=

Bruno Grenet
LIRMM

Université de Montpellier

Joris van der Hoeven & Grégoire Lecerf
. CNRS - LIX
Ecole polytechnique

GT ECo-Escape — February 11., 2015

Root finding over finite fields

Given f € Fy [X], compute its roots, that is {« € Fy : f(ox) = 0}.

Root finding over finite fields
Given f € Fy [X], compute its roots, that is {« € Fy : f(ox) = 0}.

Building block for many algorithms in computer algebra: root
finding over Z, factorization, sparse interpolation, ...

Applications in cryptography, error correcting codes, ...
Derandomization

Sparse interpolation: bottleneck in practice
[van der Hoeven & Lecerf, 2014]

Fy: field with q elements, ¢ = p" for some prime number p
> I, ~ Z/pZ; +, —, % and / modulo p

> Fq ~F,[Al/(d) (& € F,[A] irreducible of degree);
+, — x and / modulo p and ¢

Fy: field with q elements, ¢ = p" for some prime number p
> I, ~ Z/pZ; +, —, % and / modulo p

> Fq ~F,[Al/(d) (& € F,[A] irreducible of degree);
-+, —, x and / modulo p and ¢

+]0 1 2 x|0 1 2
0[o 1 2 0[0 0 0
]F3:{0,1,2}: 1 1 2 O and 1 O] 2,
202 01 210 21

Fy: field with q elements, ¢ = p" for some prime number p
> I, ~ Z/pZ; +, —, % and / modulo p

> Fq ~F,[Al/(d) (& € F,[A] irreducible of degree);
-+, —, x and / modulo p and ¢

+]0 1 2 x|0 1 2
00 1 2 0[0 0 0
B={012k 41y 5 gad ;157 27
212 0 1 200 2 1
Fy = FA/A2 +A+1) ={0, ,A, A+ 1}
+ | 1 A A+ < | A A+
[0 A+T A
and A A+1 1
A A+T 0 1 R \
A+1] A 1 0

2 is a primitive root of
unity of order 8

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

©
°

2 %0

7 b
I
0 0o

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of [F}',:
Fy, ={3':0<i< 16}

©
°

2 %0

7 b
I
0 0o

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of [F}',:
Fy, ={3':0<i< 16}

od—1 = ¢ila=1) — 1

A first algorithm

Algorithm
Input: f € Fy([X]
Output: The roots of f.
L (Z);
: for all & € Fg do

Add o to Z;

]
2

3% if f(a) =0 then
4

5: return Z.

Bruno Grenet — Root finding over finite fields
5/25

Algorithm

Input: f € Fq([X]
Output: The roots of f.
1. £ + @;
2: for all @ € Fg do
3: if f(t) =0 then
4 Add o to Z;
5: return Z.

Theorem

The above algorithm runs in deterministic time poly(q, deg(f)).

Algorithm

Input: f € Fq([X]
Output: The roots of f.
1. £ + @;
2: for all @ € Fg do
3: if f(t) =0 then
4 Add o to Z;
5: return Z.

Theorem

The above algorithm runs in deterministic time poly(q, deg(f)).

/\ The input size is (1 + deg(f)) log q: exponential time!

Algorithm

Input: f € Fq([X]

Output: The roots of f.
1. £ + @;

2: forall x € IE‘; do > in random order

3: if f(t) =0 then

4

5

Add o to Z;
: return Z.

Theorem

The above algorithm runs in deterministic time poly(q, deg(f)).

/\ The input size is (1 + deg(f)) log q: exponential time!

{The expected number of steps to discover all roots is d%hq.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory.

d
i=1

Assumption: f=T]]:_;(X—), o distinct and nonzero:

Easy reduction to this case: f < ged(f,X97! —1)
(X9 1 = [X— 0.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory.

d

Assumption: f=[[;_; (X — o), e; distinct and nonzero:

Easy reduction to this case: f < ged(f,X97! —1)
(X9 1 = [X— 0.

Extra input: A primitive element ¢, or a primitive root of unity & of
order X.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory.

d
i=1

Assumption: f=T]]:_;(X—), o distinct and nonzero:

Easy reduction to this case: f < ged(f,X97! —1)
(X9 1 = [X— 0.

Extra input: A primitive element ¢, or a primitive root of unity & of
order X.

Smooth cardinality:

q=pm Ty + 1, where p, 71, ..., Ty are small;
Practical purpose: q = M2™ + 1 is a FFT prime.

A (slow) recursive algorithm

Algorithm

Input: f =]_[{1=1 (X — o), oy distinct and nonzero.

