Sparse interpolation over the integers with an application

Bruno Grenet ${ }^{1}$
LJK - Université Grenoble-Alpes

Séminaire Maths Info, Toulouse
May 23., 2024
${ }^{1}$ Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

(Vague) definition of the problem

Sparse interpolation

Inputs: A way to evaluate a sparse polynomial $f \in R[x]$ Bounds $D \geq \operatorname{deg}(f), H \geq f_{\infty}$ and/or $T \geq f_{\#}$
(optional)
Output: The sparse representation of f

Sparse representation

$$
f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}}, c_{i} \in R_{\neq 0}
$$

Degree: $\operatorname{deg}(f)=\max _{i} e_{i}$
Sparsity: $f_{\#}=t$
Height: $f_{\infty}=\max _{i} H\left(c_{i}\right)$ where $H\left(p_{i} / q_{i}\right)=\max \left(\left|p_{i}\right|,\left|q_{i}\right|\right)$ if $c_{i} \in \mathbb{Q}$

Many variants

Ring of coefficients

- \mathbb{Z} or \mathbb{Q}
- \mathbb{R} or \mathbb{C}
- Finite fields
- Modular rings

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Fixed evaluations
- Black box
- Arithmetic circuit / SLP
size growth \rightarrow modular techniques precision issues
large/small size/characteristic non-units

Kronecker substitution \rightarrow univariate case

Many variants

Ring of coefficients

- \mathbb{Z} or \mathbb{Q}
- \mathbb{R} or \mathbb{C}
- Finite fields
- Modular rings

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Fixed evaluations
- Black box
- Arithmetic circuit / SLP
size growth \rightarrow modular techniques precision issues
large/small size/characteristic non-units

Kronecker substitution \rightarrow univariate case

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. Application: polynomials with unbalanced coefficients

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. Application: polynomials with unbalanced coefficients

Sparse polynomials \& linearly recurrent sequences

$$
f=\sum_{i=0}^{t-1} c_{i} x^{e_{i}} \rightarrow\left(\begin{array}{c}
f(1) \\
f(\omega) \\
\vdots \\
f\left(\omega^{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\omega^{e_{0}} & \cdots & \omega^{e_{t-1}} \\
\vdots & & \vdots \\
\omega^{n e_{0}} & \cdots & \omega^{n e_{t-1}}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{t-1}
\end{array}\right)
$$

Theorem

[Blahut (1979)]
Let $f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}} \in R[X]_{<D}$ where R is an integral domain and $\omega \in R$ be a principal root of unity of order $\geq D$. Then the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j \geq 0}$ is $\Lambda(x)=\prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right)$.

Proof sketch

- Minimal polynomial of $\left(c_{i} \omega^{j e_{i}}\right)_{j}: x-\omega^{e_{i}}$
- Minimal polynomial of a sum = LCM of their minimal polynomials

$$
\text { From } \vec{F}=\left(f(1), \ldots, f\left(\omega^{2 t-1}\right)\right), \text { compute } \Lambda=\prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right) \text { to get } e_{0}, \ldots, e_{t-1}
$$

Sparse interpolation with known exponents

$$
f=\sum_{i=0}^{t-1} c_{i} x^{e_{i}} \rightarrow\left(\begin{array}{c}
f(1) \\
f(\omega) \\
\vdots \\
f\left(\omega^{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\omega^{e_{0}} & \cdots & \omega^{e_{t-1}} \\
\vdots & & \vdots \\
\omega^{n e_{0}} & \cdots & \omega^{n_{t-1}}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{t-1}
\end{array}\right)
$$

Remark

Sparse interpolation on geometric sequence with known exponents
\Longleftrightarrow transposed Vandermonde system solving

Fast algorithm

- Vandermonde system solving \Longleftrightarrow (dense) polynomial interpolation
- $O(M(t) \log t)$
[Borodin-Moenck (1974)]
- Transposition \rightarrow same complexity [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

