Root finding over finite fields

Bruno GrenetLIRMM Université de Montpellier

Joris van der Hoeven & Grégoire Lecerf CNRS – LIX École polytechnique

GT ECo-Escape — February 11., 2015

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{\alpha}[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_{\alpha} : f(\alpha) = 0\}$.

- Building block for many algorithms in computer algebra: root finding over \mathbb{Z} , factorization, sparse interpolation, ...
- Applications in cryptography, error correcting codes, ...
- Derandomization
- Sparse interpolation: bottleneck in practice

[van der Hoeven & Lecerf, 2014]

Finite fields

 $\mathbb{F}_q\colon \text{field with } q \text{ elements, } q=p^r \text{ for some prime number } p$

- $\blacktriangleright \ \mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}; \\ +, -, \times \text{ and } / \text{ modulo } p$
- $\begin{array}{l} \blacktriangleright \ \mathbb{F}_q \simeq \mathbb{F}_p[\lambda]/\langle \varphi \rangle \ (\varphi \in \mathbb{F}_p[\lambda] \ \text{irreducible of degree r}); \\ +, -, \times \ \text{and} \ / \ \text{modulo p and φ} \end{array}$

Finite fields

 $\mathbb{F}_q\colon \text{field with } q \text{ elements, } q=p^r \text{ for some prime number } p$

$$\blacktriangleright \ \mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}; \\ +,-,\times \ \text{and} \ / \ \text{modulo} \ p$$

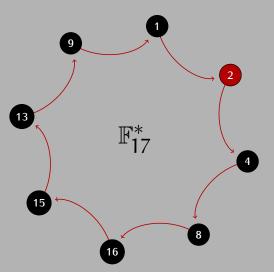
$$\begin{array}{c} \blacktriangleright \ \mathbb{F}_q \simeq \mathbb{F}_p[\lambda]/\langle \varphi \rangle \ (\varphi \in \mathbb{F}_p[\lambda] \ irreducible \ of \ degree \ r); \\ +,-,\times \ and \ / \ modulo \ p \ and \ \varphi \end{array}$$

Finite fields

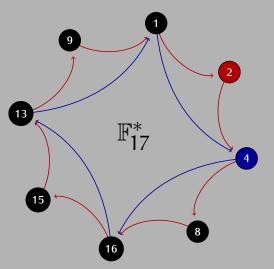
 $\mathbb{F}_q\colon \text{field with } q \text{ elements, } q=p^r \text{ for some prime number } p$

$$\blacktriangleright \ \mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}; \\ +,-,\times \ \text{and} \ / \ \text{modulo} \ p$$

$$\begin{array}{c} \blacktriangleright \ \mathbb{F}_q \simeq \mathbb{F}_p[\lambda]/\langle \varphi \rangle \ (\varphi \in \mathbb{F}_p[\lambda] \ irreducible \ of \ degree \ r); \\ +,-,\times \ and \ / \ modulo \ p \ and \ \varphi \end{array}$$

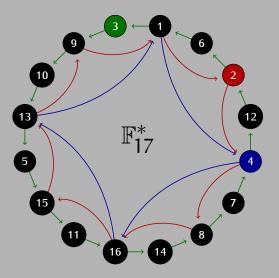


2 is a primitive root of unity of order 8



2 is a primitive root of unity of order 8

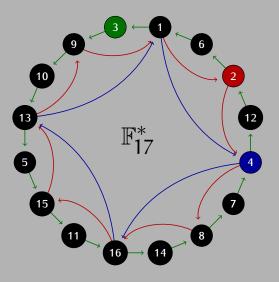
4 is a primitive root of unity of order 4



2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

3 is a primitive element of $\mathbb{F}^*_{17}\colon$ $\mathbb{F}^*_{17}=\{3^i:0\leqslant i<16\}$



2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

3 is a primitive element of $\mathbb{F}_{17}^*\colon$ $\mathbb{F}_{17}^*=\{3^i:0\leqslant i<16\}$

$$\alpha^{q-1} = \zeta^{\mathfrak{i}(q-1)} = 1$$

A first algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$

Output: The roots of f.

