Sparse interpolation over the integers with an application

Bruno Grenet¹

LJK – Université Grenoble-Alpes

Séminaire Maths Info, Toulouse May 23., 2024

¹Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

(Vague) definition of the problem

Sparse interpolation

Inputs: A way to evaluate a sparse polynomial $f \in R[x]$ Bounds $D \ge \deg(f)$, $H \ge f_{\infty}$ and/or $T \ge f_{\#}$ (optional) Output: The sparse representation of f

Sparse representation

$$f = \sum_{i=0}^{t-1} c_i x^{e_i}, c_i \in R_{\neq 0}$$

Degree: deg
$$(f)$$
 = max_i e_i
Sparsity: $f_{\#} = t$
Height: f_{∞} = max_i $H(c_i)$ where $H(p_i/q_i)$ = max $(|p_i|, |q_i|)$ if $c_i \in \mathbb{Q}$

Many variants

Ring of coefficients

- $\blacktriangleright \mathbb{Z}$ or \mathbb{Q}
- $\blacktriangleright \mathbb{R}$ or \mathbb{C}
- Finite fields
- Modular rings

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Fixed evaluations
- Black box
- Arithmetic circuit / SLP

size growth \rightarrow modular techniques precision issues large/small size/characteristic non-units

Kronecker substitution \rightarrow univariate case

Many variants

Ring of coefficients

- $\blacktriangleright \mathbb{Z}$ or \mathbb{Q}
- $\blacktriangleright \mathbb{R}$ or \mathbb{C}
- Finite fields
- Modular rings

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Fixed evaluations
- Black box
- Arithmetic circuit / SLP

size growth \rightarrow modular techniques precision issues large/small size/characteristic non-units

Kronecker substitution \rightarrow univariate case

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

Sparse polynomials & linearly recurrent sequences

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \to \begin{pmatrix} f(1) \\ f(\omega) \\ \vdots \\ f(\omega^n) \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \omega^{e_0} & \cdots & \omega^{e_{t-1}} \\ \vdots & & \vdots \\ \omega^{ne_0} & \cdots & \omega^{ne_{t-1}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{t-1} \end{pmatrix}$$

Theorem

[Blahut (1979)]

Let $f = \sum_{i=0}^{t-1} c_i x^{e_i} \in R[X]_{\leq D}$ where *R* is an integral domain and $\omega \in R$ be a principal root of unity of order $\geq D$. Then the minimal polynomial of $(f(\omega^j))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Proof sketch

- Minimal polynomial of $(c_i \omega^{je_i})_j : x \omega^{e_i}$
- Minimal polynomial of a sum = LCM of their minimal polynomials

From
$$\overrightarrow{F} = (f(1), \dots, f(\omega^{2t-1}))$$
, compute $\Lambda = \prod_{i=0}^{t-1} (x - \omega^{e_i})$ to get e_0, \dots, e_{t-1}

Sparse interpolation with known exponents

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \to \begin{pmatrix} f(1) \\ f(\omega) \\ \vdots \\ f(\omega^n) \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \omega^{e_0} & \cdots & \omega^{e_{t-1}} \\ \vdots & & \vdots \\ \omega^{ne_0} & \cdots & \omega^{ne_{t-1}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{t-1} \end{pmatrix}$$

Remark

Sparse interpolation on geometric sequence with known exponents

 \iff transposed Vandermonde system solving

Fast algorithm

- \blacktriangleright Vandermonde system solving \iff (dense) polynomial interpolation
 - $\blacktriangleright O(M(t) \log t)$ [Borodin-Moenck (1974)]
- $\blacktriangleright Transposition \rightarrow same \ complexity \qquad [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]$

From \overrightarrow{F} and e_0, \ldots, e_{t-1} , compute c_0, \ldots, c_{t-1}

Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm

- Inputs: Black box for $f \in \mathbb{F}_q[x], q \ge \deg(f)$ Bound $T \ge f_{\#}$
- **1.** Evaluate f at 1, ω , ..., ω^{2T-1}

where ω has order $\geq 2T$

- **2**. Compute the minimal polynomial Λ of $(f(\omega^j))_j$
- 3. Compute its roots $\beta_0, \ldots, \beta_{t-1}$ and obtain the exponents e_0, \ldots, e_{t-1}
- 4. Solve the transposed Vandermonde system to get the coefficients c_0, \ldots, c_{t-1}

