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Introduction

The problem

(x + 3y)z = det


0 x 3 0 0
0 1 0 0 z
0 0 1 y 0
0 1 0 1 0
1 0 0 0 0


Formal polynomial

Smallest possible dimension of the matrix
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Introduction

Representations of polynomials

x2x1

x2 x2x1 x1

x1x2 x2 x2

x1 x1 x1x2 x2 x2

x2x1

Circuit
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Representations of polynomials

x2x1

x2 x2x1 x1

x1x2 x2 x2
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Introduction

Motivation

L. G. Valiant, Completeness classes in algebra, STOC 79
 Universality of the determinant

"We conclude that for the problem of finding a subexponential formula for
a polynomial when one exists, linear algebra is essentially the only
technique in the sense that it is always applicable".
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Introduction

An example

(x + 3y)z

x 3 y z

detA =
∑
σ

(−1)sgn(σ)
n∏

i=1

Ai ,σ(i)

permutation in A = cycle cover in G
Up to signs, detA = sum of the weights of cycle covers in G
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From polynomials to determinants

Outline

1 From polynomials to determinants

2 From polynomials to determinants of symmetric matrices

3 Characteristic 2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Paris – 16/11/2010 6 / 38



From polynomials to determinants From formulas to determinants

Upper bounds

e + 2: L. G. Valiant, in Completeness classes in algebra (STOC 79)

2e + 2: J. von zur Gathen, in Feasible arithmetic computations:
Valiant’s hypothesis (J. Symb. Comput., 1987)
e + 1 if there is at least one addition in the formula: H. Liu and K.W.
Regan, in Improved construction for universality of determinant and
permanent (Inf. Process. Lett., 2006)
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From polynomials to determinants From formulas to determinants

Valiant’s construction (1/3)

Input: a formula representing a polynomial ϕ ∈ K[X1, . . . ,Xn] of size e

Size of a formula : number of computation gates

Output: a matrix A of dimension (e + 1), with entries in
K ∪ {X1, . . . ,Xn}, s.t. detA = ϕ

In between: a graph G of size (e + 1) whose adjacency matrix is A
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From polynomials to determinants From formulas to determinants

Valiant’s construction (2/3)

Invariant

ϕ = ±
∑

s-t-paths P

(−1)|P|w(P)
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From polynomials to determinants From formulas to determinants

Valiant’s construction (3/3)

G s.t. ϕ = ±
∑

s-t-paths P

(−1)|P|w(P), with s, t distinguished

 G ′: merge s and t + add weight-1 loops on vertices 6= s.
s-t-paths  big cycles
Cycle cover in G ′: One big cycle + loops

Theorem
For a size-e formula, this construction yields a size-(e + 1) graph. Let A be
the adjacency matrix of G . Then det(A) = ϕ.
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From polynomials to determinants From weakly-skew circuits to determinants

(Weakly-)Skew circuits

Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew
circuits

I Skew circuit of size O(n20) for the determinant
I Weakly-skew circuit of size O(n7).

Malod (MFCS’06, with Portier): Notion of strongly multiplicatively
disjoint circuits

I Study of Valiant’s classes, especially VQP

Koiran and Kaltofen (ISSAC’08): Weakly-skew and skew circuits are
linearly equivalent (factor 2)

I Skew circuit of size O(n5) for the determinant

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Paris – 16/11/2010 11 / 38
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From polynomials to determinants From weakly-skew circuits to determinants

Toda-Malod’s construction (1/3)

Input: a weakly-skew circuit of
size e with i variable inputs
representing ϕ

Output: a matrix A of dimension
(e + i + 1) s.t. detA = ϕ

In between: a graph G . . .

