Symmetric Determinantal Representations of Polynomials

Bruno Grenet*†

Joint work with Erich L. Kaltofen[‡], Pascal Koiran*[†] and Natacha Portier*[†]

*MC2 – LIP, ÉNS Lyon

†Theory Group – DCS, U. of Toronto

‡Dept. of Mathematics – North Carolina State U.

Paris - Séminaire CLI - November 16, 2010

The problem

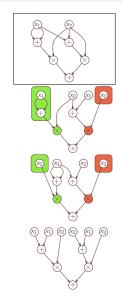
$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

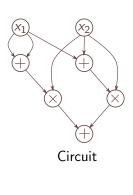
Formal polynomial

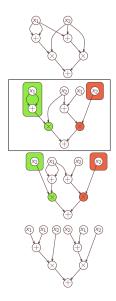
The problem

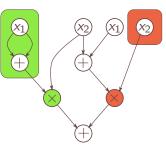
$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Formal polynomial
- Smallest possible dimension of the matrix

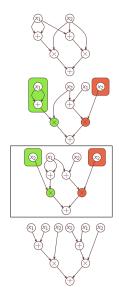


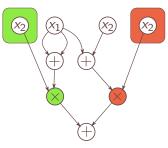




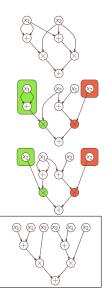


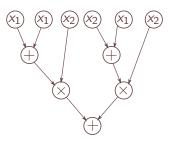
Weakly-skew circuit





Skew circuit





Formula

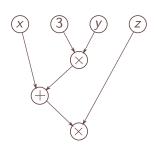
Motivation

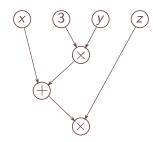
L. G. Valiant, Completeness classes in algebra, STOC 79

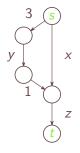
→ Universality of the determinant

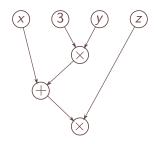
"We conclude that for the problem of finding a subexponential formula for a polynomial when one exists, linear algebra is essentially the only technique in the sense that it is always applicable".

$$(x+3y)z$$

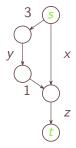


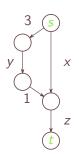


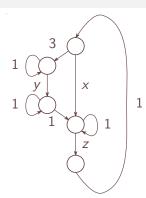


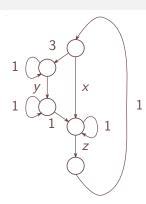


Arithmetic Branching Program

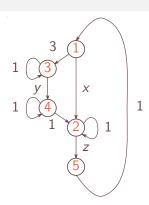




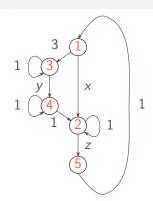




$$\det\begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

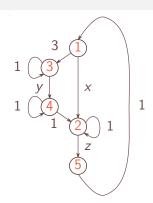


$$\det\begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$



$$\det A = \sum_{\sigma} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

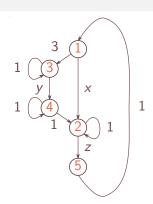
$$\det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$



$$\det A = \sum_{\sigma} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}$$

• permutation in A = cycle cover in G

$$\det\begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$



$$\det A = \sum_{\sigma} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}$$

- permutation in A = cycle cover in G
- Up to signs, $\det A = \text{sum of the weights of cycle covers in } G$

Outline

From polynomials to determinants

2 From polynomials to determinants of symmetric matrices

3 Characteristic 2

Upper bounds

• e + 2: L. G. Valiant, in Completeness classes in algebra (STOC 79)

Upper bounds

- e + 2: L. G. Valiant, in Completeness classes in algebra (STOC 79)
- 2e + 2: J. von zur Gathen, in Feasible arithmetic computations:
 Valiant's hypothesis (J. Symb. Comput., 1987)

