Representations of polynomials, algorithms and lower bounds

Bruno Grenet

LIP, ÉNS de Lyon \& IRMAR, U. Rennes 1
Séminaire ECO (LIRMM, Montpellier) - February 25, 2013

Representation of Univariate Polynomials

$$
P(X)=X^{10}-4 X^{8}+8 X^{7}+5 X^{3}+1
$$

Representations

- Dense:

$$
[1,0,-4,8,0,0,0,5,0,0,1]
$$

- Sparse:

$$
\{(10: 1),(8:-4),(7: 8),(3: 5),(0: 1)\}
$$

Representation of Multivariate Polynomials

$$
P(X, Y, Z)=X^{2} Y^{3} Z^{5}-4 X^{3} Y^{3} Z^{2}+8 X^{5} Z^{2}+5 X Y Z+1
$$

Representations

- Dense:

$$
[1, \ldots,-4, \ldots, 8, \ldots, 5, \ldots, 1]
$$

- Lacunary (supersparse):

$$
\{(2,3,5: 1),(3,3,2:-4),(5,0,2: 8),(1,1,1: 5),(0: 1)\}
$$

Representation of Multivariate Polynomials

$$
P(X, Y, Z)=X^{2} Y^{3} Z^{5}-4 X^{3} Y^{3} Z^{2}+8 X^{5} Z^{2}+5 X Y Z+1
$$

Representations

- Dense:

$$
[1, \ldots,-4, \ldots, 8, \ldots, 5, \ldots, 1]
$$

- Sparse:
- Lacunary (supersparse):

$$
\{(2,3,5: 1),(3,3,2:-4),(5,0,2: 8),(1,1,1: 5),(0: 1)\}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z)= & X^{4}+4 X^{3} Y+6 X^{2} Y^{2}+4 X Y^{3}+X^{2} Z+2 X Y Z \\
& +Y^{2} Z+X^{2}+Y^{4}+2 X Y+Y^{2}+Z^{2}+2 Z+1
\end{aligned}
$$

Arithmetic Circuits

$$
Q(X, Y, Z)=(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1)
$$

Arithmetic Circuits

$$
Q(X, Y, Z)=(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1)
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{2}\left((X+Y)^{2}+(Z+1)\right)+(Z+1)^{2}
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Circuits

$$
\begin{aligned}
Q(X, Y, Z) & =(X+Y)^{4}+(Z+1)^{2}+(X+Y)^{2}(Z+1) \\
& =(X+Y)^{4}+\left((Z+1)+(X+Y)^{2}\right)(Z+1)
\end{aligned}
$$

Arithmetic Branching Programs

Arithmetic Branching Programs

Arithmetic Branching Programs

$$
X(Y+Z)
$$

Arithmetic Branching Programs

$$
(X+Y)(Y+Z)
$$

Arithmetic Branching Programs

Arithmetic Branching Programs

$$
2 X Y+(X+Y)(Y+Z)
$$

Some questions

- Links between representations

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
- Determinant
- Permanent

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
- Determinant
- Permanent
- Complexity of problems concerning polynomials

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
- Determinant
- Permanent
- Complexity of problems concerning polynomials
- Existence of roots
dense, sparse

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
- Determinant
- Permanent
- Complexity of problems concerning polynomials
- Existence of roots
dense, sparse
- Factorization

Some questions

- Links between representations
- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
- Determinant
- Permanent
- Complexity of problems concerning polynomials
- Existence of roots
dense, sparse
- Factorization
- Polynomial Identity Testing

Outline

1. Resolution of polynomial systems

2. Determinantal Representations of Polynomials
3. Factorization of lacunary polynomials

1. Resolution of polynomial systems

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

Input: System of polynomials $f=\left(f_{1}, f_{2}, f_{3}\right)$,
$f_{j} \in \mathbb{Z}[X, Y, Z]$, homogeneous
Question: Is there a point $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{3}$, nonzero, s.t. $f_{1}(a)=f_{2}(a)=f_{3}(a)=0$?