- 1: $Z \leftarrow \emptyset$;
- 2: for all $\alpha \in \mathbb{F}_q^*$ do
- 3: if $f(\alpha) = 0$ then
- 4: Add α to Z;
- 5: return Z.

A first algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$

Output: The roots of f.

- 1: $Z \leftarrow \emptyset$:
- 2: for all $\alpha \in \mathbb{F}_q^*$ do
- 3: if $f(\alpha) = 0$ then
- 4: Add α to Z;
- 5: return Z.

Theorem

The above algorithm runs in **deterministic time** poly(q, deg(f)).

Algorithm

Input: $f \in \mathbb{F}_{\alpha}[X]$

Output: The roots of f.

- 1: $Z \leftarrow \emptyset$:
- 2: for all $\alpha \in \mathbb{F}_a^*$ do
- 3: if $f(\alpha) = 0$ then
- Add α to Z; 4:
- 5: return Z.

Theorem

The above algorithm runs in **deterministic time** poly(q, deg(f)).

 \bigwedge The input size is $(1 + \deg(f)) \log g$: exponential time!

A first algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$

Output: The roots of f.

- 1: $Z \leftarrow \emptyset$:
- 2: for all $\alpha \in \mathbb{F}_q^*$ do
- 3: if $f(\alpha) = 0$ then
- 4: Add α to Z;
- 5: return Z.

▷ in random order

Theorem

The above algorithm runs in **deterministic time** poly(q, deg(f)).

 Λ

The input size is $(1 + deg(f)) \log q$: exponential time!

The expected number of steps to discover all roots is $\frac{d}{d+1}q$.

Obtain **fast** algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory.

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: $f = \prod_{i=1}^{d} (X \alpha_i)$, α_i distinct and nonzero:
 - Easy reduction to this case: $f \leftarrow \gcd(f, X^{q-1} 1)$ $(X^{q-1} 1 = \prod_{\alpha \in \mathbb{F}_q^*} X \alpha).$

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: $f = \prod_{i=1}^{d} (X \alpha_i)$, α_i distinct and nonzero:
 - Easy reduction to this case: $f \leftarrow \gcd(f, X^{q-1} 1)$ $(X^{q-1} 1 = \prod_{\alpha \in \mathbb{F}_q^*} X \alpha).$
- Extra input: A primitive element ζ , or a primitive root of unity ξ of order χ .

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: $f = \prod_{i=1}^{d} (X \alpha_i)$, α_i distinct and nonzero:
 - Easy reduction to this case: $f \leftarrow \gcd(f, X^{q-1} 1)$ $(X^{q-1} 1 = \prod_{\alpha \in \mathbb{F}_q^*} X \alpha).$
- Extra input: A primitive element ζ , or a primitive root of unity ξ of order χ .
- Smooth cardinality:
 - $q = \rho \pi_1 \cdots \pi_m + 1$, where ρ , π_1 , ..., π_m are *small*;
 - Practical purpose: $q = M2^m + 1$ is a *FFT prime*.

Algorithm

Input: $f = \prod_{i=1}^d (X - \alpha_i)$, α_i distinct and nonzero.

Algorithm

Input: $f = \prod_{i=1}^{d} (X - \alpha_i)$, α_i distinct and nonzero.

- 1: if deg(f) = 1 then return its root;
- 2: $S \leftarrow \{s_1, \dots, s_{(q-1)/2)}\}$ taken at random in \mathbb{F}_q^* ;
- 3: $u \leftarrow \prod_i (X s_i)$ and $g \leftarrow gcd(f, u)$;
- 4: return the union of the roots of g and f/g, recursively.

Algorithm

Input: $f = \prod_{i=1}^{d} (X - \alpha_i)$, α_i distinct and nonzero.