Bruno Grenet — Root finding over finite fields
7125

Algorithm

Input: f = H{i:1 (X — o), & distinct and nonzero.

1. if deg(f) =1 then return its root;

2: S < {s1,...,8(q—1)/2)} taken at random in Fy;

3w [[{(X—si) and g < ged(f, u);

4: return the union of the roots of g and f/g, recursively.

Algorithm

Input: f = H{i:1 (X — o), & distinct and nonzero.

1. if deg(f) =1 then return its root;

2: S < {s1,...,8(q—1)/2)} taken at random in Fy;

3w [[{(X—si) and g < ged(f, u);

4: return the union of the roots of g and f/g, recursively.

Plged(f,u) € {1,f)] = P[Vi, o € S] +PVi,x; ¢ S] = 1/2971

Algorithm

Input: f = Hid:] (X — o), & distinct and nonzero.
1. if deg(f) =1 then return its root;
2: S« {s1,...,8(q—1)/2)} taken at random in Fg;

3w [[{(X—si) and g < ged(f, u);
4: return the union of the roots of g and f/g, recursively.

Plged(f,u) € {1,f)] = P[Vi, o € S] +PVi,x; ¢ S] = 1/2971

Good and bad news

The expected number of calls is 2d.
The complexity of step 3 is O(q).

[T X=a)=x9"

x€Fg

—1

[]X-a)=x3"" 1= -)(X*T +1) (q odd)

x€Fg

[]X-a)=x3"" 1= -)(X*T +1) (q odd)

x€Fg

With some luck, gcd(f,X‘c%] —1) ¢{1,f}

J[TX-0)=x""—-1=(x"T —D(X*T +1) (q odd)

x€Fg
With some luck, gcd(f,X‘c%] —1) ¢{1,f}

Push your luck: ged(f, (X + s)%] — 1) for some random s € [y

[]X-a)=x3"" 1= -)(X*T +1) (q odd)
oce]F;;

With some luck, gcd(f,X‘c%] —1) ¢{1,f}

Push your luck: ged(f, (X + s)%] — 1) for some random s € [y

#{se]Fq :gcd(f,(XJrs)fzd 1) gﬂ)f}} _ %

[]X-a)=x3"" 1= -)(X*T +1) (q odd)
oce]F;;

With some luck, gcd(f,X‘c%] —1) ¢{1,f}

Push your luck: ged(f, (X + s)%] — 1) for some random s € [y

#{se]Fq :gcd(f,(XJrs)fzd 1) gﬂ)f}} _ %

Vi,(oci—i—s)‘c%lzl or

de{l,f} — _
g Sl {Vi,(qurs)f%’:—L

_ 2
(1 +8)" 7 =—(ag+5)"7T #0 — (“]+S> = =1l
X2 +S

X1 +s . S
P is a bijection Fq \ {—a2} — Fq \ {1}.

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg;

Output: The roots of f.

if deg(f) =1 then return its root;

Take s € Fy at random;

h+ (X+ s)g%] mod f; > repeated squaring
g < gcd(f,h—1);

return the union of the roots of g and f/g.

U

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg;
Output: The roots of f.
1. if deg(f) =1 then return its root;
2: Take s € Fy at random;
3 h+ (X+ s)%1 mod f; > repeated squaring
4. g+ gcd(f,h —1);
5: return the union of the roots of g and f/g.

Theorem

The above algorithm runs in expected time O(dlog2 q).

x—1
Let g =xp+ 1. Then X4~ —1 = JT(X? — £1), where £X =1.
i=0

x—1
Let g =xp+ 1. Then X4~ —1 = JT(X? — £1), where £X =1.

i=0
Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg;

Extra input: A primitive root & of unity of order x;
Output: The roots of f.

x—1
Let g =xp+ 1. Then X4~ —1 = JT(X? — £1), where £X =1.
i=0

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg;

Extra input: A primitive root & of unity of order x;

Output: The roots of f.

if deg(f) < 1 then return its root;

Take s € Fy at random;

h <+ (X+s)? mod f; go « f;

for i=1to x — 1 do gi ¢ ged(go,h — &'); go + go/gi;
return the union of the roots of go, ..., gy—1.

o s

x—1
Let g =xp+ 1. Then X4~ —1 = JT(X? — £1), where £X =1.
i=0

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg;
Extra input: A primitive root & of unity of order x;
Output: The roots of f.