Is there a (nonzero) solution?

$$
\begin{aligned}
X^{2}+Y^{2}-Z^{2} & =0 \\
X Z+3 X Y+Y Z+Y^{2} & =0 \\
X Z-Y^{2} & =0
\end{aligned}
$$

Input: System of polynomials $f=\left(f_{1}, f_{2}, f_{3}\right)$,
$f_{j} \in \mathbb{Z}[X, Y, Z]$, homogeneous
Question: Is there a point $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{C}^{3}$, nonzero, s.t.
$f(a)=0$?

More on the homogeneous case

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?

More on the homogeneous case

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?
$>s<n+1$: Always Yes (\rightsquigarrow trivial answer)

More on the homogeneous case

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?
> $s<n+1$: Always Yes (\rightsquigarrow trivial answer)
> $s>n+1$: Hard problem (NP-hard)

More on the homogeneous case

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?
> $s<n+1$: Always Yes (\rightsquigarrow trivial answer)
> $s>n+1$: Hard problem (NP-hard)
> $s=n+1$: Resultant: Algebraic tool to answer the question

More on the homogeneous case

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?
> $s<n+1$: Always Yes (\rightsquigarrow trivial answer)
> $s>n+1$: Hard problem (NP-hard)
> $s=n+1$: Resultant: Algebraic tool to answer the question
\leadsto Trivial? Easy? Hard?

Definitions

PolSys(K)

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $a \in \overline{\mathbb{K}}^{n}$ s.t. $f(a)=0$?

Definitions

PolSys(K)

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $a \in \overline{\mathbb{K}}^{n}$ s.t. $f(a)=0$?
НомPoıSys(K)
Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?

Definitions

PolSys(\mathbb{K})

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $a \in \overline{\mathbb{K}}^{n}$ s.t. $f(a)=0$?

НомPoıSys(\mathbb{K})

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?

Resultant(K)

Input: $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?

Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $\operatorname{PolSys}(\mathbb{Z}) \in$ AM.

Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, PolSys $(\mathbb{Z}) \in$ AM.

Class Arthur-Merlin

$$
N P \subseteq A M=B P \cdot N P \subseteq \Pi_{2}^{P}
$$

Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $\operatorname{PolSys}(\mathbb{Z}) \in$ AM.
Corollary
Under GRH, HomPolSys($\mathbb{Z})$ and $\operatorname{Resultant}(\mathbb{Z})$ belong to AM .

Class Arthur-Merlin

$$
N P \subseteq A M=B P \cdot N P \subseteq \Pi_{2}^{P}
$$

Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, PolSys $(\mathbb{Z}) \in$ AM.
Corollary
Under GRH, HomPolSys($\mathbb{Z})$ and $\operatorname{Resultant}(\mathbb{Z})$ belong to AM .

Class Arthur-Merlin

$$
N P \subseteq A M=B P \cdot N P \subseteq \Pi_{2}^{P}
$$

Positive characteristics

If p is prime, $($ Ном $) \operatorname{PolSys}\left(\mathbb{F}_{p}\right) \& \operatorname{Resultant}\left(\mathbb{F}_{p}\right)$ are in PSPACE.

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition (Folklore)
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition (Folklore)
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPoLSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proposition (Folklore, see Heintz-Morgenstern'93)
$\operatorname{Resultant}(\mathbb{Z})$ is NP-hard.

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition (Folklore)
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPoLSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proposition (Folklore, see Heintz-Morgenstern'93)
Resultant(\mathbb{Z}) is NP-hard.

- Same results with degree-2 polynomials.

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition (Folklore)
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proposition (Folklore, see Heintz-Morgenstern'93)
Resultant(\mathbb{Z}) is NP-hard.

- Same results with degree-2 polynomials.

	PolSys	HomPolSys	Resultant
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_{p}	NP-hard	NP-hard	Open

Known lower bounds

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition (Folklore)
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPoLSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proposition (Folklore, see Heintz-Morgenstern'93)
Resultant(Z) is NP-hard.