- 1: if deq(f) = 1 then return its root;
- 2: $S \leftarrow \{s_1, \dots, s_{(q-1)/2}\}$ taken at random in \mathbb{F}_q^* ;
- 3: $u \leftarrow \prod_i (X s_i)$ and $g \leftarrow gcd(f, u)$;
- 4: return the union of the roots of g and f/g, recursively.

$$\mathbb{P}[\gcd(f,u) \in \{1,f\}] = \mathbb{P}[\forall i, \alpha_i \in S] + \mathbb{P}[\forall i, \alpha_i \notin S] = 1/2^{d-1}$$

Algorithm

Input: $f = \prod_{i=1}^{d} (X - \alpha_i)$, α_i distinct and nonzero.

- 1: if deg(f) = 1 then return its root;
- 2: $S \leftarrow \{s_1, \dots, s_{(q-1)/2)}\}$ taken at random in \mathbb{F}_q^* ;
- 3: $u \leftarrow \prod_i (X s_i)$ and $g \leftarrow gcd(f, u)$;
- 4: return the union of the roots of g and f/g, recursively.

$$\mathbb{P}[\gcd(f,u) \in \{1,f\}] = \mathbb{P}[\forall i, \alpha_i \in S] + \mathbb{P}[\forall i, \alpha_i \notin S] = 1/2^{d-1}$$

Good and bad news

The expected number of calls is 2d.

The complexity of step 3 is $\tilde{O}(q)$.

$$\vdash \prod_{\alpha \in \mathbb{F}_{\mathfrak{q}}^*} (X - \alpha) = X^{q-1} - 1$$

With some luck, $gcd(f, X^{\frac{q-1}{2}} - 1) \notin \{1, f\}$.

- With some luck, $gcd(f, X^{\frac{q-1}{2}} 1) \notin \{1, f\}$.
- ▶ Push your luck: $gcd(f, (X+s)^{\frac{q-1}{2}}-1)$ for some random $s \in \mathbb{F}_q$

- ► With some luck, $gcd(f, X^{\frac{q-1}{2}} 1) \notin \{1, f\}$.
- Push your luck: $gcd(f, (X+s)^{\frac{q-1}{2}}-1)$ for some random $s \in \mathbb{F}_q$

$$\#\left\{s \in \mathbb{F}_{q} : \gcd(f, (X+s)^{\frac{q-1}{2}}-1) \notin \{1, f\}\right\} = \frac{q-1}{2}$$

- ► With some luck, $gcd(f, X^{\frac{q-1}{2}} 1) \notin \{1, f\}$.
- > Push your luck: $\gcd(f,(X+s)^{rac{q-1}{2}}-1)$ for some $\mathsf{random}\ s\in\mathbb{F}_q$

$$\#\left\{s \in \mathbb{F}_{q} : \gcd(f, (X+s)^{\frac{q-1}{2}}-1) \notin \{1, f\}\right\} = \frac{q-1}{2}$$

$$\quad \text{gcd} \in \{1, f\} \iff \begin{cases} \forall i, (\alpha_i + s)^{\frac{q-1}{2}} = 1 & \text{or} \\ \forall i, (\alpha_i + s)^{\frac{q-1}{2}} = -1; \end{cases}$$

$$(\alpha_1 + s)^{\frac{q-1}{2}} = -(\alpha_2 + s)^{\frac{q-1}{2}} \neq 0 \iff \left(\frac{\alpha_1 + s}{\alpha_2 + s}\right)^{\frac{q-1}{2}} = -1;$$

•
$$s \mapsto \frac{\alpha_1 + s}{\alpha_2 + s}$$
 is a bijection $\mathbb{F}_q \setminus \{-\alpha_2\} \to \mathbb{F}_q \setminus \{1\}$.

Cantor-Zassenhaus' algorithm

Algorithm

```
Input: f \in \mathbb{F}_q[X] with deg(f) distinct roots in \mathbb{F}_q^*; Output: The roots of f.
```

- 1: if deq(f) = 1 then return its root;
- 2: Take $s \in \mathbb{F}_q$ at random;
- 3: $h \leftarrow (X+s)^{\frac{q-1}{2}} \mod f$;

▶ repeated squaring

- 4: $g \leftarrow \gcd(f, h-1)$;
- 5: return the union of the roots of g and f/g.

Cantor-Zassenhaus' algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ; **Output:** The roots of f.