Upper bounds

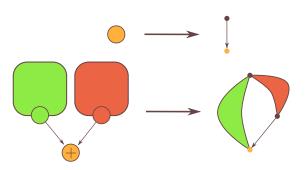
- e + 2: L. G. Valiant, in Completeness classes in algebra (STOC 79)
- 2e + 2: J. von zur Gathen, in Feasible arithmetic computations:
 Valiant's hypothesis (J. Symb. Comput., 1987)
- e + 1 if there is at least one addition in the formula: H. Liu and K.W. Regan, in *Improved construction for universality of determinant and permanent* (Inf. Process. Lett., 2006)

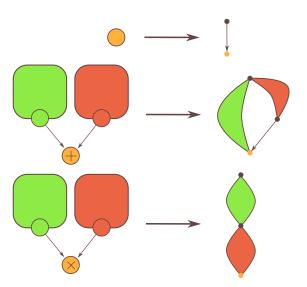
• Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1, \dots, X_n]$ of size e

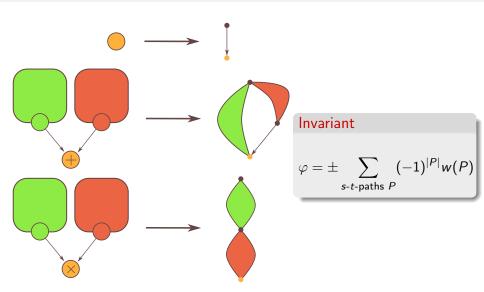
• Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1, \dots, X_n]$ of size eSize of a formula: number of computation gates

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1,\ldots,X_n]$ of size eSize of a formula : number of computation gates
- Output: a matrix A of dimension (e+1), with entries in $\mathbb{K} \cup \{X_1, \dots, X_n\}$, s.t. $\det A = \varphi$

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1,\ldots,X_n]$ of size eSize of a formula : number of computation gates
- Output: a matrix A of dimension (e+1), with entries in $\mathbb{K} \cup \{X_1, \dots, X_n\}$, s.t. $\det A = \varphi$
- In between: a graph G of size (e+1) whose adjacency matrix is A







• G s.t. $\varphi = \pm \sum_{s-t\text{-paths }P} (-1)^{|P|} w(P)$, with s, t distinguished

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths }P} (-1)^{|P|} w(P)$, with s, t distinguished
- \leadsto G': merge s and t + add weight-1 loops on vertices $\neq s$.

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths }P} (-1)^{|P|} w(P)$, with s, t distinguished
- \leadsto G': merge s and t + add weight-1 loops on vertices $\neq s$.
 - s-t-paths → big cycles

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths }P} (-1)^{|P|} w(P)$, with s, t distinguished
- \leadsto G': merge s and t + add weight-1 loops on vertices \neq s.
 - s-t-paths → big cycles
 - Cycle cover in G': One big cycle + loops

- G s.t. $\varphi = \pm \sum_{s-t\text{-paths }P} (-1)^{|P|} w(P)$, with s, t distinguished
- \leadsto G': merge s and t + add weight-1 loops on vertices $\neq s$.
 - s-t-paths → big cycles
 - Cycle cover in G': One big cycle + loops

Theorem

For a size-e formula, this construction yields a size-(e+1) graph. Let A be the adjacency matrix of G. Then $det(A) = \varphi$.

(Weakly-)Skew circuits

 Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits

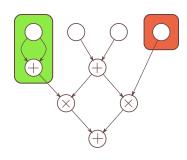
- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP
- Koiran and Kaltofen (ISSAC'08): Weakly-skew and skew circuits are linearly equivalent (factor 2)

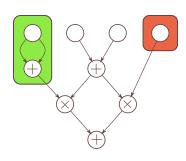
- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - ▶ Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP
- Koiran and Kaltofen (ISSAC'08): Weakly-skew and skew circuits are linearly equivalent (factor 2)
 - Skew circuit of size $O(n^5)$ for the determinant

• Input: a weakly-skew circuit of size e with i variable inputs representing φ

• Input: a weakly-skew circuit of size e with i variable inputs representing φ

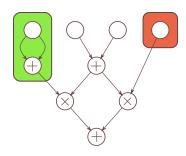


• Input: a weakly-skew circuit of size e with i variable inputs representing φ



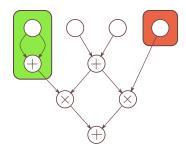
$$e = 5$$
 and $i = 4$

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e+i+1) s.t. $\det A = \varphi$



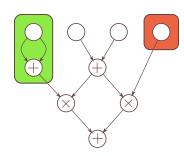
$$e = 5$$
 and $i = 4$

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e+i+1) s.t. det $A = \varphi$
- In between: a graph G...