From \vec{F} and e_{0}, \ldots, e_{t-1}, compute c_{0}, \ldots, c_{t-1}

Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm

Inputs: Black box for $f \in \mathbb{F}_{q}[x], q \geq \operatorname{deg}(f)$
Bound $T \geq f_{\#}$

1. Evaluate f at $1, \omega, \ldots, \omega^{2 T-1} \quad$ where ω has order $\geq 2 T$
2. Compute the minimal polynomial Λ of $\left(f\left(\omega^{j}\right)\right)_{j}$
3. Compute its roots $\beta_{0}, \ldots, \beta_{t-1}$ and obtain the exponents e_{0}, \ldots, e_{t-1}
4. Solve the transposed Vandermonde system to get the coefficients c_{0}, \ldots, c_{t-1}

Complexity analysis

1. $2 T$ black box evaluations
2. $O(M(T) \log T)$
3. i. $O(M(t) \log t \log q)$
ii. $O(\sqrt{D})$
4. $O(M(t) \log t)$
[Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)]
[Berlekamp (1970), Rabin (1980)]
[Shanks (1971), Heiman (1992)]
[Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm

Inputs: Black box for $f \in \mathbb{F}_{q}[x], q \geq \operatorname{deg}(f)$
Bound $T \geq f_{\#}$

1. Evaluate f at $1, \omega, \ldots, \omega^{2 T-1} \quad$ where ω has order $\geq 2 T$
2. Compute the minimal polynomial Λ of $\left(f\left(\omega^{j}\right)\right)_{j}$
3. Compute its roots $\beta_{0}, \ldots, \beta_{t-1}$ and obtain the exponents e_{0}, \ldots, e_{t-1}
4. Solve the transposed Vandermonde system to get the coefficients c_{0}, \ldots, c_{t-1}

Complexity analysis

1. $2 T$ black box evaluations
2. $O(M(T) \log T)$
3. i. $O(M(t) \log t \log q)$
ii. $O(\sqrt{D})$
4. $O(M(t) \log t)$
[Berlekamp (1968), Massey (1969), Beckermann-Labahn (1994)]
[Berlekamp (1970), Rabin (1980)]
[Shanks (1971), Heiman (1992)]
[Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

Remarks on Prony / Ben-Or-Tiwari algorithm

Complexity

- Quasi-linear in T, linear (optimal) number of evaluations
- Polynomial in D, rather than $\log D \rightarrow$ not polynomial in the output size
- Bound $T \geq f_{\#}$ not required \rightarrow early termination
[Kaltofen-Lee (2003)]

Other base rings

- Original Ben-Or-Tiwari's algorithm for $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$
- large evaluations \rightarrow bit size $O(D)$
- replace ω by $\left(p_{1}, \ldots, p_{n}\right)$
- Small finite fields \rightarrow use an extension extended black box
- Rings: works as long as ω is a principal root of unity of large order
- Fast variant over \mathbb{Q}
[Kaltofen (1988/2010)]
- Compute modulo p where $p-1$ is smooth
- Use fast discrete logarithm
[Pohlig-Hellman (1978)]
- Complexity polynomial in T and $\log D$

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. Application: polynomials with unbalanced coefficients

Using cyclic extensions

- From an SLP, f can be computed explicitly in time $O(D)$
- Compute $f \bmod x^{p}-1=\sum_{i} c_{i} x^{e_{i}} \bmod p$ for some prime p

Loss of information

- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

- Use several p_{j} 's and (polynomial) Chinese remaindering, diversification, ...

> [Garg-Schost (2009), Giesbrecht-Roche (2011), ...]

- Embed exponents into coefficients
[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

- Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
- Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Using cyclic extensions

- From an SLP, f can be computed explicitly in time $O(D)$
- Compute $f \bmod x^{p}-1=\sum_{i} c_{i} x^{e_{i}} \bmod p$ for some prime p

Loss of information

- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

- Use several p_{j} 's and (polynomial) Chinese remaindering, diversification, ...
[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]
Embed exponents into coefficients
[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

- Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
- Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Embedding exponents into coefficients

Using derivatives

- If $f=\sum_{i} c_{i} x^{e_{i}}, x \cdot f^{\prime}(x)=\sum_{i} c_{i} e_{i} x^{e_{i}}$
- Use of automatic differentiation