- 1: if deq(f) = 1 then return its root;
- 2: Take $s \in \mathbb{F}_q$ at random;
- 3: $h \leftarrow (X+s)^{\frac{q-1}{2}} \mod f$;

▷ repeated squaring

- 4: $g \leftarrow \gcd(f, h-1)$;
- 5: return the union of the roots of g and f/g.

Theorem

The above algorithm runs in expected time $\tilde{O}(d \log^2 q)$.

Let
$$q = \chi \rho + 1$$
. Then $X^{q-1} - 1 = \prod_{i=1}^{x} (X^{\rho} - \xi^{i})$, where $\xi^{\chi} = 1$.

Let
$$q = \chi \rho + 1$$
. Then $X^{q-1} - 1 = \prod_{i=0}^{\chi-1} (X^{\rho} - \xi^i)$, where $\xi^{\chi} = 1$.

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ; Extra input: A primitive root ξ of unity of order χ ;

Output: The roots of f.

Let
$$q=\chi \rho+1$$
. Then $X^{q-1}-1=\prod_{i=0}^{\chi-1}(X^{\rho}-\xi^i)$, where $\xi^{\chi}=1$.

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ; **Extra input:** A primitive root ξ of unity of order χ ;

Output: The roots of f.

- 1: if $deg(f) \leq 1$ then return its root;
- 2: Take $s \in \mathbb{F}_q$ at random;
- 3: $h \leftarrow (X+s)^{\rho} \mod f$; $g_0 \leftarrow f$;
- 4: for i = 1 to $\chi 1$ do $g_i \leftarrow \gcd(g_0, h \xi^i)$; $g_0 \leftarrow g_0/g_i$;
- 5: return the union of the roots of g_0, \ldots, g_{x-1} .

Let
$$q=\chi \rho+1$$
. Then $X^{q-1}-1=\prod_{i=0}^{\chi-1}(X^{\rho}-\xi^i)$, where $\xi^{\chi}=1$.

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ; **Extra input:** A primitive root ξ of unity of order χ ;

Output: The roots of f.

- 1: if $deg(f) \leq 1$ then return its root;
- 2: Take $s \in \mathbb{F}_q$ at random;
- 3: $h \leftarrow (X+s)^{\rho} \mod f$; $g_0 \leftarrow f$;
- 4: for i = 1 to $\chi 1$ do $g_i \leftarrow \gcd(g_0, h \xi^i)$; $g_0 \leftarrow g_0/g_i$;
- 5: return the union of the roots of $g_0, \ldots, g_{\chi-1}$.

If $\chi \ll \log q / \log d$, the speed-up is approximately $\log_2 \chi$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If
$$g(X) = \prod_i (\alpha_i - X)$$
, then $h(X) = \prod_i (\alpha_i^2 - X)$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If
$$g(X) = \prod_i (\alpha_i - X)$$
, then $h(X) = \prod_i (\alpha_i^2 - X)$.

The generalized Graeffe transform of $g \in \mathbb{F}_q[X]$ of order π is

$$G_{\pi}(g)(X) = (-1)^{\pi \deg g} \operatorname{res}_{z}(g(z), z^{\pi} - x).$$

If
$$g = \prod_i (\alpha_i - X)$$
, then $G_{\pi}(g)(X) = \prod_i (\alpha_i^{\pi} - X)$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If
$$g(X) = \prod_i (\alpha_i - X)$$
, then $h(X) = \prod_i (\alpha_i^2 - X)$.

The generalized Graeffe transform of $g \in \mathbb{F}_q[X]$ of order π is

$$G_{\pi}(g)(X) = (-1)^{\pi \deg g} \operatorname{res}_{z}(g(z), z^{\pi} - x).$$

If
$$g = \prod_i (\alpha_i - X)$$
, then $G_\pi(g)(X) = \prod_i (\alpha_i^\pi - X)$.

Note.
$$G_{\pi_1\pi_2} = G_{\pi_1} \circ G_{\pi_2}$$

Using Graeffe transforms

Let $q = \rho \pi_1 \cdots \pi_m + 1$.

Using Graeffe transforms

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.