- Same results with degree-2 polynomials.

	PolSys	HomPolSys	Resultant
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_{p}	NP-hard	NP-hard	Open

- What happens for Resultant $\left(\mathbb{F}_{p}\right), p>0$?

Hardness in positive characteristics

- HomPolSys $\left(\mathbb{F}_{p}\right)$ is NP-hard:
\# homogeneous polynomials \geq \# variables

Hardness in positive characteristics

- $\operatorname{HomPoLSrs}\left(\mathbb{F}_{p}\right)$ is NP-hard: \# homogeneous polynomials \geq \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

Hardness in positive characteristics

- HomPolSrs $\left(\mathbb{F}_{p}\right)$ is NP-hard: \# homogeneous polynomials \geq \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

Hardness in positive characteristics

- HomPolSrs $\left(\mathbb{F}_{p}\right)$ is NP-hard: \# homogeneous polynomials \geq \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)
Let p be a prime number.

Hardness in positive characteristics

- HomPolSys $\left(\mathbb{F}_{p}\right)$ is NP-hard: \# homogeneous polynomials \geq \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)
Let p be a prime number.

- Resultant $\left(\mathbb{F}_{p}\right)$ is NP-hard for sparse polynomials.

Hardness in positive characteristics

- HomPolSys $\left(\mathbb{F}_{p}\right)$ is NP-hard: \# homogeneous polynomials \geq \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)
Let p be a prime number.

- Resultant $\left(\mathbb{F}_{p}\right)$ is NP-hard for sparse polynomials.
- Resultant $\left(\mathbb{F}_{q}\right)$ is NP-hard for dense polynomials for some $q=p^{s}$.

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

(unchanged)

Proof idea

$f(X): s$ degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
& \\
&
\end{array}\right)
$$

Proof idea

$f(X): s$ degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\right.
$$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2}
\end{array}\right)
$$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X)-Y_{s-n-1}^{2}
\end{array}\right)
$$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X)-Y_{s-n-1}^{2}
\end{array}\right)
$$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X)-Y_{s-n-1}^{2}
\end{array}\right)
$$

$\Rightarrow f(a)=0 \Longrightarrow g(a, 0)=0$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X) & -Y_{s-n-1}^{2}
\end{array}\right)
$$

> $f(a)=0 \Longrightarrow g(a, 0)=0$

- Find λ such that $(g(a, b)=0 \Longrightarrow b=0)$

Proof idea

$f(X)$: s degree-2 homogeneous polynomials in $\mathbb{F}_{p}\left[X_{0}, \ldots, X_{n}\right]$
From $f(X)$ to $g(X, Y)$

$$
g(X, Y)=\left(\begin{array}{ll}
f_{1}(X) & \\
\vdots & \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
f_{n+2}(X)-Y_{1}^{2} & +\lambda Y_{2}^{2} \\
\vdots & \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X)-Y_{s-n-1}^{2}
\end{array}\right)
$$

- $f(a)=0 \Longrightarrow g(a, 0)=0$
- Find λ such that $(g(a, b)=0 \Longrightarrow b=0 \Longrightarrow f(a)=0)$

Conclusion

- NP-hardness results for square homogeneous systems of polynomials over finite fields

Conclusion

- NP-hardness results for square homogeneous systems of polynomials over finite fields
- Result on the evaluation of the resultant polynomial

Conclusion

- NP-hardness results for square homogeneous systems of polynomials over finite fields
- Result on the evaluation of the resultant polynomial

Main open problem

- Improve the PSPACE upper bound in positive characteristics...
- ... or the NP lower bound.

2. Determinantal Representations of Polynomials

Determinantal representations
$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left(\begin{array}{cccccccc}0 & 2 & 0 & 0 & Y & X & 0 & 0 \\ 0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & Z & Y \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Determinantal representations
$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

Determinantal representations
$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

- Complexity of the determinant

Determinantal representations
$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

- Complexity of the determinant
- Determinant vs. Permanent: Algebraic " $P=$ NP?"