À la Paillier

- If $f \in \mathbb{F}_{q}[x]$, evaluate $f((1+q) x)$ over $\mathbb{Z} / q^{2} \mathbb{Z}$
$>$ Modulo $q^{2},(1+q)^{e_{i}}=1+e_{i} q$

$$
f(x)=\sum_{i} c_{i} x^{e_{i}} \rightsquigarrow f((1+q) x)=\sum_{i} c_{i}\left(1+e_{i} q\right) x^{e_{i}}
$$

- Remark: $f((1+q) x)-f(x)=\sum_{i} c_{i} e_{i} q x^{e_{i}}=q x \cdot f^{\prime}(x)$

Requirements

- Both techniques require e_{i} to be exactly representable in \mathbb{F}_{q}
- \mathbb{F}_{q} should have characteristic $\geq \operatorname{deg}(f)$

Managing collisions

- Collision: monomials $x^{e_{i}}, x^{e_{j}}$ such that $e_{i} \equiv e_{j} \bmod p$
- Collision-free monomial: $x^{e_{i}}$ such that $e_{i} \not \equiv e_{j} \bmod p$ for $j \neq i$

Avoiding or limiting collisions

Let p be a random prime in $[\lambda, 2 \lambda]$

- For $\lambda=\Omega\left(\frac{1}{\varepsilon} t^{2} \log D\right)$, there is no collision with prob. $\geq 1-\varepsilon$
- For $\lambda=\Omega\left(\frac{1}{\varepsilon} t \log D\right)$, there are $\geq \frac{2}{3} t$ collision-free monomials with prob. $\geq 1-\varepsilon$

Dealing with collisions

- With $\geq \frac{2}{3} t$ collision-free monomials, there are at most $\frac{1}{6} t$ collisions
- Each collision may produce one error
- If each collision-free monomial is correctly reconstructed, we get f^{*} such that

$$
\left(f-f^{*}\right)_{\#} \leq \frac{1}{3} f_{\#}+\frac{1}{6} f_{\#}=\frac{1}{2} f_{\#}
$$

Algorithm à la Garg-Schost

Algorithm

Inputs: SLP for $f \in \mathbb{F}_{q}[x], \operatorname{char}\left(\mathbb{F}_{q}\right) \geq \operatorname{deg}(f)$
Bounds $T \geq f_{\#}, D \geq \operatorname{deg} f$
Output: The sparse representation of f w.h.p.

1. $f^{*} \leftarrow 0$
2. Repeat $\log (T)$ times:
3. $\quad p \leftarrow$ random prime in $[\lambda, 2 \lambda]$ for $\lambda=O(T \log D \log T)$
4. $\quad\left(f_{p}^{(0)}, f_{p}^{(1)}\right) \leftarrow\left(f \bmod x^{p}-1, x \cdot f^{\prime} \bmod x^{p}-1\right) \quad S L P$ for $f^{\prime}+$ dense arith.
5. For each pair $\left\{\begin{array}{ll}c x^{d} & \in f_{p}^{(0)} \\ c^{\prime} x^{d} & \in f_{p}^{(1)}\end{array} \quad:\right.$ add $c \cdot x^{c^{\prime} / c}$ to $f^{*} \quad$ if $c^{\prime} / c \in\{0, \ldots, D-1\}$
6. Return f^{*}

Complexity analysis

- $O(\log T)$ probes of the circuit $\rightarrow O(s \cdot M(p) \cdot \log (T))$
s: SLP size
- $\tilde{O}(s T \log D)$ operations in $\mathbb{F}_{q} \rightarrow \tilde{O}(s T \log D \log q)$ bit operations

Remarks on Garg-Schost algorithm

Almost quasi-linear!

