Symmetric Determinantal Representations of Polynomials

Bruno Grenet*†

Joint work with Erich L. Kaltofen[‡], Pascal Koiran^{*†} and Natacha Portier^{*†}

*MC2 – LIP, ÉNS Lyon [†]Theory Group – DCS, U. of Toronto [‡]Dept. of Mathematics – North Carolina State U.

Rennes - Séminaire de Calcul Formel - November 26, 2010

The problem

$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Formal polynomial

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

The problem

$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Formal polynomial
- Smallest possible dimension of the matrix

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 2 / 36

Representations of polynomials

Representations of polynomials

Representations of polynomials

3 / 36

Representations of polynomials

Motivation

L. G. Valiant, Completeness classes in algebra, STOC 79 \rightsquigarrow Universality of the determinant

Motivation

L. G. Valiant, Completeness classes in algebra, STOC 79 \rightsquigarrow Universality of the determinant

"We conclude that for the problem of finding a subexponential formula for a polynomial when one exists, linear algebra is essentially the only technique in the sense that it is always applicable."

An example

(x + 3y)z

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 5 / 36

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 5

5 / 36

An example

Arithmetic Branching Program

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

5 / 36

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

5 / 36

An example

An example

Symm. Det. Rep. of Polynomials

An example

• permutation in
$$A =$$
 cycle cover in G

An example

$$\det A = \sum_{\sigma} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{''} A_{i,\sigma(i)}$$

• permutation in A = cycle cover in G

• Up to signs, det A =sum of the weights of cycle covers in G

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

Outline

2) From polynomials to determinants of symmetric matrices

3 Characteristic 2

4 Comparison with Convex Geometry Literature

Upper bounds

• e + 2: L. G. Valiant, in *Completeness classes in algebra* (STOC 79)

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 7 / 36

Upper bounds

- e + 2: L. G. Valiant, in *Completeness classes in algebra* (STOC 79)
- 2e + 2: J. von zur Gathen, in *Feasible arithmetic computations:* Valiant's hypothesis (J. Symb. Comput., 1987)

7 / 36

Upper bounds

- e + 2: L. G. Valiant, in *Completeness classes in algebra* (STOC 79)
- 2e + 2: J. von zur Gathen, in *Feasible arithmetic computations:* Valiant's hypothesis (J. Symb. Comput., 1987)
- *e* + 1 if there is at least one addition in the formula: H. Liu and K.W. Regan, in *Improved construction for universality of determinant and permanent* (Inf. Process. Lett., 2006)

• Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1, \dots, X_n]$ of size *e*

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 8 / 36

• Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1, \dots, X_n]$ of size eSize of a formula : number of computation gates

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

8 / 36

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}[X_1, \dots, X_n]$ of size eSize of a formula : number of computation gates
- Output: a matrix A of dimension (e + 1), with entries in $\mathbb{K} \cup \{X_1, \ldots, X_n\}$, s.t. det $A = \varphi$

- Input: a formula representing a polynomial φ ∈ K[X₁,..., X_n] of size e
 Size of a formula : number of computation gates
- Output: a matrix A of dimension (e + 1), with entries in $\mathbb{K} \cup \{X_1, \ldots, X_n\}$, s.t. det $A = \varphi$
- In between: a graph G of size (e + 1) whose adjacency matrix is A

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

9 / 36

• G s.t.
$$\varphi = \pm \sum_{s-t-\text{paths }P} (-1)^{|P|} w(P)$$
, with s, t distinguished

• G s.t.
$$\varphi = \pm \sum_{s-t-\text{paths }P} (-1)^{|P|} w(P)$$
, with s, t distinguished

 \rightsquigarrow G': merge s and t + add weight-1 loops on vertices \neq s.

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010 10 / 36

• G s.t.
$$\varphi = \pm \sum_{s-t-\text{paths }P} (-1)^{|P|} w(P)$$
, with s, t distinguished

- \rightsquigarrow G': merge s and t + add weight-1 loops on vertices \neq s.
 - *s*-*t*-paths \rightsquigarrow *big* cycles

• G s.t.
$$\varphi = \pm \sum_{s-t-\text{paths }P} (-1)^{|P|} w(P)$$
, with s, t distinguished

- \rightsquigarrow G': merge s and t + add weight-1 loops on vertices \neq s.
 - s-t-paths ~~ big cycles
 - Cycle cover in G': One big cycle + loops

• G s.t.
$$\varphi = \pm \sum_{s-t-\text{paths }P} (-1)^{|P|} w(P)$$
, with s, t distinguished

 \rightsquigarrow G': merge s and t + add weight-1 loops on vertices \neq s.