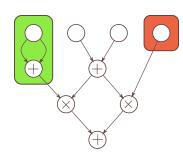
$$e = 5$$
 and $i = 4$

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e+i+1) s.t. $\det A = \varphi$
- In between: a graph G...
- φ_{α} : polynomial computed by gate α

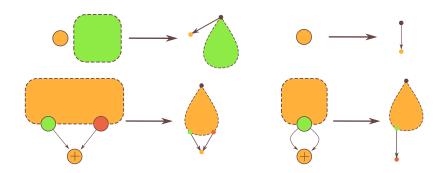


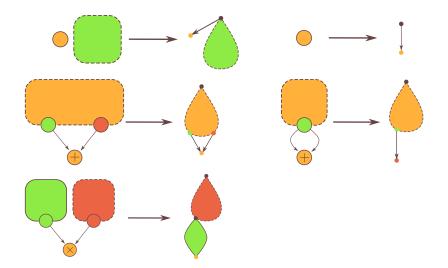
$$e = 5$$
 and $i = 4$

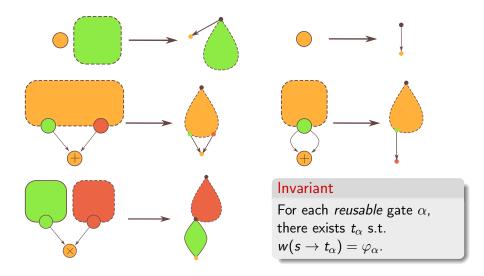
- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e+i+1) s.t. det $A = \varphi$
- In between: a graph G...
- φ_{α} : polynomial computed by gate α
- Reusable gate: not in a closed subcircuit



$$e = 5$$
 and $i = 4$







• As in Valiant's, $G \rightsquigarrow G'$: same idea

• As in Valiant's, $G \rightsquigarrow G'$: same idea

Theorem

For a ws circuit of size e with i variable inputs representing φ , this construction yields a size-(e + i + 1). The determinant of its adjacency matrix equals φ .

Outline

1 From polynomials to determinants

- Prom polynomials to determinants of symmetric matrices
- 3 Characteristic 2

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Drop condition $A_0 \succeq 0 \rightsquigarrow \text{exponential size matrices}$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succ 0$. \rightsquigarrow disproved

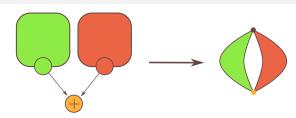
- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

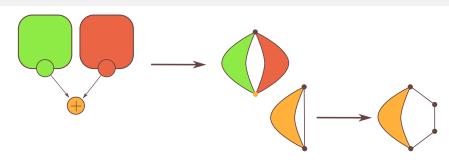
 $\bullet \ \, \mathsf{Symmetric} \ \, \mathsf{matrices} \ \, \Longleftrightarrow \ \, \mathsf{undirected} \ \, \mathsf{graphs}$

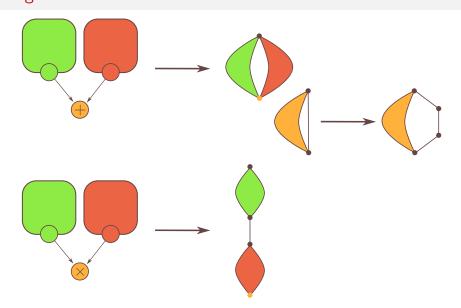
- Symmetric matrices ←⇒ undirected graphs
- Difficulty: no DAG anymore!