- Output size: $O(T(\log D+\log q))$, complexity: $\tilde{O}(T \log D \log q)$
- Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

- Smaller characteristic
- No exponent embedding anymore
- Several techniques, such as diversification
- Best complexity: $O\left(s T \log ^{2} D(\log D+\log q)\right)$
[Arnold-Giesbrecht-Roche (2014)]
- Over the integers
- Coefficient growth \rightarrow modular techniques
- Best complexity: $O\left(s T \log ^{3} D \log H\right)$ where $H \geq f_{\infty}$

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. Application: polynomials with unbalanced coefficients

Result

Inputs: Modular black box for $f \in \mathbb{Z}[x]$
Bounds $T \geq f_{\#}, D \geq \operatorname{deg}(f), H \geq f_{\infty}$
Complexity: $\tilde{O}(T(\log D+\log H))$ bit operations

Modular black box

- Given α and m, compute $f(\alpha) \bmod m$
- Can be implemented given an arithmetic circuit / SLP
- Pure black box: evaluations on $\mathbb{Z} \backslash\{0, \pm 1\}$ have size $\Omega(D)$

General idea

- General structure: à la Garg-Schost
- Computing $f \bmod x^{p}-1$: à la Prony / Ben-Or-Tiwari
- Work over several rings of different sizes to make it efficient

First ingredient: compute exponents of $f \bmod x^{p}-1$

Evaluations in a small field \mathbb{F}_{q}

- If ω has order p in $\mathbb{F}_{q}, f\left(\omega^{j}\right)=\left(f \bmod x^{p}-1\right)\left(\omega^{j}\right)$
- Small q for efficiency reasons
- Only require coefficients to be nonzero $\bmod q$
- Prevent too many collisions

$$
\begin{array}{r}
q=\operatorname{poly}(T \log H) \\
p=O(T \log D)
\end{array}
$$

Algorithm

Input: a p-PRU $\omega \in \mathbb{F}_{q}$

1. Evaluate f at $1, \omega, \ldots, \omega^{2 T-1}$
2. Compute the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j}$
to be computed
3. Compute its roots and get the exponents by evaluation

Complexity analysis

2. $\tilde{O}(T \log (T \log H))$
3. $\tilde{O}(T \log (D) \log (T \log H))$
$\rightarrow \tilde{O}(T \log D \log \log H)$

Second ingredient: compute $f \bmod x^{p}-1$

Evaluations in a larger ring

- \mathbb{F}_{q} is too small \rightarrow coefficients known modulo q
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)
\rightarrow Ring $\mathbb{Z} / q^{k} \mathbb{Z}$ where $q^{k}>2 H$

$$
k=O(\log H / \log q)
$$

Algorithm

Input: a p-PRU $\omega_{k} \in \mathbb{Z} / q^{k} \mathbb{Z}$
to be computed

1. Evaluate f at $1, \omega_{k}, \ldots, \omega_{k}^{T-1}$
2. Solve a transposed Vandermonde system, build using the exponents $\tilde{O}(T k \log q)$

Complexity analysis

2. $\tilde{O}(T \log H)$

Third ingredient: Embed exponents into coefficients

Compute both $f(x)$ and $f\left(\left(1+q^{k}\right) x\right)$ modulo $\left\langle x^{p}-1, q^{2 k}\right\rangle$

Paillier-like embedding

- $\left(1+q^{k}\right)^{e_{i}}=1+e_{i} q^{k} \bmod q^{2 k}$
$-\operatorname{If} f=\sum_{i} c_{i} X^{e_{i}}$,

$$
f\left(\left(1+q^{k}\right) x\right) \bmod \left\langle q^{2 k}, x^{p}-1\right\rangle=\sum_{i}\left(c_{i}\left(1+e_{i} q^{k}\right)\right) x^{e_{i} \bmod p}
$$

Collisions

- If $c_{i} x^{e_{i}}$ is collision-free modulo $x^{p}-1 \rightarrow$ reconstruct both c_{i} and e_{i}
- Possibly noisy terms from collisions $e_{i}=e_{j} \bmod p$
\rightarrow Compute f^{*} such that $\left(f-f^{*}\right)_{\#} \leq \frac{1}{2} f_{\#}$ w.h.p.