Determinantal representations
$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

- Complexity of the determinant
> Determinant vs. Permanent: Algebraic "P = NP?"
- Links between circuits, ABPs and the determinant

Determinantal representations

$2 X Y+(X+Y)(Y+Z)=\operatorname{det}\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

- Complexity of the determinant
- Determinant vs. Permanent: Algebraic " $P=N P$?"
- Links between circuits, ABPs and the determinant
- Convex optimization

Circuits

$$
2 X(X+Y)+(X+Y)(Y+Z)
$$

Arithmetic circuit
$\begin{array}{ll}\text { Size } & 6 \\ \text { Inputs } & 3\end{array}$

Circuits

$$
2 X(X+Y)+(X+Y)(Y+Z)
$$

Weakly-skew circuit
Size
6
Inputs 5

Circuits

Formula
Size 7
Inputs 8

Results

Proposition (Valiant'79)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+2)$

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size s with i inputs
\rightsquigarrow Determinant of a matrix of dimension $(s+i+1)$

From Formulas to Branching Programs

From Formulas to Branching Programs

From Formulas to Branching Programs

From Formulas to Branching Programs

From Branching Programs to Determinants

From Branching Programs to Determinants

From Branching Programs to Determinants

$$
M=\left(\begin{array}{cccccccc}
0 & 2 & 0 & 0 & Y & X & 0 & 0 \\
0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & Z & Y \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

From Branching Programs to Determinants

$$
M=\left(\begin{array}{cccccccc}
0 & 2 & 0 & 0 & Y & X & 0 & 0 \\
0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & Z & Y \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\operatorname{det} M=\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} M_{i, \sigma(i)}
$$

From Branching Programs to Determinants

$$
M=\left(\begin{array}{cccccccc}
0 & 2 & 0 & 0 & Y & X & 0 & 0 \\
0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & Z & Y \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\operatorname{det} M=\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} M_{i, \sigma(i)}
$$

- Cycle covers \Longleftrightarrow Permutations

From Branching Programs to Determinants

$$
M=\left(\begin{array}{cccccccc}
0 & 2 & 0 & 0 & Y & X & 0 & 0 \\
0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & Z & Y \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\operatorname{det} M=\sum_{\sigma \in \mathfrak{G}_{n}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} M_{i, \sigma(i)}
$$

- Cycle covers \Longleftrightarrow Permutations
- Up to signs, $\operatorname{det}(M)=$ sum of the weights of the cycle covers of G

Branching Program for the Permanent

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Branching Program for the Permanent

$$
\operatorname{per} A=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g$

Branching Program for the Permanent

$$
\operatorname{per} A=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$\operatorname{per}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a e i+b f g+c d h+a f h+b d i+c e g$

Branching Program for the Permanent

$$
\operatorname{per} A=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$\operatorname{per}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a e i+b f g+c d h+a f h+b d i+c e g$

Theorem (G.'12)

There exists a branching program of size 2^{n} representing the permanent of dimension n.

Branching Program for the Permanent

$$
\operatorname{per} A=\sum_{\sigma \in \mathfrak{S}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$\operatorname{per}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a e i+b f g+c d h+a f h+b d i+c e g$

Theorem (G.'12)

There exists a branching program of size 2^{n} representing the permanent of dimension n.

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant of dimension $N=2^{n}-1$.

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant of dimension $N=2^{n}-1$.

$$
\operatorname{per}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccccc}
0 & a & d & g & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & i & f & 0 \\
0 & 0 & 1 & 0 & 0 & c & i \\
0 & 0 & 0 & 1 & c & 0 & f \\
e & 0 & 0 & 0 & 1 & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 1 & 0 \\
b & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant of dimension $N=2^{n}-1$.

$$
\operatorname{per}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccccc}
0 & a & d & g & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & i & f & 0 \\
0 & 0 & 1 & 0 & 0 & c & i \\
0 & 0 & 0 & 1 & c & 0 & f \\
e & 0 & 0 & 0 & 1 & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 1 & 0 \\
b & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Conjecture (Algebraic $\mathrm{P} \neq \mathrm{NP}$)
The permanent of dimension n is not a projection of the determinant of dimension $N=n^{\mathcal{O}(1)}$.