Complexity analysis

- 1. 2*T* black box evaluations
- $2. O(M(T) \log T)$
- 3. i. $O(M(t) \log t \log q)$ ii. $O(\sqrt{D})$
- 4. $O(M(t) \log t)$

[Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)] [Berlekamp (1970), Rabin (1980)] [Shanks (1971), Heiman (1992)] [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)] Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm

- Inputs: Black box for $f \in \mathbb{F}_q[x], q \ge \deg(f)$ Bound $T \ge f_{\#}$
- **1.** Evaluate f at 1, ω , ..., ω^{2T-1}

where ω has order $\geq 2T$

- **2**. Compute the minimal polynomial Λ of $(f(\omega^j))_j$
- 3. Compute its roots $\beta_0, \ldots, \beta_{t-1}$ and obtain the exponents e_0, \ldots, e_{t-1}
- 4. Solve the transposed Vandermonde system to get the coefficients c_0, \ldots, c_{t-1}

Complexity analysis

- 1. 2*T* black box evaluations
- $2. O(M(T) \log T)$
- 3. i. $O(M(t) \log t \log q)$ ii. $O(\sqrt{D})$
- 4. $O(M(t) \log t)$

[Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)] [Berlekamp (1970), Rabin (1980)] [Shanks (1971), Heiman (1992)] [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

Remarks on Prony / Ben-Or-Tiwari algorithm

Complexity

- Quasi-linear in T, linear (optimal) number of evaluations
- Polynomial in D, rather than $\log D \rightarrow$ not polynomial in the output size
- ▶ Bound $T \ge f_{\#}$ not required \rightarrow *early termination*

Other base rings

- Original Ben-Or–Tiwari's algorithm for $\mathbb{Z}[x_1, \ldots, x_n]$
 - large evaluations \rightarrow bit size O(D)
 - replace ω by (p_1, \ldots, p_n)
- Small finite fields \rightarrow use an extension

extended black box

[Kaltofen-Lee (2003)]

- Rings: works as long as ω is a *principal* root of unity of large order
- ▶ Fast variant over ℚ
 - Compute *modulo* p where p 1 is smooth
 - Use fast discrete logarithm
 - Complexity polynomial in T and log D

[Kaltofen (1988/2010)]

[Pohlig-Hellman (1978)]

Contents

1. Black box algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

Using cyclic extensions

From an SLP, f can be computed explicitly in time O(D)
 Compute f mod x^p - 1 = \sum_i c_i x^{e_i mod p} for some prime p
 [Garg-Schost (2009)]

Loss of information

- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

- ▶ Use several *p_j*'s and (polynomial) Chinese remaindering, *diversification*, ...
- Embed exponents into coefficients

Deal with collisions

Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
 Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]

[Arnold-Roche (2015), Huang (2019)]

Using cyclic extensions

From an SLP, f can be computed explicitly in time O(D)
 Compute f mod x^p - 1 = \sum_i c_i x^{e_i mod p} for some prime p
 [Garg-Schost (2009)]

Loss of information

- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

- Use several p_j's and (polynomial) Chinese remaindering, diversification, ...
- Embed exponents into coefficients

[Garg-Schost (2009), Giesbrecht-Roche (2011), ...] [Arnold-Roche (2015), Huang (2019)]

Deal with collisions

Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Embedding exponents into coefficients

Using derivatives

$$If f = \sum_{i} c_i x^{e_i}, x \cdot f'(x) = \sum_{i} c_i e_i x^{e_i}$$

Use of automatic differentiation

À la Paillier

$$f(x) = \sum_i c_i x^{e_i} \rightsquigarrow f((1+q)x) = \sum_i c_i (1+e_i q) x^{e_i}$$

• Remark:
$$f((1+q)x) - f(x) = \sum_i c_i e_i q x^{e_i} = qx \cdot f'(x)$$

Requirements

b Both techniques require e_i to be exactly representable in \mathbb{F}_q

• \mathbb{F}_q should have characteristic $\geq \deg(f)$

[Baur-Strassen (1983)]

[Arnold-Roche (2015)]

Managing collisions

- Collision: monomials x^{e_i} , x^{e_j} such that $e_i \equiv e_j \mod p$
- Collision-free monomial: x^{e_i} such that $e_i \neq e_j \mod p$ for $j \neq i$