Fourth ingredient: p-PRU in \mathbb{F}_{q} and $\mathbb{Z} / q^{2 k} \mathbb{Z}$

Produce p, q and ω together

1. Sample a random prime $p \in[\lambda, 2 \lambda]$ with $\lambda=O(T \log D)$
2. Sample a random prime $q \in\left\{k p+1: 1 \leq k \leq \lambda^{5}\right\} \quad$ effective Dirichlet theorem
3. Sample a random α such that $\omega=\alpha^{(q-1) / p} \neq 1$
4. Return (p, q, ω)

Complexity: $\log ^{O(1)}(\lambda)=\log ^{O(1)}(T \log D)$
Lift $\omega \in \mathbb{F}_{q}$ to $\omega_{2 k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$

- If $\omega_{2 i}$ is a p-PRU modulo $q^{2 i}, \omega_{2 i} \bmod q^{i}$ is a p-PRU modulo q^{i}
- Newton iteration to lift $\omega \in \mathbb{F}_{q}$ to $\omega_{2 k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$

Complexity: $\tilde{O}(k \log p \log q)=\tilde{O}(\log H \log (T \log D))$

Full algorithm

Algorithm

1. $f^{*} \leftarrow 0$
2. Repeat $\log T$ times :
3. Compute $p, q, \omega \in \mathbb{F}_{q}, \omega_{2 k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$

Fourth ingredient
4. Compute exponents of $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q\right\rangle$

First ingredient
5. Compute $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$
6. Compute $\left(f-f^{*}\right)\left(\left(1+q^{k}\right) x\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$

Second ingredient
7. Reconstruct collision-free monomials plus some noise

Third ingredient
8. Update f^{*}
9. Return f^{*}

Theorem

 [Giorgi-G.-Perret du Cray-Roche (2022)]Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds T, D, H, the algorithm returns the sparse representation off with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D+\log H))$

Getting rid of the sparsity bound

Early termination technique

- Given $\left(\alpha_{j}\right)_{j \geq 0}$, find its minimal polynomial without any bound on its degree
- Berlekamp-Massey with early termination
[Kaltofen-Lee (2003)]
- Works over \mathbb{F}_{q} with $q=\Omega\left(D^{4}\right)$
- Complexity: $2 t$ evaluations and $\tilde{O}(t)$ operations over \mathbb{F}_{q}

And over \mathbb{Z} ?

- Perform early termination modulo q, where $q=\Omega\left(D^{4}\right)$
- Finding such a prime is too costly $\rightarrow O\left(\log ^{3} D\right)$

Prime numbers without primality testing

- Take a random number m and pretend it be prime
- With good prob., its largest prime factor is $\geq \sqrt{m}$
- For each test " $a=0 \bmod m$?" \rightarrow compute $\operatorname{Gcd}(a, m)$ and update m
- We show that algorithms (even randomized) have the same behavior

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. Application: polynomials with unbalanced coefficients

What is the complexity of multiplying two degree-d polynomials over \mathbb{Z} ?

Algebraic complexity over a ring

- $O\left(d^{2}\right)$
$>O\left(d^{1.585}\right), \ldots, O\left(d^{1+o(1)}\right)$
- $O(d \log d \log \log d)$

[Karatsuba-Ofman (1962), Toom (1963), Cook (1966), ...]
[Schönhage-Strassen (1971), Cantor-Kaltofen (1991)]

Bit complexity bounds

If $g, h \in \mathbb{Z}[x]_{\leq d}$ have height $\leq H$, gh has height $\leq d H^{2}$

1. Direct use of algebraic algorithms

- Algebraic complexity $\times O(\log (d H) \log \log (d H))$
[Harvey-van der Hoeven (2021)]

2. Computation modulo a prime $p \geq 2 d H^{2}$

- Algebraic complexity $\times \tilde{O}(\log p)+\tilde{O}\left(\log ^{3} p\right)$

3. Use Kronecker substitution $\left(x \mapsto 2 d H^{2}\right)$ and integer multiplication

- Multiplication of integers of size $O(d \log (d H))$

Product of degree- d polynomials of height $\leq H$ in time $\tilde{O}(d \log (H))$