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant of dimension $N=2^{n}-1$.

$$
\operatorname{per}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccccc}
0 & a & d & g & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & i & f & 0 \\
0 & 0 & 1 & 0 & 0 & c & i \\
0 & 0 & 0 & 1 & c & 0 & f \\
e & 0 & 0 & 0 & 1 & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 1 & 0 \\
b & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Conjecture (Algebraic $\mathrm{P} \neq \mathrm{NP}$)
The permanent of dimension n is not a projection of the determinant of dimension $N=2^{\circ(n)}$.

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size s with i inputs
\rightsquigarrow Determinant of a matrix of dimension $(s+i+1)$

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size s with i inputs
\rightsquigarrow Determinant of a matrix of dimension $(s+i+1)$
Theorem (G.-Kaltofen-Koiran-Portier'11)
If the underlying field has characteristic $\neq 2$,

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size s with i inputs
\rightsquigarrow Determinant of a matrix of dimension $(s+i+1)$
Theorem (G.-Kaltofen-Koiran-Portier'11)
If the underlying field has characteristic $\neq 2$,

- Formula of size $s \rightsquigarrow$ Symmetric determinant of dimension $2 s+1$

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightsquigarrow$ Determinant of a matrix of dimension $(s+1)$

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size s with i inputs
\rightsquigarrow Determinant of a matrix of dimension $(s+i+1)$
Theorem (G.-Kaltofen-Koiran-Portier'11)
If the underlying field has characteristic $\neq 2$,

- Formula of size $s \rightsquigarrow$ Symmetric determinant of dimension $2 s+1$
- Weakly-skew circuit of size s with i inputs \rightsquigarrow Symmetric determinant of dimension $2(s+i)+1$

From Branching Programs to Symmetric Determinants

From Branching Programs to Symmetric Determinants

$S=\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

From Branching Programs to Symmetric Determinants

$S=\left|\begin{array}{ccccccccccccccc}0 & 2 & 0 & 0 & 0 & 0 & 0 & Y & 0 & X & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & X & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & Y & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & Z & 0 & Y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & Y & 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$

Corollary

The determinant of dimension n is a projection of the symmetric determinant of dimension $\frac{2}{3} n^{3}+o\left(n^{3}\right)$.

SDR in characteristic 2

$x y+y z+x z$

SDR in characteristic 2

$$
x y+y z+x z=\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right]
$$

SDR in characteristic 2

$$
x y+y z+x z=\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right]
$$

SDR in characteristic 2

$$
x y+y z+x z=\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right] \quad x z^{2}+y^{3}+y^{2}+z^{2} \text {, }
$$

SDR in characteristic 2

$$
\begin{aligned}
x y+y z+x z & =\operatorname{det}
\end{aligned}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right]
$$

SDR in characteristic 2

$$
\begin{aligned}
x y+y z+x z & =\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right] \\
x z^{2}+y^{3}+y^{2}+z^{2} & =\operatorname{det}\left[\begin{array}{llll}
x & y & z & 1 \\
y & 0 & z & 0 \\
z & z & y & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

SDR in characteristic 2

$$
\begin{array}{r}
x y+y z+x z=\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right] \\
x z^{2}+y^{3}+y^{2}+z^{2}=\operatorname{det}\left[\begin{array}{llll}
x & y & z & 1 \\
y & 0 & z & 0 \\
z & z & y & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{array}
$$

Theorem (G.-Monteil-Thomassé'12)
There are polynomials without SDR in characteristic 2, e.g. $x y+z$.