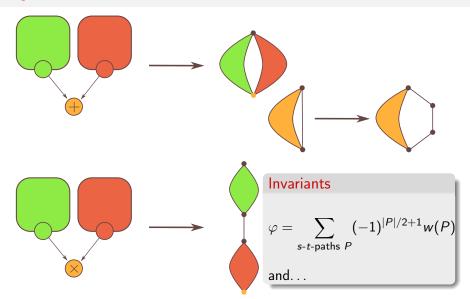
- Symmetric matrices ←⇒ undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants

- Symmetric matrices ←⇒ undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: $char(\mathbb{K}) \neq 2$ in this section



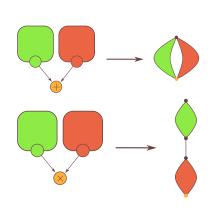






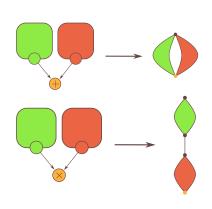
Invariants for formula's construction

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$



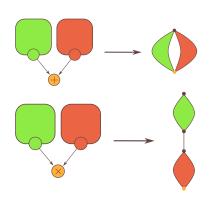
Invariants for formula's construction

- $\bullet \ \varphi = \sum_{s\text{-}t\text{-paths }P} (-1)^{|P|/2+1} w(P)$
- | *G* | is even, every cycle in *G* is even, and every *s-t*-path is even



Invariants for formula's construction

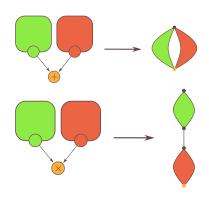
- $\bullet \ \ \varphi = \sum_{s\text{-}t\text{-paths }P} (-1)^{|P|/2+1} w(P)$
- |G| is even, every cycle in G is even, and every s-t-path is even
- G \ {s, t} is either empty or has a unique cycle cover



Invariants for formula's construction

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

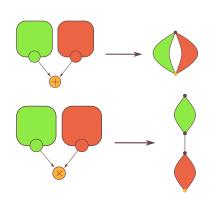
- |G| is even, every cycle in G is even, and every s-t-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- → Perfect matching of weight 1



Invariants for formula's construction

$$\bullet \ \varphi = \sum_{s\text{-}t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

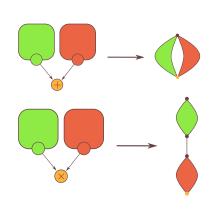
- |G| is even, every cycle in G is even, and every s-t-path is even
- $G \setminus \{s, t\}$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover



Invariants for formula's construction

$$\bullet \ \varphi = \sum_{s\text{-}t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every s-t-path is even
- $G \setminus \{s, t\}$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover
- → Perfect matching of weight 1



• |G'| is odd. An odd cycle in G' has to go through C

- |G'| is odd. An odd cycle in G' has to go through C
- Cycle covers in $G' \iff s \to t$ -paths in G

- |G'| is odd. An odd cycle in G' has to go through C
- Cycle covers in $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G

- |G'| is odd. An odd cycle in G' has to go through C
- Cycle covers in $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.

- |G'| is odd. An odd cycle in G' has to go through C
- Cycle covers in $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.
- 1/2: to deal with $s \to t$ and $t \to s$ -paths, implies $\operatorname{char}(\mathbb{K}) \neq 2$

- |G'| is odd. An odd cycle in G' has to go through C
- Cycle covers in $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.
- 1/2: to deal with $s \to t$ and $t \to s$ -paths, implies $\operatorname{char}(\mathbb{K}) \neq 2$

Theorem

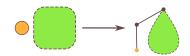
For a formula φ of size e, this construction yields a graph of size 2e + 3. The determinant of its adjacency matrix equals φ .