- s-t-paths → big cycles
- Cycle cover in G': One big cycle + loops

Theorem

For a size-e formula, this construction yields a size-(e + 1) graph. Let A be the adjacency matrix of G'. Then det $(A) = \varphi$.
• Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP
- Koiran and Kaltofen (ISSAC'08): Weakly-skew and skew circuits are linearly equivalent (factor 2)

- Toda (IEICE Trans. Inf. Syst. 92): Notions of skew and weakly-skew circuits
 - Skew circuit of size $O(n^{20})$ for the determinant
 - Weakly-skew circuit of size $O(n^7)$.
- Malod (MFCS'06, with Portier): Notion of strongly multiplicatively disjoint circuits
 - Study of Valiant's classes, especially VQP
- Koiran and Kaltofen (ISSAC'08): Weakly-skew and skew circuits are linearly equivalent (factor 2)
 - Skew circuit of size $O(n^5)$ for the determinant

 Input: a weakly-skew circuit of size e with i variable inputs representing φ

 Input: a weakly-skew circuit of size e with i variable inputs representing φ

12 / 36

 Input: a weakly-skew circuit of size e with i variable inputs representing φ

e = 5 and i = 4

- Input: a weakly-skew circuit of size *e* with *i* variable inputs representing φ
- Output: a matrix A of dimension (e+i+1) s.t. det $A = \varphi$

e = 5 and i = 4

Rennes - 26/11/2010

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e + i + 1) s.t. det A = φ
- In between: a graph G...

e = 5 and i = 4

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e + i + 1) s.t. det A = φ
- In between: a graph G...
- φ_{α} : polynomial computed by gate α

e = 5 and i = 4

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension (e + i + 1) s.t. det A = φ
- In between: a graph G...
- φ_{α} : polynomial computed by gate α
- Reusable gate: not in a closed subcircuit

e = 5 and i = 4

Rennes – 26/11/2010

12 / 36

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

13 / 36

Invariant

For each *reusable* gate α , there exists t_{α} s.t.

$$w(s
ightarrow t_{lpha}) = arphi_{lpha}.$$

• As in Valiant's, $G \rightsquigarrow G'$: same idea

Bruno Grenet (LIP – ÉNS Lyon)

• As in Valiant's, $G \rightsquigarrow G'$: same idea

Theorem

For a ws circuit of size e with i variable inputs representing φ , this construction yields a size-(e + i + 1). The determinant of its adjacency matrix equals φ .

Outline

Prom polynomials to determinants of symmetric matrices

3 Characteristic 2

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

16 / 36

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved • Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

• Symmetric matrices \iff undirected graphs

- \bullet Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!

17 / 36

- \bullet Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants

- Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: $char(\mathbb{K}) \neq 2$ in this section

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes – 26/11/2010

18 / 36

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

18 / 36

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 18 / 36

Symm. Det. Rep. of Polynomials

Invariants for formula's construction

•
$$\varphi = \sum_{\text{s-t-paths } P} (-1)^{|P|/2+1} w(P)$$

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

19 / 36

Invariants for formula's construction

•
$$\varphi = \sum_{s-t-\text{paths } P} (-1)^{|P|/2+1} w(P)$$

• |G| is even, every cycle in G is

even, and every *s*-*t*-path is even

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

20 / 36

20 / 36

From G to G'

• |G'| is odd. An odd cycle in G' has to go through c

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010

- |G'| is odd. An odd cycle in G' has to go through c
- Cycle covers in $G' \iff s \rightarrow t$ -paths in G

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010 20 / 36

- |G'| is odd. An odd cycle in G' has to go through c
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010 20 / 36

- |G'| is odd. An odd cycle in G' has to go through c
- Cycle covers in $G' \iff s \rightarrow t$ -paths in $G \iff t \rightarrow s$ -paths in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.

- |G'| is odd. An odd cycle in G' has to go through c
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.
- 1/2: to deal with $s \to t$ and $t \to s$ -paths, implies $\operatorname{char}(\mathbb{K}) \neq 2$

- |G'| is odd. An odd cycle in G' has to go through c
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G
- $(-1)^{|G/2|+1}$ ensures that the signs are OK.
- 1/2: to deal with $s \to t$ and $t \to s$ -paths, implies ${\sf char}(\mathbb{K})
 eq 2$

Theorem

For a formula φ of size e, this construction yields a graph of size 2e + 3. The determinant of its adjacency matrix equals φ .