SDR in characteristic 2

$$
\begin{array}{r}
x y+y z+x z=\operatorname{det}\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & x & 0 & 0 \\
1 & 0 & y & 0 \\
1 & 0 & 0 & z
\end{array}\right] \\
x z^{2}+y^{3}+y^{2}+z^{2}
\end{array}=\operatorname{det}\left[\begin{array}{llll}
x & y & z & 1 \\
y & 0 & z & 0 \\
z & z & y & 1 \\
1 & 0 & 1 & 1
\end{array}\right], ~
$$

Theorem (G.-Monteil-Thomassé'12)
There are polynomials without SDR in characteristic 2, e.g. $x y+z$.
A polynomial is said representable if it has an SDR.

Determinant and cycle covers

Determinant

$\mathfrak{S}_{n}=$ Permutation group of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Determinant and cycle covers

Determinant in characteristic 2

$\mathfrak{S}_{n}=$ Permutation group of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Determinant and cycle covers

Determinant in characteristic 2
$\mathfrak{S}_{n}=$ Permutation group of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$$
\cdot\left[\begin{array}{llll}
x & y & 1 & z \\
y & 0 & 0 & z \\
1 & 0 & 1 & 1 \\
z & z & 1 & y
\end{array}\right]
$$

Determinant and cycle covers

Determinant in characteristic 2
$\mathfrak{S}_{n}=$ Permutation group of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- $\left[\begin{array}{llll}x & y & 1 & z \\ y & 0 & 0 & z \\ 1 & 0 & 1 & 1 \\ z & z & 1 & y\end{array}\right]$

Determinant and cycle covers

Determinant in characteristic 2
$\mathfrak{S}_{n}=$ Permutation group of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{S}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- $\left[\begin{array}{llll}x & y & 1 & z \\ y & 0 & 0 & z \\ 1 & 0 & 1 & 1 \\ z & z & 1 & y\end{array}\right]$

Determinant and partial matchings

Determinant in characteristic 2 of symmetric matrices
$\mathfrak{I}_{n}=$ Involutions of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{I}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- $\left[\begin{array}{llll}x & y & 1 & z \\ y & 0 & 0 & z \\ 1 & 0 & 1 & 1 \\ z & z & 1 & y\end{array}\right]$

Determinant and partial matchings

Determinant in characteristic 2 of symmetric matrices
$\mathfrak{I}_{n}=$ Involutions of $\{1, \ldots, n\}$

$$
\operatorname{det} A=\sum_{\sigma \in \mathfrak{I}_{n}} \quad \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

$$
\cdot\left[\begin{array}{llll}
x & y & 1 & z \\
y & 0 & 0 & z \\
1 & 0 & 1 & 1 \\
z & z & 1 & y
\end{array}\right]
$$

Representable polynomials

Lemma

- P and Q are representable $\Longrightarrow P \times Q$ is representable.

Representable polynomials

Lemma

- P and Q are representable $\Longrightarrow P \times Q$ is representable.
- For all P, P^{2} is representable.

Representable polynomials

Lemma

- P and Q are representable $\Longrightarrow P \times Q$ is representable.
- For all P, P^{2} is representable.

Theorem

$L\left(x_{1}, \ldots, x_{m}\right)=P_{0}^{2}+x_{1} P_{1}^{2}+\cdots+x_{m} P_{m}^{2}$ is representable.

Representable polynomials

Lemma

- P and Q are representable $\Longrightarrow P \times Q$ is representable.
- For all P, P^{2} is representable.

Theorem

$L\left(x_{1}, \ldots, x_{m}\right)=P_{0}^{2}+x_{1} P_{1}^{2}+\cdots+x_{m} P_{m}^{2}$ is representable.

