try

Given a modular black box for f ∈ Z[x], compute f

Top-down approach

1. First interpolate the large terms f
∗

of f

▶ Use sparse interpolation, and pretend f = f
∗

▶ Smaller terms only slightly modify the evaluations

2. Recursively interpolate f − f
∗

▶ f − f
∗

has smaller coefficients and is more balanced than f

▶ Ring size decreases while sparsity increases

Main difficulties

▶ Deal with pertubated evaluations

▶ Cost of evaluations

30/34

Computing the huge terms

0 small medium large huge logH

Technical result

▶ Let f
(0)

p = f mod ⟨xp − 1,m⟩ and f
(1)

p = x · f ′ mod ⟨xp − 1,m⟩
▶ Let cx

e
be a large term of f , c

(0)
and c

(1)
be the coefficients of x

e mod p
in f

(0)
p and f

(1)
p

▶ If cx
e

only collides with small terms modulo p, and some conditions on m are satisfied,⌈
c
(1)/c

(0)
⌋
= e

Algorithm sketch

1. Compute a superset T of the large terms exponents

▶ Take p so that most large terms only collide with small terms

▶ Repeat with several p’s for each large to be preserved at least once

2. Compute the huge terms using T
▶ Use T to detect collisions between large terms

▶ Only keep huge coefficients: all huge terms and some large terms

31/34

Full algorithm

Algorithm

Inputs: Modular black box for f ∈ Z[x]
Bounds s ≥ bitlen(f), D ≥ deg(f)

1. H ← 2
s
, f

∗ ← 0

2. While H ≫ log s and logD :

3. Compute the huge terms of f − f
∗

and update f
∗

4. H ←
√

H

5. Compute the remaining terms of f − f
∗

via (balanced) sparse interpolation

Theorem [Giorgi-G.-Perret du Cray-Roche (2024)]

Given a modular black box for f ∈ Z[x] and bounds s and D, the algorithm returns the

explicit representation of f with probability ≥ 2

3
, and has bit complexity Õ(s logD)

Remark

▶ Quasi-linear for dense or moderately sparse polynomials if logD = poly(log s)

▶ Not quasi-linear for very sparse polynomials if logD = poly(s)

32/34

Back to polynomial multiplication

Theorem [Giorgi-G.-Perret du Cray-Roche (2024)]

There exists an algorithm that, given g, h ∈ Z[x], computes the product f = g × h with

probability of success ≥ 1− 1/s and expected bit complexity Õ(s log d), where

s = bitlen(f) + bitlen(g) + bitlen(h) and d = deg(f)

Main ingredients

▶ Unbalanced interpolation with tentative bound s ≥ bitlen(f)
▶ Check whether f = g × h [Giorgi-G.-Perret du Cray (2023)]

▶ Start with small s and double it until f is correctly computed

Remark

▶ Quasi-linear for dense or moderately sparse polynomials

▶ Not quasi-linear for very sparse polynomials

33/34

Summary of results

f ∈ Z[x], D = deg(f), T = f#, H = f∞, s = bitlen(f)

Sparse interpolation over the integers

▶ Interpolate f from a modular black box in time Õ(T (logD + logH))
▶ Corollaries:

▶ Quasi-linear sparse multiplication algorithm [Giorgi-G.-Perret du Cray (2020)]

▶ Quasi-linear exact sparse division algorithm [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Unbalanced interpolation over the integers

▶ Interpolate f from a modular black box in time Õ(s logD)
▶ Corollary:

▶ Unbalanced polynomial multiplication in time Õ(s logD)

34/34

Open problems

Quasi-linear interpolation algorithm over Fq

▶ large characteristic / large field → black box? circuit?

▶ small field → only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over Z
▶ Replace Õ(s logD) by Õ(s)
▶ Remove the need for a priori bounds on s and D

Practical efficiency?

Thank you!

34/34

Open problems

Quasi-linear interpolation algorithm over Fq

▶ large characteristic / large field → black box? circuit?

▶ small field → only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over Z
▶ Replace Õ(s logD) by Õ(s)
▶ Remove the need for a priori bounds on s and D

Practical efficiency?

Thank you!

	Black box algorithm à la Prony / Ben-Or–Tiwari
	SLP algorithm à la Garg–Schost
	A new quasi-linear algorithm over the integers
	Application: polynomials with unbalanced coefficients