1. if deg(f) < 1 then return its root;

2: Take s € IFq at random;

3: h+ (X+5s)? mod f; go « f;

4 for i=1tox—1do gi + gcd(go,h —&'); go < go/9i;
5: return the union of the roots of go, ..., gy—1.

{If X < log q/ log d, the speed-up is approximately log, X.

The (generalized) Graeffe transform

Definition
The Graeffe transform of g € Fy([X] is the unique polynomial
h € Fq[X] such that

h(X?) = g(X)g(—X).

If g(X) = [T (i —X), then h(X) = []; (e — X).

Bruno Grenet — Root finding over finite fields
11/25

Definition

The Graeffe transform of g € Fy[X] is the unique polynomial
h € Fq[X] such that

h(X?) = g(X)g(—X).

If g(X) =]]i(xi —X), then h(X) = Hi(oci2 —X).

The generalized Graeffe transform of g € IFy[X] of order 7 is
Gr(g)(X) = (—1)79%99 res, (g(2), 2™ — x).

If g =[Ti(xi —X), then Gr(g)(X) =] T;(af —X).

Definition

The Graeffe transform of g € Fy[X] is the unique polynomial
h € Fq[X] such that

h(X?) = g(X)g(—X).

If g(X) =]]i(xi —X), then h(X) = Hi(oci2 —X).

The generalized Graeffe transform of g € IFy[X] of order 7 is
Gr(g)(X) = (—1)79%99 res, (g(2), 2™ — x).

If g =[Ti(xi —X), then Gr(g)(X) =] T;(af —X).

Note. G7-[]7-[2 S an] [9) GT[z

Let g =pm -7t + 1.

Using Graeffe transforms

Remark

Gq-1(g)(X) =£[[;(X = ad™T) = (X — 1)des(9)

Bruno Grenet — Root finding over finite fields
12/ 25

Letq=pmy - -7t + 1.

Remark

Gqo1(9)(X) = +TTi(X —ad™") = £(X —1)dea(o)

Skeleton of the algorithms

: ho + Gp(f);
: fori=1to m do

hi < G, (hi—1); > hy + Gpn, .

: fori=m—1 down to 0 do

1
2
3
4: Zm < {1}, unique root of hyy = Gq—1(f);
5
6 Z; < roots of hy from Z;i1;

7

: return the roots of f, computed from Z.

T4 (f)

Graeffe transform computation

Lemma

Let 7t divide q—1, and & a primitive root of unity of order 7t. Then

Gr(g)(X™) = g(X)g(EX) - - g(E™ ' X).

Bruno Grenet — Root finding over finite fields
13 /25

Lemma

Let 7t divide gq—1, and & a primitive root of unity of order 7t. Then

Gr(g)(X™) = g(X)g(EX) - - - g(E™ 'X).

Theorem

Given g € Fy([X] and a primitive root of unity & of order m, G(g)
can be computed in O(7td log q) operations.

Theorem

Let g € Fy[X] of degree d. For all &6 > 0 such that A2 < q—1,
Gr(g) can be computed in time (dlogq)'*® + O(d log q log).

Theorem

Let g € Fq[X] of degree d. For all & > 0 such that A < q—1,
Gr(g) can be computed in time (dlogq)'*® + O(d log q log).

Based on:

[Kedlaya-Umans'11]

Let f, g, h € F4[X] of degree d. For all 8 >0, (fog mod h) can
be computed in time d'*®O(log q).

Theorem

Let g € Fq[X] of degree d. For all & > 0 such that A < q—1,
Gr(g) can be computed in time (dlogq)'*® + O(d log q log).

Based on:

[Kedlaya-Umans'11]

Let f, g, h € F4[X] of degree d. For all 8 >0, (fog mod h) can
be computed in time d'*®O(log q).

Corollary

Let g € Fq[X] and q = p7ry - -t + 1. For all b, G, (g), Gor, (9),

..., Gpmyeeom,, 1 (@) can be computed in time (dlog2 q)'*o.

Letq=pm---tm+1=px+1and g=Gy(f) =[[i(xi — X)

T

[T =% = TJ(aF =)
i=1

i=1

Letq=pm---tm+1=px+1and g=Gy(f) =[[i(xi — X)

T

[T =% = TJ(aF =)
i=1

i=1
&: primitive root of unity of order x

T T

[T —x 2= JTE"—x)

i=1 i=1

Let q=pmy---mtm +1=px+1and g=Gp(f) =[];(ets —X)

T

[T =% = TJ(aF =)
i=1

i=1
&: primitive root of unity of order x

T T

[T —x 2= JTE"—x)

i=1 i=1

Vi, (£81) = gfs
~— Vi,me; =f; mod x

fH_JX:Ogjgn—]}

— Vi,eie{

Algorithm

Input: f € Fy[X] with deg(f) distinct roots in I
Extra input: A primitive root & of unity of order x =77 - - - 71 ;
Output: The &-logarithms of the roots of G, (f).