Avoiding or limiting collisions

Let *p* be a random prime in $[\lambda, 2\lambda]$

- For $\lambda = \Omega(\frac{1}{\varepsilon}t^2 \log D)$, there is no collision with prob. $\geq 1 \varepsilon$
- For $\lambda = \Omega(\frac{1}{\varepsilon}t \log D)$, there are $\geq \frac{2}{3}t$ collision-free monomials with prob. $\geq 1 \varepsilon$

Dealing with collisions

- With $\geq \frac{2}{3}t$ collision-free monomials, there are at most $\frac{1}{6}t$ collisions
- Each collision may produce one error
- If each collision-free monomial is correctly reconstructed, we get f^* such that

$$(f - f^*)_{\#} \le \frac{1}{3}f_{\#} + \frac{1}{6}f_{\#} = \frac{1}{2}f_{\#}$$

Algorithm à la Garg-Schost

Algorithm

Inputs: SLP for $f \in \mathbb{F}_{q}[x]$, $char(\mathbb{F}_{q}) \geq deg(f)$ Bounds $T \ge f_{\#}$, $D \ge \deg f$ *Output:* The sparse representation of *f w.h.p.* 1. $f^* \leftarrow 0$ 2. Repeat $\log(T)$ times: 3. $p \leftarrow \text{random prime in } [\lambda, 2\lambda] \text{ for } \lambda = O(T \log D \log T)$ 4. $(f_p^{(0)}, f_p^{(1)}) \leftarrow (f \mod x^p - 1, x \cdot f' \mod x^p - 1)$ SLP for f' + dense arith. 5. For each pair $\begin{cases} cx^d & \in f_p^{(0)} \\ c'x^d & \in f_c^{(1)} \end{cases} : \text{add } c \cdot x^{c'/c} \text{ to } f^* \qquad \text{if } c'/c \in \{0, \dots, D-1\} \end{cases}$ 6. Return f^*

Complexity analysis

O(log *T*) probes of the circuit → *O*(s · M(p) · log(*T*)) s: SLP size
 Õ(sT log *D*) operations in $\mathbb{F}_q \to \tilde{O}(sT \log D \log q)$ bit operations

Remarks on Garg-Schost algorithm

Almost quasi-linear!

- Output size: $O(T(\log D + \log q))$, complexity: $\tilde{O}(T \log D \log q)$
- Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

- Smaller characteristic
 - No exponent embedding anymore
 - Several techniques, such as diversification
 - Best complexity: $O(sT \log^2 D(\log D + \log q))$
- Over the integers
 - Coefficient growth \rightarrow modular techniques
 - Best complexity: $O(sT \log^3 D \log H)$ where $H \ge f_{\infty}$

[Arnold-Giesbrecht-Roche (2014)]

[Perret du Cray (2023)]

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

Result

```
Inputs: Modular black box for f \in \mathbb{Z}[x]
Bounds T \ge f_{\#}, D \ge \deg(f), H \ge f_{\infty}
Complexity: \tilde{O}(T(\log D + \log H)) bit operations
```

Modular black box

- Given α and *m*, compute $f(\alpha) \mod m$
- Can be implemented given an arithmetic circuit / SLP
- Pure black box: evaluations on $\mathbb{Z} \setminus \{0, \pm 1\}$ have size $\Omega(D)$

General idea

- General structure: à la Garg-Schost
- Computing $f \mod x^p 1$: $\dot{a} \ln P \mod f$ Ben-Or–Tiwari
- Work over several rings of different sizes to make it efficient

First ingredient: compute exponents of $f \mod x^p - 1$

Evaluations in a small field \mathbb{F}_q

- If ω has order p in \mathbb{F}_q , $f(\omega^j) = (f \mod x^p 1)(\omega^j)$
- Small *q* for efficiency reasons
 - Only require coefficients to be nonzero mod q
- Prevent too many collisions

Algorithm

Input: a *p*-PRU $\omega \in \mathbb{F}_q$

- **1**. Evaluate f at 1, ω , ..., ω^{2T-1}
- **2**. Compute the minimal polynomial of $(f(\omega^j))_j$
- 3. Compute its roots and get the exponents by evaluation

Complexity analysis

- 2. $\tilde{O}(T \log(T \log H))$
- 3. $\tilde{O}(T \log(D) \log(T \log H))$

 $ightarrow ilde{O}(T \log D \log \log H)$

 $q = poly(T \log H)$ $p = O(T \log D)$

to be computed 2T queries $\tilde{O}(T \log q)$ $\tilde{O}(p \log q)$

Second ingredient: compute $f \mod x^p - 1$

Evaluations in a larger ring

- ▶ \mathbb{F}_q is too small → coefficients known modulo q
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)

$$ightarrow \operatorname{Ring} \mathbb{Z}/q^k \mathbb{Z}$$
 where $q^k > 2H$ $k = O(\log H/\log q)$