The case of unbalanced polynomials

$$
\begin{array}{rr}
& \left(x^{7}+3 x^{6}+213672289012 x^{5}-3 x^{4}-4 x^{3}-7 x^{2}+x-3\right) \\
\times & \left(x^{7}+3 x^{6}-213672289006 x^{5}-3 x^{4}-4 x^{3}-x^{2}+x-3\right) \\
= & x^{14}+6 x^{13}+15 x^{12}+12 x^{11}-45655847090345622202098 x^{10}-50 x^{9}-37 x^{8} \\
+1282033734054 x^{7}+28 x^{6}+8 x^{5}+17 x^{4}+16 x^{3}+25 x^{2}-6 x+9
\end{array}
$$

The case of unbalanced polynomials

$$
\begin{array}{rr}
& \left(x^{7}+3 x^{6}+213672289012 x^{5}-3 x^{4}-4 x^{3}-7 x^{2}+x-3\right) \\
\times & \left(x^{7}+3 x^{6}-213672289006 x^{5}-3 x^{4}-4 x^{3}-x^{2}+x-3\right) \\
= & x^{14}+6 x^{13}+15 x^{12}+12 x^{11}-45655847090345622202098 x^{10}-50 x^{9}-37 x^{8} \\
+1282033734054 x^{7}+28 x^{6}+8 x^{5}+17 x^{4}+16 x^{3}+25 x^{2}-6 x+9
\end{array}
$$

Quadratic complexity

- Let $f=\sum_{i=0}^{d} f_{i} x^{i} \rightarrow s=\operatorname{BitLen}(f) \simeq \sum_{i} \log \left|f_{i}\right|$
- $H=\max \left|f_{i}\right| \rightarrow d+\log H \leq s \leq d \log H$
- Complexity $\tilde{O}(d \log H)=\tilde{O}\left(s^{2}\right)$ if $d \simeq \log H$

Can we multiply two polynomials of bit-length s in time $\tilde{O}(s)$?

Interpolation-based multiplication

The problem
Given g, $h \in \mathbb{Z}[x]$
Compute $f=g \times h$

Reinterpretation

Given an implicit representation of $f \in \mathbb{Z}[x]$ as $g \times h$
Compute the explicit (dense or sparse) representation of f

New problem

Given a way to evaluate $f \in \mathbb{Z}[x]$
Interpolate f in dense or sparse representation
Remarks

- The polynomial f can be unbalanced
- Complexity should be quasi-linear in $s=\operatorname{bitlen}(f)$
- Evaluations of g and h are not for free!

Interpolation of unbalanced polynomials

Given a modular black box for $f \in \mathbb{Z}[x]$, compute f

Natural approach

1. Interpolate $f^{*}=f \bmod m$ for some smallish m

- f^{*} contains the small coefficients of f
- $f-f^{*}$ is sparser than f

2. Recursively compute $\left(f-f^{*}\right)$ mod m for increasing values of m

- Use sparse interpolation in rings $\mathbb{Z} / m \mathbb{Z}$
- Ring size increases while sparsity decreases

It does not work...

- At some point we know f^{*} of small height
- We need to interpolate $\left(f-f^{*}\right)$ mod m for some large m
- Requires to evaluate f^{*} on some large values $\rightarrow \tilde{O}\left(s^{2}\right)$

Interpolation of unbalanced polynomials

Given a modular black box for $f \in \mathbb{Z}[x]$, compute f
Top-down approach

1. First interpolate the large terms f^{*} of f

- Use sparse interpolation, and pretend $f=f^{*}$
- Smaller terms only slightly modify the evaluations

2. Recursively interpolate $f-f^{*}$

- $f-f^{*}$ has smaller coefficients and is more balanced than f
- Ring size decreases while sparsity increases