Main difficulty:

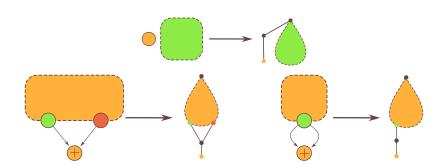
• Main difficulty:

• Definition: an path P is said acceptable if $G \setminus P$ admits a cycle cover

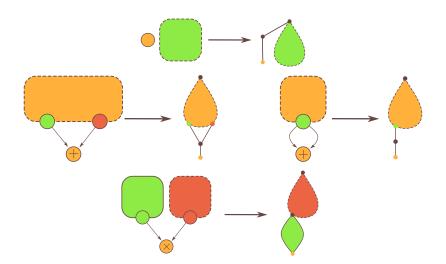
Constructions



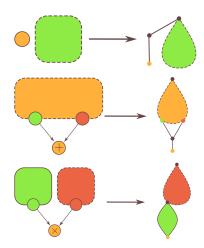
Constructions



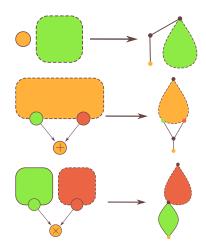
Constructions



ullet For each reusable lpha, there exists t_lpha s.t.



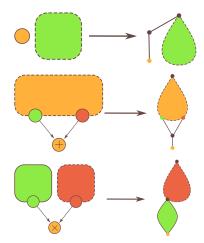
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\ s-t_{\alpha}\text{-paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$



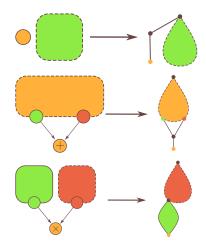
• For each reusable α , there exists t_{α} s.t.

$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\ s-t_{\alpha}\text{-paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

Every s- t_{α} -path is odd

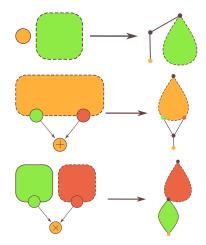


- For each reusable α , there exists t_{α} s.t.
 - acceptable s- t_{α} -paths P
 - Every s- t_{α} -path is odd
 - ▶ For a s- t_{α} -path P, $G \setminus P$ is either empty or has a unique cycle cover



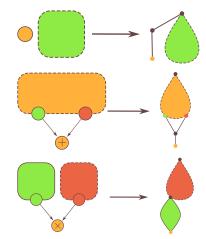
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable} \\ s \cdot t_{\alpha} \text{-paths } P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every $s-t_{\alpha}$ -path is odd
- ► For a s- t_{α} -path P, $G \setminus P$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1



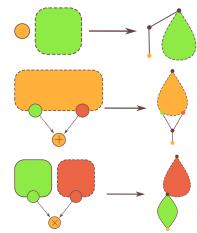
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\ s \cdot t_{\alpha} \text{-paths } P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every s- t_{α} -path is odd
- ► For a s- t_{α} -path P, $G \setminus P$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1
- |G| is odd, every cycle in G is even



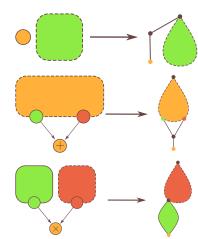
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable} \\ s \cdot t_{\alpha} \text{-paths } P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every $s-t_{\alpha}$ -path is odd
- ► For a s- t_{α} -path P, $G \setminus P$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- G \ {s} is either empty or has a unique cycle cover



$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\ s-t_{\alpha}\text{-paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every s- t_{α} -path is odd
- ► For a s- t_{α} -path P, $G \setminus P$ is either empty or has a unique cycle cover
- → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- G \ {s} is either empty or has a unique cycle cover
- → Perfect matching of weight 1



• Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- ullet $|G'\setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s\leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.
- With some sign considerations, we get:

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.
- With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ , this construction yields a graph G' with 2(e+i)+1 vertices. The adjacency matrix of G' has its determinant equal to φ .

Outline

- Characteristic 2

ullet Scalar 1/2 in the constructions \Longrightarrow not valid for characteristic 2

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- ullet Very special case: cycles of length > 2 are counted twice

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - ⇒ permutations restricted to pairs and singleton

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - ⇒ permutations restricted to pairs and singleton
 - ⇒ cycle covers replaced by monomer-dimer covers

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - ⇒ permutations restricted to pairs and singleton
 - ⇒ cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

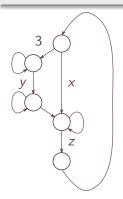
A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e+i)+2 such that $p^2 = \det A$.

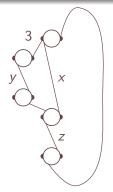
Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e+i)+2 such that $p^2 = \det A$.