ϕα: polynomial computed by
gate α
Reusable gate: not in a closed
subcircuit

e = 5 and i = 4

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Paris – 16/11/2010 12 / 38
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From polynomials to determinants From weakly-skew circuits to determinants

Toda-Malod’s construction (2/3)

Invariant
For each reusable gate α,
there exists tα s.t.
w(s → tα) = ϕα.
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From polynomials to determinants From weakly-skew circuits to determinants

Toda-Malod’s construction (3/3)

As in Valiant’s, G  G ′: same idea

Theorem
For a ws circuit of size e with i variable inputs representing ϕ, this
construction yields a size-(e + i + 1). The determinant of its adjacency
matrix equals ϕ.
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From polynomials to determinants of symmetric matrices

Outline

1 From polynomials to determinants

2 From polynomials to determinants of symmetric matrices

3 Characteristic 2
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From polynomials to determinants of symmetric matrices

Motivation from Convex Geometry

Linear Matrix Expression (LME): for Ai symmetric in Rt×t

A0 + x1A1 + · · ·+ xnAn

Lax conjecture: express a real zero polynomial f as

f = detA

with A LME and A0 � 0.  disproved
Drop condition A0 � 0  exponential size matrices
What about polynomial size matrices?
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From polynomials to determinants of symmetric matrices

Introduction

Symmetric matrices ⇐⇒ undirected graphs

Difficulty: no DAG anymore!
Solution: some changes in the construction, and new invariants

N.B.: char(K) 6= 2 in this section
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From polynomials to determinants of symmetric matrices From formulas to symmetric determinants

Algorithm

Invariants

ϕ =
∑

s-t-paths P

(−1)|P|/2+1w(P)

and. . .
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From polynomials to determinants of symmetric matrices From formulas to symmetric determinants

Invariants for formula’s construction

ϕ =
∑

s-t-paths P

(−1)|P|/2+1w(P)

|G | is even, every cycle in G is
even, and every s-t-path is even
G \ {s, t} is either empty or has
a unique cycle cover

 Perfect matching of weight 1
For any s-t-path P , G \ P is
either empty or has a unique
cycle cover

 Perfect matching of weight 1
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From polynomials to determinants of symmetric matrices From formulas to symmetric determinants

From G to G ′

|G ′| is odd. An odd cycle in G ′ has to go through c
Cycle covers in G ′ ⇐⇒ s → t-paths in G

⇐⇒ t → s-paths in G
(−1)|G/2|+1 ensures that the signs are OK.
1/2: to deal with s → t and t → s-paths, implies char(K) 6= 2

Theorem
For a formula ϕ of size e, this construction yields a graph of size 2e + 3.
The determinant of its adjacency matrix equals ϕ.
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From polynomials to determinants of symmetric matrices From weakly-skew circuits to symmetric determinants

Introduction

Main difficulty:

Definition: an path P is said acceptable if G \ P admits a cycle cover
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From polynomials to determinants of symmetric matrices From weakly-skew circuits to symmetric determinants

Invariants in the case of weakly-skew circuits

For each reusable α, there exists tα s.t.

I ϕα =
∑

acceptable
s-tα-paths P

(−1)
|P|−1

2 w(P)

I Every s-tα-path is odd
I For a s-tα-path P, G \ P is either

empty or has a unique cycle cover
 Perfect matching of weight 1

|G | is odd, every cycle in G is even
G \ {s} is either empty or has a unique
cycle cover

 Perfect matching of weight 1
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From polynomials to determinants of symmetric matrices From weakly-skew circuits to symmetric determinants

From G to G ′

Add an edge between s and t, of weight
1
2

(−1)
|G |−1

2  G ′.

|G ′ \ {s, t}| is odd, cycles are even: no cycle cover with s ↔ t.
As for every path P , G ′ \ P has an only cycle cover, of weight 1:
Cycle covers of G ′ ⇐⇒ s → t-paths in G ⇐⇒ t → s-paths in G .
With some sign considerations, we get:

Theorem
For a weakly skew circuit of size e, with i input variables, computing a
polynomial ϕ, this construction yields a graph G ′ with 2(e + i) + 1 vertices.
The adjacency matrix of G ′ has its determinant equal to ϕ.
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Characteristic 2

Outline

1 From polynomials to determinants

2 From polynomials to determinants of symmetric matrices

3 Characteristic 2
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Characteristic 2

Introduction

Scalar 1/2 in the constructions =⇒ not valid for characteristic 2

Very special case: cycles of length > 2 are counted twice
=⇒ permutations restricted to pairs and singleton
=⇒ cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric
matrices in characteristic 2?
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Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us , vt}.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2
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Characteristic 2

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that p = detA, then
p mod 〈x2 + εx , y2 + εy , z2 + εz〉 can be written as a product of degree-1
polynomials.