Remark

$$G_{q-1}(g)(X) = \pm \prod_{i} (X - \alpha_{i}^{q-1}) = \pm (X-1)^{\deg(g)}$$

Using Graeffe transforms

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.

Remark

$$G_{q-1}(g)(X) = \pm \prod_{i} (X - \alpha_{i}^{q-1}) = \pm (X - 1)^{\deg(g)}$$

Skeleton of the algorithms

- 1: $h_0 \leftarrow G_{\rho}(f)$;
- 2: for i = 1 to m do
- 3: $h_i \leftarrow G_{\pi_i}(h_{i-1});$ $\triangleright h_i \leftarrow G_{\rho\pi_1\cdots\pi_i}(f)$
- 4: $Z_m \leftarrow \{1\}$, unique root of $h_m = G_{q-1}(f)$;
- 5: for i = m 1 down to 0 do
- 6: $Z_i \leftarrow \text{roots of } h_i \text{ from } Z_{i+1}$;
- 7: return the roots of f, computed from Z_0 .

Graeffe transform computation

Lemma

Let π divide q-1, and ξ a primitive root of unity of order π . Then

$$G_{\pi}(g)(X^{\pi}) = g(X)g(\xi X)\cdots g(\xi^{\pi-1}X).$$

Graeffe transform computation

Lemma

Let π divide q-1, and ξ a primitive root of unity of order π . Then

$$G_{\pi}(g)(X^{\pi}) = g(X)g(\xi X)\cdots g(\xi^{\pi-1}X).$$

Theorem

Given $g \in \mathbb{F}_q[X]$ and a primitive root of unity ξ of order π , $G_{\pi}(g)$ can be computed in $\tilde{O}(\pi d \log q)$ operations.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leqslant q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leqslant q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Based on:

Theorem

[Kedlaya-Umans'11]

Let f, g, $h \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$, $(f \circ g \mod h)$ can be computed in time $d^{1+\delta} \tilde{O}(\log q)$.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leqslant q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Based on:

Theorem

[Kedlaya-Umans'11]

Let f, g, $h \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$, $(f \circ g \mod h)$ can be computed in time $d^{1+\delta} \tilde{O}(\log q)$.

Corollary

Let $g \in \mathbb{F}_q[X]$ and $q = \rho \pi_1 \cdots \pi_m + 1$. For all δ , $G_{\rho}(g)$, $G_{\rho \pi_1}(g)$, ..., $G_{\rho \pi_1 \cdots \pi_{m-1}}(g)$ can be computed in time $(d \log^2 q)^{1+\delta}$.

Following roots

Let
$$q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$$
 and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$
$$\prod_{i=1}^r (\alpha_i - X) \xrightarrow{G_{\pi}} \prod_{i=1}^r (\alpha_i^{\pi} - X)$$

Following roots

Let
$$q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$$
 and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$

$$\prod_{i=1}^{r}(\alpha_{i}-X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}(\alpha_{i}^{\pi}-X)$$

 ξ : primitive root of unity of order χ

$$\prod_{i=1}^{r} (\xi^{e_i} - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\xi^{f_i} - X)$$

Following roots

Let
$$q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$$
 and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$
$$\prod_{i=1}^r (\alpha_i - X) \xrightarrow{G_{\pi}} \prod_{i=1}^r (\alpha_i^{\pi} - X)$$

 ξ : primitive root of unity of order χ

$$\prod_{i=1}^{r} (\xi^{e_i} - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\xi^{f_i} - X)$$

$$\forall i, (\xi^{e_i})^{\pi} = \xi^{f_i}$$

$$\iff \forall i, \pi e_i = f_i \mod \chi$$

$$\iff \forall i, e_i \in \left\{ \frac{f_i + j\chi}{\pi} : 0 \leqslant j \leqslant \pi - 1 \right\}$$

A deterministic algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ;

Extra input: A primitive root ξ of unity of order $\chi = \pi_1 \cdots \pi_m$;

Output: The ξ -logarithms of the roots of $G_{\rho}(f)$.

A deterministic algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ;

Extra input: A primitive root ξ of unity of order $\chi = \pi_1 \cdots \pi_m$;

Output: The ξ -logarithms of the roots of $G_{\rho}(f)$.