Algorithm

- Input: a *p*-PRU $\omega_k \in \mathbb{Z}/q^k\mathbb{Z}$
- **1.** Evaluate f at 1, $\omega_k, \ldots, \omega_k^{T-1}$
- 2. Solve a transposed Vandermonde system, build using the exponents

Complexity analysis

2. $\tilde{O}(T \log H)$

to be computed

T queries

 $\tilde{O}(Tk \log a)$

Third ingredient: Embed exponents into coefficients

Compute both f(x) and $f((1+q^k)x)$ modulo $\langle x^p - 1, q^{2k} \rangle$

Paillier-like embedding

$$f((1+q^k)x) mod \langle q^{2k}, x^p-1
angle = \sum_i (c_i(1+e_iq^k)) x^{e_i mod p}$$

Collisions

- ▶ If $c_i x^{e_i}$ is collision-free modulo $x^p 1 \rightarrow$ reconstruct both c_i and e_i
- Possibly noisy terms from collisions $e_i = e_j \mod p$
- \rightarrow Compute f^* such that $(f f^*)_{\#} \leq \frac{1}{2} f_{\#}$ w.h.p.

Fourth ingredient: *p*-PRU in \mathbb{F}_q and $\mathbb{Z}/q^{2k}\mathbb{Z}$

Produce p, q and ω together

- **1**. Sample a random prime $p \in [\lambda, 2\lambda]$ with $\lambda = O(T \log D)$
- 2. Sample a random prime $q \in \{kp + 1 : 1 \le k \le \lambda^5\}$

effective Dirichlet theorem

- 3. Sample a random α such that $\omega = \alpha^{(q-1)/p} \neq 1$
- 4. Return (p, q, ω)

Complexity: $\log^{O(1)}(\lambda) = \log^{O(1)}(T \log D)$

Lift $\omega \in \mathbb{F}_q$ to $\omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$

- ▶ If ω_{2i} is a *p*-PRU modulo q^{2i} , ω_{2i} mod q^i is a *p*-PRU modulo q^i
- Newton iteration to $lift \, \omega \in \mathbb{F}_q$ to $\omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$

Complexity: $\tilde{O}(k \log p \log q) = \tilde{O}(\log H \log(T \log D))$

Full algorithm

Algorithm

1. $f^* \leftarrow 0$

- 2. Repeat log *T* times :
- 3. Compute $p, q, \omega \in \mathbb{F}_q, \omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$
- 4. Compute exponents of $(f f^*) \mod \langle x^p 1, q \rangle$
- 5. Compute $(f f^*) \mod \langle x^p 1, q^{2k} \rangle$
- 6. Compute $(f f^*)((1 + q^k)x) \mod \langle x^p 1, q^{2k} \rangle$

Fourth ingredient First ingredient Second ingredient Second ingredient Third ingredient

- 7. Reconstruct collision-free monomials plus some noise
- 8. Update f^*
- 9. Return f^*

Theorem

[Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds T, D, H, the algorithm returns the sparse representation of f with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D + \log H))$

Getting rid of the sparsity bound

Early termination technique

- Given $(\alpha_j)_{j\geq 0}$, find its minimal polynomial without any bound on its degree
- Berlekamp–Massey with early termination
- Works over \mathbb{F}_q with $q = \Omega(D^4)$
- Complexity: 2t evaluations and $\tilde{O}(t)$ operations over \mathbb{F}_q

And over \mathbb{Z} ?

- Perform *early termination* modulo q, where $q = \Omega(D^4)$
- Finding such a prime is too costly $\rightarrow O(\log^3 D)$

Prime numbers without primality testing

- ▶ Take a random number *m* and pretend it be prime
 - With good prob., its largest prime factor is $\geq \sqrt{m}$
- For each test " $a = 0 \mod m$?" \rightarrow compute GCD(a, m) and update m
- ▶ We show that algorithms (even randomized) have the same behavior

[Giorgi-G.-Perret du Cray-Roche (2022)]

[Kaltofen-Lee (2003)]

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. Application: polynomials with unbalanced coefficients

What is the complexity of multiplying two degree-*d* polynomials over \mathbb{Z} ?