Algorithm

Input: f € Fy[X] with deg(f) distinct roots in I
Extra input: A primitive root & of unity of order x =77 - - - 71 ;
Output: The &-logarithms of the roots of G, (f).

1: hy + Graeffe transform of f of order p7mty - - - 713;
2: E + [0]; > &-log of the root of hy,
3: for i=m down to 1 do
etj
Al E%[e—;]X:eGE,Ogjgm—Lhi1(5“?():0;
i
5: return E.

Algorithm

Input: f € Fy[X] with deg(f) distinct roots in I
Extra input: A primitive root & of unity of order x =77 - - - 71 ;
Output: The &-logarithms of the roots of G, (f).

1: hy + Graeffe transform of f of order p7mty - - - 713;
2. E « [0]; > &-log of the root of hy,
3: for i=m down to 1 do
etj
4 B [e;”‘:eeE,oggm—Lm](a%X) —o|;
i
5: return E.
Theorem

If p, max; 7t; = O(log q), the algorithm runs in time O(d log® q).

Lemma

Given h = G(g), §nd {a1,...,ai}its roots, one can compute the
roots of g in time O(y/7td logq) + (dlogq)'*® for all & > 0.

Lemma

Given h = Gx(g), :imd {a1,...,ai}its roots, one can compute the
roots of g in time O(y/7td log q) + (dlogq)'*® for all 5 > 0.

Theorem

Given f € Fq[X] with deg(f) distinct roots in Fg and a primitive
element of IFS, the roots of f can be computed in time

O(+/S1(q—T)dlog? q) + (dlog? q)' °

where S1(q — 1) is the largest factor of q — 1.

Lemma

Given h = Gx(g), :imd {a1,...,ai}its roots, one can compute the
roots of g in time O(y/7td log q) + (dlogq)'*® for all 5 > 0.

Theorem

Given f € Fq[X] with deg(f) distinct roots in Fg and a primitive
element of IFS, the roots of f can be computed in time

O(+/S1(q—T)dlog? q) + (dlog? q)' °

where S1(q — 1) is the largest factor of q — 1.

Best known bound for smooth q;

If g =M2™ —1, M = O(log q), complexity O(d log” q).

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order 7t of g € Fy[X] is

Gr(g(X +€)) € (Fqlel /(e2))X.

Bruno Grenet — Root finding over finite fields
18 /25

A

Definition

The tangent Graeffe transform of order 7t of g € F4[X] is

Grl(g(X +¢)) € (Fqlel/(e?))X.

Remark. G(g(X+ ¢)) = h(X) + eh(X) where h = G(g).

Lemma

A nonzero root 3 of h is a simple root iff h(B) # 0. The corre-
sponding root of g is o = R/ (B)/h(B).

Proof. h(a™) = ™ Th/ (™).

Replace f by f(X) = f(X — 1) for a random T € .

Randomization

Lemma

If q=px+1withx>d(d—T1),

Pre, [Gp(fc) has multiple roots] < .

Bruno Grenet — Root finding over finite fields
19 /25

A

Replace f by f(X) = f(X — 1) for a random T € .

Lemma

If q=px+1withxy>d(d—1),

1

Prer, [Gp(fr) has multiple roots] < 5

Proof. Given oy # o,
#{telFy: (t+x)° =(1+5)°} <p.

= Gy (fr) has multiple roots for at most wp values of T.

A randomized algorithm

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fg, ¢ = M2™ +1;
Extra input: C a primitive element of Fy.

Bruno Grenet — Root finding over finite fields
20/ 25

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fy, ¢ = M2™ + 1;
Extra input: C a primitive element of Fy.