- 1: $h_i \leftarrow \text{Graeffe transform of } f \text{ of order } \rho \pi_1 \cdots \pi_i;$
- 2: $E \leftarrow [0]$; $\triangleright \xi$ -log of the root of h_m
- 3: for $i = m_i$ down to 1 do

4:
$$E \leftarrow \left[\frac{e+j\chi}{\pi_i} : e \in E, 0 \leqslant j \leqslant \pi_i - 1, h_{i-1} \left(\xi^{\frac{e+j\chi}{\pi_i}} \right) = 0 \right];$$

5: return E.

A deterministic algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* ;

Extra input: A primitive root ξ of unity of order $\chi = \pi_1 \cdots \pi_m$;

Output: The ξ -logarithms of the roots of $G_{\rho}(f)$.

- 1: $h_i \leftarrow \text{Graeffe transform of f of order } \rho \pi_1 \cdots \pi_i;$
- 2: $E \leftarrow [0];$ $\triangleright \xi$ -log of the root of h_m
- 3: for $i = m_i$ down to 1 do

4:
$$E \leftarrow \left[\frac{e + j\chi}{\pi_i} : e \in E, 0 \leqslant j \leqslant \pi_i - 1, h_{i-1}\left(\xi^{\frac{e + j\chi}{\pi_i}}\right) = 0 \right];$$

5: return E.

Theorem

If ρ , max_i $\pi_i = O(\log q)$, the algorithm runs in time $\tilde{O}(d\log^3 q)$.

Following roots faster

Lemma

Given $h = G_{\pi}(g)$, and $\{a_1, \dots, a_l\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi}d\log g) + (d\log g)^{1+\delta}$ for all $\delta > 0$.

Following roots faster

Lemma

Given $h=G_\pi(g)$, and $\{\alpha_1,\ldots,\alpha_l\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi}d\log q)+(d\log q)^{1+\delta}$ for all $\delta>0$.

Theorem

Given $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

$$\tilde{O}(\sqrt{S_1(q-1)}d\log^2q) + (d\log^2q)^{1+\delta}$$

where $S_1(q-1)$ is the largest factor of q-1.

Following roots faster

Lemma

Given $h=G_{\pi}(g)$, and $\{\alpha_1,\ldots,\alpha_l\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi}d\log q)+(d\log q)^{1+\delta}$ for all $\delta>0$.

Theorem

Given $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

$$\tilde{O}(\sqrt{S_1(q-1)}d\log^2q) + (d\log^2q)^{1+\delta}$$

where $S_1(q-1)$ is the largest factor of q-1.

- Best known bound for smooth q;
- ► If $q = M2^m 1$, $M = O(\log q)$, complexity $\tilde{O}(d \log^2 q)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g\in\mathbb{F}_q[X]$ is

$$G_{\pi}(g(X+\epsilon)) \in (\mathbb{F}_q[\epsilon]/\langle \epsilon^2 \rangle)[X].$$

Remark. $G_{\pi}(g(X+\epsilon)) = h(X) + \epsilon \overline{h}(X)$ where $h = G_{\pi}(g)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g \in \mathbb{F}_q[X]$ is

$$G_{\pi}(g(X+\epsilon)) \in (\mathbb{F}_q[\epsilon]/\langle \epsilon^2 \rangle)[X].$$

Remark. $G_{\pi}(g(X + \epsilon)) = h(X) + \epsilon \overline{h}(X)$ where $h = G_{\pi}(g)$.

Lemma

A nonzero root β of h is a **simple root** iff $\overline{h}(\beta) \neq 0$. The corresponding root of g is $\alpha = \pi \beta h'(\beta)/\overline{h}(\beta)$.

Proof.
$$\overline{h}(\alpha^{\pi}) = \pi \alpha^{\pi-1} h'(\alpha^{\pi}).$$

Randomization

Replace f by $f_{\tau}(X) = f(X - \tau)$ for a random $\tau \in \mathbb{F}_q$.