Main difficulties

- Deal with pertubated evaluations
- Cost of evaluations

Computing the huge terms

$\underset{\text { small medium }}{\sim \rightarrow c c c c c c}$

Technical result

- Let $f_{p}^{(0)}=f \bmod \left\langle x^{p}-1, m\right\rangle$ and $f_{p}^{(1)}=x \cdot f^{\prime} \bmod \left\langle x^{p}-1, m\right\rangle$
- Let $c x^{e}$ be a large term of $f, c^{(0)}$ and $c^{(1)}$ be the coefficients of $x^{e \bmod p}$ in $f_{p}^{(0)}$ and $f_{p}^{(1)}$
- If $c x^{e}$ only collides with small terms modulo p, and some conditions on m are satisfied,

$$
\left[c^{(1)} / c^{(0)}\right]=e
$$

Algorithm sketch

1. Compute a superset \mathcal{T} of the large terms exponents

- Take p so that most large terms only collide with small terms
- Repeat with several p 's for each large to be preserved at least once

2. Compute the huge terms using \mathcal{T}

- Use \mathcal{T} to detect collisions between large terms
- Only keep huge coefficients: all huge terms and some large terms

Full algorithm

Algorithm

Inputs: Modular black box for $f \in \mathbb{Z}[x]$
Bounds $s \geq \operatorname{bitlen}(f), D \geq \operatorname{deg}(f)$

1. $H \leftarrow 2^{s}, f^{*} \leftarrow 0$
2. While $H \gg \log s$ and $\log D$:
3. Compute the huge terms of $f-f^{*}$ and update f^{*}
4. $H \leftarrow \sqrt{H}$
5. Compute the remaining terms of $f-f^{*}$ via (balanced) sparse interpolation

Theorem

[Giorgi-G.-Perret du Cray-Roche (2024)]
Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds s and D, the algorithm returns the explicit representation off with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(s \log D)$

Remark

- Quasi-linear for dense or moderately sparse polynomials

$$
\begin{aligned}
& \text { if } \log D=\operatorname{poly}(\log s) \\
& \text { if } \log D=\operatorname{poly}(s)
\end{aligned}
$$

- Not quasi-linear for very sparse polynomials

Back to polynomial multiplication

Theorem

There exists an algorithm that, given g, $h \in \mathbb{Z}[x]$, computes the product $f=g \times h$ with probability of success $\geq 1-1 /$ s and expected bit complexity $\tilde{O}(s \log d)$, where $s=\operatorname{bitlen}(f)+\operatorname{bitlen}(g)+\operatorname{bitlen}(h)$ and $d=\operatorname{deg}(f)$

Main ingredients

- Unbalanced interpolation with tentative bound $s \geq \operatorname{bitLen}(f)$
- Check whether $f=g \times h$
- Start with small s and double it until f is correctly computed

Remark

- Quasi-linear for dense or moderately sparse polynomials
- Not quasi-linear for very sparse polynomials

Summary of results

$f \in \mathbb{Z}[x], D=\operatorname{deg}(f), T=f_{\#}, H=f_{\infty}, s=\operatorname{BitLEN}(f)$

Sparse interpolation over the integers

- Interpolate f from a modular black box in time $\tilde{O}(T(\log D+\log H))$
- Corollaries:
- Quasi-linear sparse multiplication algorithm
[Giorgi-G.-Perret du Cray (2020)]
- Quasi-linear exact sparse division algorithm
[Giorgi-G.-Perret du Cray-Roche (2021-22)]
Unbalanced interpolation over the integers
- Interpolate f from a modular black box in time $\tilde{O}(s \log D)$
- Corollary:
- Unbalanced polynomial multiplication in time $\tilde{O}(s \log D)$

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_{q}

- large characteristic / large field \rightarrow black box? circuit?
- small field \rightarrow only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over \mathbb{Z}

- Replace $\tilde{O}(s \log D)$ by $\tilde{O}(s)$
- Remove the need for a priori bounds on s and D

Practical efficiency?

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_{q}

- large characteristic / large field \rightarrow black box? circuit?
- small field \rightarrow only circuit make sense

Quasi-linear unbalanced interpolation / multiplication over \mathbb{Z}

- Replace $\tilde{O}(s \log D)$ by $\tilde{O}(s)$
- Remove the need for a priori bounds on s and D

Practical efficiency?

> Thank you!