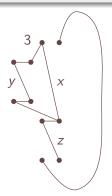
Toda-Malod's construction

Theorem



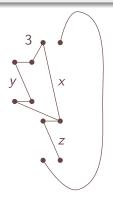
- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \leadsto v_s \text{ and } v_t.$

Theorem



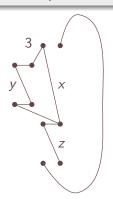
- Toda-Malod's construction
- Undirected graph G':
 - $ightharpoonup v \in V \leadsto v_s \text{ and } v_t.$
 - $(u, v) \rightsquigarrow \{u_s, v_t\}.$

Theorem



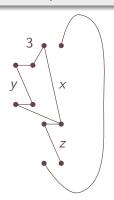
- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \leadsto v_s$ and v_t .
 - $(u, v) \rightsquigarrow \{u_s, v_t\}.$
- Cycle Covers in $G \iff \mathsf{Perfect}\ \mathsf{Matching}\ \mathsf{in}\ G'$

Theorem



- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \leadsto v_s$ and v_t .
 - $\qquad \qquad \bullet \quad (u,v) \rightsquigarrow \{u_s,v_t\}.$
- Cycle Covers in $G \iff$ Perfect Matching in G'
- \rightarrow det $M_G = \sum_{\mu} w(\mu)$

Theorem



- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \leadsto v_s$ and v_t .
 - $(u, v) \rightsquigarrow \{u_s, v_t\}.$
- Cycle Covers in $G \iff \mathsf{Perfect}\ \mathsf{Matching}\ \mathsf{in}\ G'$
- \leadsto det $M_G = \sum_{\mu} w(\mu)$
 - det $M_{G'} = \sum_{\mu} w(\mu)^2 = \left(\sum_{\mu} w(\mu)\right)^2$

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \epsilon_x, y^2 + \epsilon_y, z^2 + \epsilon_z \rangle$ can be written as a product of degree-1 polynomials.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \epsilon_x, y^2 + \epsilon_y, z^2 + \epsilon_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p=\det A$, then $p \mod \langle x^2+\epsilon_x, y^2+\epsilon_y, z^2+\epsilon_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

• Example: xy + z has no symmetric determinantal representation.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p=\det A$, then $p \mod \langle x^2+\epsilon_x, y^2+\epsilon_y, z^2+\epsilon_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p=\det A$, then $p \mod \langle x^2+\epsilon_x, y^2+\epsilon_y, z^2+\epsilon_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.
- Characterization?

• Quotient: no variable outside the diagonal

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "

- Quotient: no variable outside the diagonal
 - If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "
 - ▶ But $p(x)^2 \equiv \lambda \in \mathbb{F}$.

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "
 - ▶ But $p(x)^2 \equiv \lambda \in \mathbb{F}$.
- Operations on rows and columns:

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "
 - ▶ But $p(x)^2 \equiv \lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "
 - ▶ But $p(x)^2 \equiv \lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged
 - ► Coefficients remains linear polynomials

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x)$, then " $p(x)^2 \in \det A$ " and " $p(x) \notin \det A$ "
 - ▶ But $p(x)^2 \equiv \lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged
 - ► Coefficients remains linear polynomials
 - ► The matrix becomes diagonal

• These results raise the question:

• These results raise the question:

If p^2 has a small (weakly-skew) circuit, what about p?

These results raise the question:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP$ (VP_{ws}), does f belong to VP (VP_{ws})?

• These results raise the question:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP$ (VP_{ws}), does f belong to VP (VP_{ws})?

• It appears to be related to an open problem of Bürgisser:

• These results raise the question:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP$ (VP_{ws}), does f belong to VP (VP_{ws})?

• It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?

• Complexity of a polynomial: size of the smallest circuit computing it.

• Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family (f_n) of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_n are polynomially bounded in n.

• Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family (f_n) of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_n are polynomially bounded in n.