1: Find the smallest x = M2mLlst x> d(d—1);

2: ho + eho < f(X— 1+ ¢) for some random T € Fy;

3: Compute the Graeffe transforms hi 4+ eh; for 1 <i < m;

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fy, ¢ = M2™ + 1;
Extra input: C a primitive element of Fy.
1: Find the smallest x = M2mLlst x> d(d—1);
: ho + ehp < f(X— 1+ ¢€) for some random T € Fg;
: Compute the Graeffe transforms hi + eh; for T <i < m;

w N

N

: E<[e:hm(C%) =0 > C-log of roots of hyy
: E + C-log of roots of hy, fori=m—1 to ;

o1

Algorithm
Input: f € Fq[X] with deg(f) distinct roots in Fy, ¢ = M2™ + 1;
Extra input: C a primitive element of Fy.
1: Find the smallest x = M2mLlst x> d(d—1);
ho + ehp « f(X — T+ ¢) for some random T € Fg;
3: Compute the Graeffe transforms hi 4+ eh; for 1 <i < m;

i

4. E< [e:hn(C%) =0]; > C-log of roots of hyy
5: E < C-log of roots of hi, fori=m—1 to |;

6: E < C-log of simple roots of hy; > hy(C8) #0
7: Z < corresponding roots of f; > pCfhy{(C¢)/M1(C8)

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fy, ¢ = M2™ + 1;
Extra input: C a primitive element of Fy.
1: Find the smallest x = M2mLlst x> d(d—1);
ho + ehp « f(X — T+ ¢) for some random T € Fg;
3: Compute the Graeffe transforms hi 4+ eh; for 1 <i < m;

i

4. E< [e:hn(C%) =0]; > C-log of roots of hyy
5: E < C-log of roots of hi, fori=m—1 to |;

6: E < C-log of simple roots of hy; > hy(C8) #0
7: Z < corresponding roots of f; > pCfhy{(C¢)/M1(C8)

8: Make a recursive call with f/J] .z (X—a).

Theorem

If g = M2™ + 1 with M = O(log q), the randomized algorithm
runs in expected time O(d log? q).

Theorem

It ¢ = M2™ + 1 with M = O(log q), the randomized algorithm
runs in expected time O(d log? q).

Same asymptotic as Cantor-Zassenhaus' algorithm;

Better efficiency in practice.

Theorem

It ¢ = M2™ + 1 with M = O(log q), the randomized algorithm
runs in expected time O(d log? q).

Same asymptotic as Cantor-Zassenhaus' algorithm;

Better efficiency in practice.

Heuristic

Let ¢ = px + 1 and f € Fq[X] with d = deg(f) roots in Fg. If
X = 4d, Go(f(X+ 1)) has > d/3 simple roots with probability at
least 1/2, for a random T € Fq.

Justification: holds for a random f rather than f(X + 1).

Algorithm

Input: f € Fq[X] with deg(f) distinct roots in Fy, ¢ = M2™ + 1;
Extra input: C a primitive element of Fy.
1: Find tlle smallest x = M2m—1 gt X = 4d;
ho + ehp « f(X — T+ ¢) for some random T € Fg;
3: Compute the Graeffe transform h; + ehy of order 2%;

i

4. E <+ [e:hy(C¢) =0]; > C-log of roots of hy
5: E < C-log of simple roots of hy; > hy(C8) #0
6: Z < corresponding roots of f; > pCfh{(C¢)/M1(C8)

7: Make a recursive call with f/J] oz (X—a).

Algorithms implemented in MATHEMAGIX
(http://mathemagix.org/);

Heuristic algorithm faster than FLINT and NTL by factors up to 80;

Modification of Cantor-Zassenhaus algorithm: gain for large q
only.

http://mathemagix.org/

30

q=7-22°+1

—o—NTL
—e— Randomized alg.
—o— Heuristic alg.

8 10 12 14 16 18
Degree in log scale

Time (seconds)

500

400

100

q=5-2%+1

—o— Flint
—e— Randomized alg.
—eo— Heuristic alg.

8 10 12 14 16 18
Degree in log scale

Revisit classical algorithms for finite fields of smooth cardinality;

Revisit classical algorithms for finite fields of smooth cardinality;
New approach using Graeffe transforms:

Good deterministic complexity bounds;
Good probabilistic complexity bounds;
Good computation times.

Revisit classical algorithms for finite fields of smooth cardinality;
New approach using Graeffe transforms:

Good deterministic complexity bounds;
Good probabilistic complexity bounds;
Good computation times.

Open questions:

Deterministic alg.: use of tangent Graeffe transforms;
Heuristic alg.: Graeffe transform of order 2% is the bottleneck;
Prove the heuristic!

Revisit classical algorithms for finite fields of smooth cardinality;
New approach using Graeffe transforms:

Good deterministic complexity bounds;
Good probabilistic complexity bounds;
Good computation times.

Open questions:

Deterministic alg.: use of tangent Graeffe transforms;
Heuristic alg.: Graeffe transform of order 2% is the bottleneck;
Prove the heuristic!

Thank you!