• Main difficulty:

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

21 / 36

• Main difficulty:

• Definition: an path P is said acceptable if $G \setminus P$ admits a cycle cover

Constructions

Constructions

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials

Constructions

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

• For each reusable α , there exists t_{α} s.t.

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

23 / 36

• For each reusable α , there exists t_{α} s.t.

$$\varphi_{\alpha} = \sum (-1)^{\frac{|P|-1}{2}} w(P)$$

acceptable $s-t_{\alpha}$ -paths P

• For each reusable α , there exists t_{α} s.t.

•
$$\varphi_{\alpha} = \sum_{(-1)^{\frac{|P|-1}{2}}} w(P)$$

acceptable s- t_{α} -paths P

• Every *s*- t_{α} -path is odd

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010 23 / 36

•
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover

• For each reusable α , there exists t_{α} s.t.

$$\blacktriangleright \varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover

 \rightsquigarrow Perfect matching of weight 1

•
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a *s*-*t*_{α}-path *P*, *G* \ *P* is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
- |G| is odd, every cycle in G is even

$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover
 → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- *G* \ {*s*} is either empty or has a unique cycle cover

$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover
 → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- *G* \ {*s*} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1

• Add an edge between s and t, of weight
$$\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$$
.

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Re

Symm. Det. Rep. of Polynomials

Rennes – 26/11/2010

24 / 36

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s, t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1:

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.
- With some sign considerations, we get:

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G'$.
- $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path P, $G' \setminus P$ has an only cycle cover, of weight 1: Cycle covers of $G' \iff s \to t$ -paths in $G \iff t \to s$ -paths in G.
- With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ , this construction yields a graph G' with 2(e + i) + 1 vertices. The adjacency matrix of G' has its determinant equal to φ .

Outline

From polynomials to determinants

From polynomials to determinants of symmetric matrices

3 Characteristic 2

4 Comparison with Convex Geometry Literature

• Scalar 1/2 in the constructions \implies not valid for characteristic 2

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes – 26/11/2010

26 / 36

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

26 / 36
Introduction

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

• \mathbb{F} : finite field of characteristic 2

Introduction

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

- \mathbb{F} : finite field of characteristic 2
- Here: Polynomials over $\mathbb{F}[x, y, z]$

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

Toda-Malod's construction

27 / 36

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \rightsquigarrow v_s$ and v_t .

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

- Toda-Malod's construction
- Undirected graph G':

•
$$v \in V \rightsquigarrow v_s$$
 and v_t

$$\blacktriangleright (u, v) \rightsquigarrow \{u_s, v_t\}.$$

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

- Toda-Malod's construction
- Undirected graph G':
 - $v \in V \rightsquigarrow v_s$ and v_t .
 - $\blacktriangleright (u, v) \rightsquigarrow \{u_s, v_t\}.$
- Cycle Covers in $G \iff$ Perfect Matching in G'

Rennes - 26/11/2010

27 / 36

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

- Toda-Malod's construction
- Undirected graph G':

•
$$v \in V \rightsquigarrow v_s$$
 and v_t .

$$\bullet (u, v) \rightsquigarrow \{u_s, v_t\}.$$

• Cycle Covers in $G \iff$ Perfect Matching in G'

$$\rightsquigarrow$$
 det $M_{G} = \sum_{\mu} w(\mu)$

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

- Toda-Malod's construction
- Undirected graph G':

•
$$v \in V \rightsquigarrow v_s$$
 and v_t .

$$\blacktriangleright (u, v) \rightsquigarrow \{u_s, v_t\}.$$

• Cycle Covers in $G \iff$ Perfect Matching in G'

$$\rightsquigarrow$$
 det $M_{G} = \sum_{\mu} w(\mu)$

• det
$$M_{G'} = \sum_{\mu} w(\mu)^2 = \left(\sum_{\mu} w(\mu)
ight)^2$$

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ can be written as a product of degree-1 polynomials.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

• Example: xy + z has no symmetric determinantal representation.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ can be written as a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.
- Characterization?

• Quotient: no variable outside the diagonal

- Quotient: no variable outside the diagonal
 - If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.