Randomization

 $\qquad \text{Replace } f \text{ by } f_{\tau}(X) = f(X - \tau) \text{ for a random } \tau \in \mathbb{F}_q.$

Lemma

If
$$q = \rho \chi + 1$$
 with $\chi \geqslant d(d-1)$,

$$\mathbb{P}_{\tau \in \mathbb{F}_q}[\mathsf{G}_{\rho}(\mathsf{f}_{\tau}) \text{ has multiple roots}] \leqslant \frac{1}{2}.$$

Randomization

 $\qquad \text{Replace f by } f_{\tau}(X) = f(X - \tau) \text{ for a random } \tau \in \mathbb{F}_q.$

Lemma

If $q = \rho \chi + 1$ with $\chi \geqslant d(d-1)$,

$$\mathbb{P}_{\tau \in \mathbb{F}_q}[\mathsf{G}_\rho(\mathsf{f}_\tau) \text{ has multiple roots}] \leqslant \frac{1}{2}.$$

Proof. Given $\alpha_i \neq \alpha_j$,

$$\#\left\{\tau\in\mathbb{F}_q:(\tau+\alpha_{\mathfrak{i}})^{\rho}=(\tau+\alpha_{\mathfrak{j}})^{\rho}\right\}\leqslant\rho.$$

 $\implies G_{\rho}(f_{\tau})$ has multiple roots for at most $\frac{d(d-1)}{2}\rho$ values of $\tau.$

Algorithm

Algorithm

- 1: Find the smallest $\chi = M2^{m-1}$ s.t. $\chi \geqslant d(d-1)$;
- 2: $h_0 + \varepsilon \overline{h}_0 \leftarrow f(X \tau + \varepsilon)$ for some random $\tau \in \mathbb{F}_q$;
- 3: Compute the Graeffe transforms $h_i + \varepsilon \overline{h}_i$ for $1 \leqslant i \leqslant m$;

Algorithm

- 1: Find the smallest $\chi = M2^{m-1}$ s.t. $\chi \geqslant d(d-1)$;
- 2: $h_0 + \varepsilon \overline{h}_0 \leftarrow f(X \tau + \varepsilon)$ for some random $\tau \in \mathbb{F}_q$;
- 3: Compute the Graeffe transforms $h_i + \varepsilon \overline{h}_i$ for $1 \leqslant i \leqslant m$;
- 4: $E \leftarrow [e:h_m(\zeta^e)=0];$ $ightharpoonup \zeta$ -log of roots of h_m
- 5: $E \leftarrow \zeta$ -log of roots of h_i , for i = m 1 to l;

Algorithm

- 1: Find the smallest $\chi = M2^{m-1}$ s.t. $\chi \geqslant d(d-1)$;
- 2: $h_0 + \varepsilon \overline{h}_0 \leftarrow f(X \tau + \varepsilon)$ for some random $\tau \in \mathbb{F}_q$;
- 3: Compute the Graeffe transforms $h_i + \varepsilon \overline{h}_i$ for $1 \leqslant i \leqslant m$;
- 4: $E \leftarrow [e:h_m(\zeta^e)=0];$ $ightharpoonup \zeta$ -log of roots of h_m
- 5: $E \leftarrow \zeta$ -log of roots of h_i , for i = m 1 to l;
- 6: $E \leftarrow \zeta$ -log of simple roots of h_l ; $\rhd \overline{h}_l(\zeta_-^e) \neq 0$
- 7: $Z \leftarrow$ corresponding roots of f; $\qquad \qquad \triangleright \; \rho \zeta^e h_l'(\zeta^e)/\overline{h}_l(\zeta^e)$

Algorithm

- 1: Find the smallest $\chi = M2^{m-1}$ s.t. $\chi \geqslant d(d-1)$;
- 2: $h_0 + \varepsilon \overline{h}_0 \leftarrow f(X \tau + \varepsilon)$ for some random $\tau \in \mathbb{F}_q$;
- 3: Compute the Graeffe transforms $h_i + \varepsilon \overline{h}_i$ for $1 \leqslant i \leqslant m$;
- 4: $E \leftarrow [e:h_m(\zeta^e)=0];$ $ightarrow \zeta$ -log of roots of h_m
- 5: $E \leftarrow \zeta$ -log of roots of h_i , for i=m-1 to l;
- 6: $E \leftarrow \zeta$ -log of simple roots of h_l ; $\triangleright \overline{h}_l(\zeta^e) \neq 0$
- 7: $Z \leftarrow$ corresponding roots of f; $\qquad \qquad \triangleright \; \rho \zeta^e h_l'(\zeta^e)/\overline{h}_l(\zeta^e)$
- 8: Make a recursive call with $f/\prod_{\alpha\in Z}(X-\alpha)$.