Algebraic complexity over a ring

> O(d²)
 > O(d^{1.585}), ..., O(d^{1+o(1)})
 > O(d log d log log d)

[folklore]

[Karatsuba-Ofman (1962), Toom (1963), Cook (1966), ...] [Schönhage-Strassen (1971), Cantor-Kaltofen (1991)]

Bit complexity bounds

If $g, h \in \mathbb{Z}[x]_{\leq d}$ have height $\leq H, gh$ has height $\leq dH^2$

- 1. Direct use of algebraic algorithms
 - Algebraic complexity $\times O(\log(dH) \log \log(dH))$
- 2. Computation *modulo* a prime $p \ge 2dH^2$
 - Algebraic complexity $\times \tilde{O}(\log p) + \tilde{O}(\log^3 p)$

[Harvey-van der Hoeven (2021)]

prime generation

- 3. Use Kronecker substitution ($x \mapsto 2dH^2$) and integer multiplication
 - Multiplication of integers of size $O(d \log(dH))$

Product of degree-*d* polynomials of height $\leq H$ in time $\tilde{O}(d \log(H))$

The case of *unbalanced* polynomials

$$(x^{7} + 3x^{6} + 213672289012x^{5} - 3x^{4} - 4x^{3} - 7x^{2} + x - 3)$$

$$\times \qquad (x^{7} + 3x^{6} - 213672289006x^{5} - 3x^{4} - 4x^{3} - x^{2} + x - 3)$$

$$= x^{14} + 6x^{13} + 15x^{12} + 12x^{11} - 45655847090345622202098x^{10} - 50x^{9} - 37x^{8} + 1282033734054x^{7} + 28x^{6} + 8x^{5} + 17x^{4} + 16x^{3} + 25x^{2} - 6x + 9$$

The case of *unbalanced* polynomials

$$(x^{7} + 3x^{6} + 213672289012x^{5} - 3x^{4} - 4x^{3} - 7x^{2} + x - 3)$$

$$\times \qquad (x^{7} + 3x^{6} - 213672289006x^{5} - 3x^{4} - 4x^{3} - x^{2} + x - 3)$$

$$= x^{14} + 6x^{13} + 15x^{12} + 12x^{11} - 45655847090345622202098x^{10} - 50x^{9} - 37x^{8} + 1282033734054x^{7} + 28x^{6} + 8x^{5} + 17x^{4} + 16x^{3} + 25x^{2} - 6x + 9$$

Quadratic complexity

• Let
$$f = \sum_{i=0}^{d} f_i x^i \to s = \text{BITLEN}(f) \simeq \sum_i \log |f_i|$$

• $H = \max |f_i| \to d + \log H \le s \le d \log H$

Complexity
$$\tilde{O}(d \log H) = \tilde{O}(s^2)$$
 if $d \simeq \log H$

Can we multiply two polynomials of bit-length *s* in time $\tilde{O}(s)$?

Interpolation-based multiplication

The problem

Given $g, h \in \mathbb{Z}[x]$ Compute $f = g \times h$

Reinterpretation

Given an implicit representation of $f \in \mathbb{Z}[x]$ as $g \times h$ Compute the explicit (dense or sparse) representation of f

New problem

```
Given a way to evaluate f \in \mathbb{Z}[x]
Interpolate f in dense or sparse representation
```

Remarks

- ► The polynomial *f* can be unbalanced
- Complexity should be quasi-linear in s = BITLEN(f)
- Evaluations of g and h are not for free!

Interpolation of unbalanced polynomials

first try

Given a modular black box for $f \in \mathbb{Z}[x]$, compute f

Natural approach

- 1. Interpolate $f^* = f \mod m$ for some smallish m
 - f^* contains the small coefficients of f
 - $f f^*$ is sparser than f
- 2. Recursively compute $(f f^*) \mod m$ for increasing values of m
 - Use sparse interpolation in rings $\mathbb{Z}/m\mathbb{Z}$
 - Ring size increases while sparsity decreases

It does not work...