A family (f_n) of polynomials is in VNP if there exists a family $(g_n(y_1, \ldots, y_{v(n)})) \in VP$ s.t.

$$f_n(x_1,\ldots,x_{u(n)}) = \sum_{\bar{\epsilon} \in \{0,1\}^{v(n)-u(n)}} g_n(x_1,\ldots,x_{u(n)},\bar{\epsilon}).$$

Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family (f_n) of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_n are polynomially bounded in n.

A family (f_n) of polynomials is in VNP if there exists a family $(g_n(y_1, \ldots, y_{v(n)})) \in VP$ s.t.

$$f_n(x_1,\ldots,x_{u(n)}) = \sum_{\bar{\epsilon}\in\{0,1\}^{v(n)-u(n)}} g_n(x_1,\ldots,x_{u(n)},\bar{\epsilon}).$$

• $(\mathsf{DET}_n) \in \mathsf{VP}$, $(\mathsf{PER}_n) \in \mathsf{VNP}$, ...

Definition

A family (g_n) is a *p*-projection of a family (f_n) is there exists a polynomial t s.t. for all n, $g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)$, with $a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.

Definition

A family (g_n) is a p-projection of a family (f_n) is there exists a polynomial t s.t. for all n, $g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)$, with $a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.

A family $(f_n) \in VNP$ is VNP-complete if every family in VNP is a p-projection of (f_n) .

Definition

A family (g_n) is a p-projection of a family (f_n) is there exists a polynomial t s.t. for all n, $g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)$, with $a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.

A family $(f_n) \in VNP$ is VNP-complete if every family in VNP is a p-projection of (f_n) .

• (PER_n) is VNP-complete in characteristic $\neq 2$

Definition

A family (g_n) is a p-projection of a family (f_n) is there exists a polynomial t s.t. for all n, $g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_n)$, with $a_1, \ldots, a_n \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.

A family $(f_n) \in VNP$ is VNP-complete if every family in VNP is a p-projection of (f_n) .

- (PER_n) is VNP-complete in characteristic $\neq 2$
- (HC_n) is VNP-complete (in any characteristic)

Partial Permanent

$$\mathsf{per}^* M = \sum_{\pi} \prod_{i \in \mathsf{def}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Partial Permanent

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Lemma

Let $G = K_{n,n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2,

$$\det(A+I_{2n})=(\operatorname{per}^*B)^2$$

where I_{2n} is the identity matrix.

Partial Permanent

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Lemma

Let $G = K_{n,n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2,

$$\det(A+I_{2n})=(\operatorname{per}^*B)^2$$

where l_{2n} is the identity matrix.

Same kind of ideas as the previous proof.

Partial permanents as family of polynomials

(PER_n*): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER_n*): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((PER^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER_n*): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((PER^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem

 $((PER^*)_n^2) \in VP$ in characteristic 2.

Partial permanents as family of polynomials

(PER_n*): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((PER^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem

 $((PER^*)_n^2) \in VP$ in characteristic 2.

Proof. $((PER^*)_n^2)$ is a *p*-projection of (DET_n) .

Problem

Is the partial permanent VNP-complete in characteristic 2?

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Proof sketch. If the case arises,

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Proof sketch. If the case arises,

• $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP) (Bürgisser's boolean part)

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Proof sketch. If the case arises,

- $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP) (Bürgisser's boolean part)
- Bürgisser: $\oplus P/\text{poly} = BP(VNP)$ $BP(VP) \subseteq NC^2/\text{poly}$

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Proof sketch. If the case arises,

- $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP) (Bürgisser's boolean part)
- Bürgisser: $\oplus P/\text{poly} = BP(VNP)$ $BP(VP) \subseteq NC^2/\text{poly}$
- Karp-Lipton Theorem

 We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

For characteristic 2:

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem
 - ▶ Proof of a negative result

• In Convex Geometry: $\mathbb{K}=\mathbb{R}$ and polynomials are *real zero* polynomials.

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero* polynomials.
- → what can be done in that precise case?

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero* polynomials.
- → what can be done in that precise case?
 - Characterize polynomials with a symmetric determinantal representation in characteristic 2.

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero* polynomials.
- → what can be done in that precise case?
 - Characterize polynomials with a symmetric determinantal representation in characteristic 2.
 - Symmetric matrices in Valiant's theory?

Thank you!