Complexity and heuristic

Theorem

If $q = M2^m + 1$ with $M = O(\log q)$, the randomized algorithm runs in expected time $\tilde{O}(d\log^2 q)$.

Complexity and heuristic

Theorem

If $q = M2^m + 1$ with $M = O(\log q)$, the randomized algorithm runs in expected time $\tilde{O}(d\log^2 q)$.

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Complexity and heuristic

Theorem

If $q = M2^m + 1$ with $M = O(\log q)$, the randomized algorithm runs in expected time $\tilde{O}(d\log^2 q)$.

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Heuristic

Let $q=\rho\chi+1$ and $f\in\mathbb{F}_q[X]$ with d=deg(f) roots in $\mathbb{F}_q^*.$ If $\chi\geqslant 4d,\ G_\rho(f(X+\tau))$ has $\geqslant d/3$ simple roots with probability at least 1/2, for a random $\tau\in\mathbb{F}_q.$

Justification: holds for a random f rather than $f(X + \tau)$.

A heuristic algorithm

Algorithm

Input: $f \in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* , $q = M2^m + 1$; **Extra input:** ζ a primitive element of \mathbb{F}_q^* .

- 1: Find the smallest $\chi = M2^{m-1}$ s.t. $\chi \geqslant 4d$;
- 2: $h_0 + \varepsilon \overline{h}_0 \leftarrow f(X \tau + \varepsilon)$ for some random $\tau \in \mathbb{F}_q$;
- 3: Compute the Graeffe transform $h_l + \varepsilon \overline{h}_l$ of order 2^l ;

4:
$$E \leftarrow [e : h_1(\zeta^e) = 0];$$

 $\triangleright \zeta$ -log of roots of h_l

5:
$$E \leftarrow \zeta$$
-log of simple roots of h_1 ;

$$\triangleright \overline{h}_{l}(\zeta^{e}) \neq 0$$

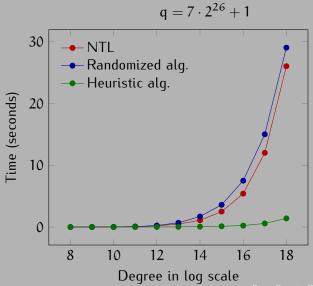
6: $Z \leftarrow$ corresponding roots of f;

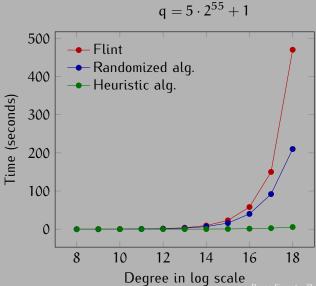
$$\, \triangleright \, \rho \zeta^e h_l'(\zeta^e) / \overline{h}_l(\zeta^e)$$

7: Make a recursive call with $f/\prod_{\alpha\in Z}(X-\alpha)$.

Implementation

- Algorithms implemented in MATHEMAGIX (http://mathemagix.org/);
- ► Heuristic algorithm faster than FLINT and NTL by factors up to 80;
- Modification of Cantor-Zassenhaus algorithm: gain for large q only.





Revisit classical algorithms for finite fields of smooth cardinality;

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.
- Open questions:
 - Deterministic alg.: use of tangent Graeffe transforms;
 - Heuristic alg.: Graeffe transform of order 2¹ is the bottleneck;
 - Prove the heuristic!

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.
- Open questions:
 - Deterministic alg.: use of tangent Graeffe transforms;
 - Heuristic alg.: Graeffe transform of order 2¹ is the bottleneck;
 - Prove the heuristic!

Thank you!