- At some point we know f^* of *small* height
- ▶ We need to interpolate $(f f^*) \mod m$ for some *large* m
- ▶ Requires to evaluate f^* on some large values $ightarrow ilde{O}(s^2)$

Interpolation of unbalanced polynomials

second try

Given a modular black box for $f \in \mathbb{Z}[x]$, compute f

Top-down approach

- **1**. First interpolate the *large* terms f^* of f
 - Use sparse interpolation, and pretend $f = f^*$
 - Smaller terms only slightly modify the evaluations
- **2.** Recursively interpolate $f f^*$
 - $f f^*$ has smaller coefficients and is more balanced than f
 - Ring size decreases while sparsity increases

Main difficulties

- Deal with pertubated evaluations
- Cost of evaluations

Computing the huge terms

Technical result

Let
$$f_p^{(0)} = f \mod \langle x^p - 1, m \rangle$$
 and $f_p^{(1)} = x \cdot f' \mod \langle x^p - 1, m \rangle$

Let cx^e be a large term of f, c⁽⁰⁾ and c⁽¹⁾ be the coefficients of x^{e mod p} in f_p⁽⁰⁾ and f_p⁽¹⁾
 If cx^e only collides with small terms modulo p, and some conditions on m are satisfied,

$$\left\lceil c^{(1)}/c^{(0)}\right\rfloor = e$$

Algorithm sketch

- 1. Compute a superset \mathcal{T} of the large terms exponents
 - Take p so that most large terms only collide with small terms
 - Repeat with several p's for each large to be preserved at least once
- 2. Compute the huge terms using ${\cal T}$
 - Use \mathcal{T} to detect collisions between large terms
 - Only keep huge coefficients: all huge terms and some large terms

Full algorithm

Algorithm

- Inputs: Modular black box for $f \in \mathbb{Z}[x]$ Bounds $s \ge BITLEN(f), D \ge deg(f)$
- 1. $H \leftarrow 2^s, f^* \leftarrow 0$
- **2.** While $H \gg \log s$ and $\log D$:
- 3. Compute the huge terms of $f f^*$ and update f^*
- 4. $H \leftarrow \sqrt{H}$
- 5. Compute the remaining terms of $f f^*$ via (balanced) sparse interpolation

Theorem

[Giorgi-G.-Perret du Cray-Roche (2024)]

Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds s and D, the algorithm returns the explicit representation of f with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(s \log D)$

Remark

- Quasi-linear for dense or moderately sparse polynomials
- Not quasi-linear for very sparse polynomials

if $\log D = \operatorname{poly}(\log s)$ if $\log D = \operatorname{poly}(s)$

Back to polynomial multiplication

Theorem

[Giorgi-G.-Perret du Cray-Roche (2024)]

There exists an algorithm that, given $g, h \in \mathbb{Z}[x]$, computes the product $f = g \times h$ with probability of success $\geq 1 - 1/s$ and expected bit complexity $\tilde{O}(s \log d)$, where s = BITLEN(f) + BITLEN(g) + BITLEN(h) and $d = \deg(f)$

Main ingredients

- Unbalanced interpolation with tentative bound $s \ge BITLEN(f)$
- Check whether $f = g \times h$ [Giorgi-G.-Perret du Cray (2023)]
- Start with small *s* and double it until *f* is correctly computed

Remark

- Quasi-linear for *dense* or *moderately sparse* polynomials
- Not quasi-linear for very sparse polynomials

Summary of results

$$f\in\mathbb{Z}[x],$$
 $D=\mathsf{deg}(f),$ $T=f_{\#},$ $H=f_{\infty},$ $s=\mathsf{bitlen}(f)$

Sparse interpolation over the integers

- lnterpolate f from a modular black box in time $\tilde{O}(T(\log D + \log H))$
- Corollaries:
 - Quasi-linear sparse multiplication algorithm
 - Quasi-linear exact sparse division algorithm

Unbalanced interpolation over the integers

- ► Interpolate f from a modular black box in time $\tilde{O}(s \log D)$
- Corollary:
 - Unbalanced polynomial multiplication in time $\tilde{O}(s \log D)$

[Giorgi-G.-Perret du Cray (2020)] [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_q

- ▶ large characteristic / large field \rightarrow black box? circuit?
- ▶ small field \rightarrow only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over $\ensuremath{\mathbb{Z}}$

- ▶ Replace $\tilde{O}(s \log D)$ by $\tilde{O}(s)$
- Remove the need for a priori bounds on s and D

Practical efficiency?

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_q

- ▶ large characteristic / large field \rightarrow black box? circuit?
- ▶ small field \rightarrow only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over $\ensuremath{\mathbb{Z}}$

- ▶ Replace $\tilde{O}(s \log D)$ by $\tilde{O}(s)$
- Remove the need for a priori bounds on s and D

Practical efficiency?

Thank you!