Conjecture
This is not sufficient.

Example: xy + z has no symmetric determinantal representation.
Conjecture: nor does xy2 + yz2 + zx2.
Characterization?
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Characteristic 2

Sketch of a proof

Quotient: no variable outside the diagonal

I If Aij = Aji = p(x), then “p(x)2 ∈ detA” and “p(x) /∈ detA”
I But p(x)2 ≡ λ ∈ F.

Operations on rows and columns:

I Determinant unchanged
I Coefficients remains linear polynomials
I The matrix becomes diagonal
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Characteristic 2

Application

These results raise the question:

If p2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. f 2 ∈ VP (VPws), does f belong to VP
(VPws)?

It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?
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Characteristic 2

Valiant’s classes

Complexity of a polynomial: size of the smallest circuit computing it.

Definition
A family (fn) of polynomials is in VP if for all n, the number of variables,
the degree, and the complexity of fn are polynomially bounded in n.

A family (fn) of polynomials is in VNP if there exists a family
(gn(y1, . . . , yv(n))) ∈ VP s.t.

fn(x1, . . . , xu(n)) =
∑

ε̄∈{0,1}v(n)−u(n)

gn(x1, . . . , xu(n), ε̄).

(DETn) ∈ VP, (PERn) ∈ VNP, . . .
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Characteristic 2

VNP-completeness

Definition
A family (gn) is a p-projection of a family (fn) is there exists a polynomial t
s.t. for all n, gn(x̄) = ft(n)(a1, . . . , an), with a1, . . . , an ∈ K ∪ {x1, . . . , xn}.

A family (fn) ∈ VNP is VNP-complete if every family in VNP is a
p-projection of (fn).

(PERn) is VNP-complete in characteristic 6= 2
(HCn) is VNP-complete (in any characteristic)
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Characteristic 2

Partial Permanent

per∗M =
∑
π

∏
i∈def(π)

Mi ,π(i)

where π ranges over the injective partial maps from [n] to [n].

Lemma
Let G = Kn,n. Let A and B be the respective adjacency and biadjacency
matrices of G . Then in characteristic 2,

det(A + I2n) = (per∗ B)2

where I2n is the identity matrix.

Same kind of ideas as the previous proof.
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Characteristic 2

Partial permanents as family of polynomials

(PER∗n): family of polynomials defined as partial permanents of n × n
matrices of indeterminates.

((PER∗)2n): family of polynomials defined as square of partial permanents
of n × n matrices of indeterminates.

Theorem
((PER∗)2n) ∈ VP in characteristic 2.

Proof. ((PER∗)2n) is a p-projection of (DETn).
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Characteristic 2

Answer to Bürgisser’s problem

Problem
Is the partial permanent VNP-complete in characteristic 2?

Theorem
If it is the case, ⊕P/poly = NC2/poly, and PH = Σ2.

Proof sketch. If the case arises,
VNP2 ⊆ VP, thus BP(VP) = BP(VNP) (Bürgisser’s boolean part)
Bürgisser: ⊕P/poly = BP(VNP) BP(VP) ⊆ NC2/poly
Karp-Lipton Theorem
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Conclusion

We obtained Symmetric Determinantal Representations for Formulas
and Weakly-Skew Circuits of linear size

Improvement of Valiant’s and Malod’s constructions
By-product (in characteristic 6= 2):

Theorem
Let M be an n× n matrix. Then there exists a symmetric matrix M ′ of size
O(n5) s.t. detM = detM ′.

For characteristic 2:

I Answer to Bürgisser’s Open Problem
I Proof of a negative result
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Future work

In Convex Geometry: K = R and polynomials are real zero
polynomials.

 what can be done in that precise case?
Characterize polynomials with a symmetric determinantal
representation in characteristic 2.
Symmetric matrices in Valiant’s theory?
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Thank you!
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