• Operations on rows and columns:

- Quotient: no variable outside the diagonal
 - If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged
 - Coefficients remains linear polynomials

- Quotient: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant unchanged
 - Coefficients remains linear polynomials
 - The matrix becomes diagonal

Outline

From polynomials to determinants of symmetric matrices

3 Characteristic 2

Comparison with Convex Geometry Literature

Quarez, Symmetric determinantal representation of polynomials (2008):

Bruno Grenet (LIP – ÉNS Lyon) Sy

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

31 / 36

Quarez, Symmetric determinantal representation of polynomials (2008):

• Linear Matrix Expression: entries contain linear polynomials

Quarez, Symmetric determinantal representation of polynomials (2008):

- Linear Matrix Expression: entries contain linear polynomials
- Matrix dimension given by degree d and number of variables n

Quarez, Symmetric determinantal representation of polynomials (2008):

- Linear Matrix Expression: entries contain linear polynomials
- Matrix dimension given by degree d and number of variables n

$$\rightsquigarrow 2\binom{n+\lfloor d/2\rfloor}{n}$$

Our bounds in the worst case

Theorem

Let p a degree-d polynomial in n variables. Then p admits a formula of size

$$F(n,d) \leq {n+d+1 \choose n+1} - {n+d-1 \choose n+1} - 2$$

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Renn

Our bounds in the worst case

Theorem

Let p a degree-d polynomial in n variables. Then p admits a formula of size

$$F(n,d) \leq {n+d+1 \choose n+1} - {n+d-1 \choose n+1} - 2$$

This yields a symmetric determinantal representation of size

$$S(n,d) \leq 4\binom{n+d-1}{n} - 2.$$

Our bounds in the worst case

Theorem

Let p a degree-d polynomial in n variables. Then p admits a formula of size

$$F(n,d) \leq {n+d+1 \choose n+1} - {n+d-1 \choose n+1} - 2$$

This yields a symmetric determinantal representation of size

$$S(n,d) \leq 4\binom{n+d-1}{n} - 2.$$

$$S(n,d) \leq e^n \binom{n+\lfloor d/2 \rfloor}{n}$$

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010 32 / 36

• Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$

33 / 36

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)}$$

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)} = \sum_{S \subseteq \{1, \dots, 2n\}} (-1)^{|S|} \prod_{i=1}^{2n} \sum_{j \notin S} X_{ij}$$

Ryser's Formula

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)} = \sum_{S \subseteq \{1, \dots, 2n\}} (-1)^{|S|} \prod_{i=1}^{2n} \sum_{j \notin S} X_{ij}$$

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Rennes – 26/11/2010 33 / 36

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)} = \sum_{S \subseteq \{1, \dots, 2n\}} (-1)^{|S|} \prod_{i=1}^{2n} \sum_{j \notin S} X_{ij}$$

► Ryser's Formula: Size
$$O(n2^{2n})$$

► $\binom{4n^2 + n}{n} \ge n^{n-1} (n2^{2n})$

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)} = \sum_{S \subseteq \{1, \dots, 2n\}} (-1)^{|S|} \prod_{i=1}^{2n} \sum_{j \notin S} X_{ij}$$

► Ryser's Formula: Size
$$O(n2^{2n})$$

► $\binom{4n^2 + n}{n} \ge n^{n-1} (n2^{2n})$

• True for every VNP family
Some special cases

- Polysize formula or weakly-skew formula: n^c vs. $\binom{n+\lfloor d/2 \rfloor}{n}$
 - Determinant, Pfaffian, $Tr(X_1 \cdots X_n), \ldots$
- Permanent: degree 2n, $4n^2$ variables

$$\sum_{\sigma} \prod_{i=1}^{2n} X_{i\sigma(i)} = \sum_{S \subseteq \{1, \dots, 2n\}} (-1)^{|S|} \prod_{i=1}^{2n} \sum_{j \notin S} X_{ij}$$

► Ryser's Formula: Size
$$O(n2^{2n})$$

► $\binom{4n^2 + n}{n} \ge n^{n-1} (n2^{2n})$

- True for every VNP family
 - Plenty of graph polynomials

33 / 36

• We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

• For characteristic 2:

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem
 - Proof of a negative result

• In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.
- \rightsquigarrow what can be done in that precise case?

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.
- \rightsquigarrow what can be done in that precise case?
 - Characterize polynomials with a symmetric determinantal representation in characteristic 2.

- In Convex Geometry: $\mathbb{K} = \mathbb{R}$ and polynomials are *real zero polynomials*.
- \rightsquigarrow what can be done in that precise case?
 - Characterize polynomials with a symmetric determinantal representation in characteristic 2.
 - Symmetric matrices in Valiant's theory?

Thank you!

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Rennes - 26/11/2010

36 / 36