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+1, \ldots, x_{m}^{2}+1\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

$$
x z+y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)
$$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

$$
x z+y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & z
\end{array}\right)
$$

$$
\bmod \left\langle x^{2}+1, y^{2}+1, z^{2}+1\right\rangle
$$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

$$
\begin{array}{r}
x z+y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{cc}
x & 1+x \\
1+x & x+z
\end{array}\right) \\
\bmod \left\langle x^{2}+1, y^{2}+1, z^{2}+1\right\rangle
\end{array}
$$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

$$
\begin{aligned}
x z & +y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{cc}
x & 1+x \\
1+x & x+z
\end{array}\right) \\
& \equiv \operatorname{det}\left(\begin{array}{cc}
x & 0 \\
0 & x+z
\end{array}\right)
\end{aligned}
$$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
$($ linear $=$ degree -1$)$

$$
\begin{aligned}
& x z+y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{cc}
x & 1+x \\
1+x & x+z
\end{array}\right) \\
& \equiv \operatorname{det}\left(\begin{array}{cc}
x & 0 \\
0 & x+z
\end{array}\right) \equiv x(x+z) \bmod \left\langle x^{2}+1, y^{2}+1, z^{2}+1\right\rangle
\end{aligned}
$$

Obstructions to representability

Theorem

If P is representable, then

$$
P \equiv L_{1} \times \cdots \times L_{k} \bmod \left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle
$$

where the L_{i} 's are linear.
(linear $=$ degree -1)

$$
\begin{aligned}
x z & +y^{2}=\operatorname{det}\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & z
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{cc}
x & 1+x \\
1+x & x+z
\end{array}\right) \\
& \equiv \operatorname{det}\left(\begin{array}{cc}
x & 0 \\
0 & x+z
\end{array}\right) \equiv x(x+z) \bmod \left\langle x^{2}+1, y^{2}+1, z^{2}+1\right\rangle
\end{aligned}
$$

Such a P is said factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$.

Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are equivalent:
(i) P is representable;

Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are equivalent:
(i) P is representable;
(ii) $\forall \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$;

Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are equivalent:
(i) P is representable;
(ii) $\forall \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$;
(iii) $\exists \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$.

Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are equivalent:
(i) P is representable;
(ii) $\forall \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$;
(iii) $\exists \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$.

$$
\text { Is } x y+z \text { representable? }
$$

Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are equivalent:
(i) P is representable;
(ii) $\forall \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$;
(iii) $\exists \ell, P$ is factorizable modulo $\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$.

Is $x y+z$ representable?
\rightsquigarrow Factorization algorithm for $\mathbb{F}\left[x_{1}, \ldots, x_{m}\right] /\left\langle x_{1}^{2}+\ell_{1}^{2}, \ldots, x_{m}^{2}+\ell_{m}^{2}\right\rangle$

Finding a factor

$$
\begin{aligned}
(x+y+z+1) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
(x+y+z+1) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
(x+y+z+1) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
(x+y+z+1) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
(x+y+z \quad) \times(x+y+z+1) \times & \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
&(x+y+z \quad) \times(x+y+z+1) \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
&(\quad z \quad) \times(x+y+z+1) \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

Finding a factor

$$
\begin{aligned}
(\quad z \quad) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

$\operatorname{lin}(x y+y z+y+z+1)=y+z+1$

Finding a factor

$$
\begin{aligned}
z \quad) \times(x+y+z+1) & \times \cdots \times(x+y+z+1) \\
& \stackrel{?}{\equiv} x y+z \bmod \left\langle x^{2}, y^{2}, z^{2}\right\rangle
\end{aligned}
$$

$\operatorname{lin}(x y+y z+y+z+1)=y+z+1$

Theorem

Under suitable conditions, P is factorizable if and only if

$$
P \equiv \operatorname{lin}(P) \times \frac{1}{\alpha_{i}} \frac{\partial P}{\partial x_{i}} \quad \bmod \left\langle x_{1}^{2}, \ldots, x_{m}^{2}\right\rangle
$$

where $\alpha_{i} x_{i}$ is a monomial of $\operatorname{lin}(P)$.

Links with coding theory?

Conjecture

Over \mathbb{F}_{2}, there are $\prod_{i=1}^{n}\left(2^{i}+1\right)$ nonzero representable multilinear n-variate polynomials.

Links with coding theory?

Conjecture

Over \mathbb{F}_{2}, there are $\prod_{i=1}^{n}\left(2^{i}+1\right)$ nonzero representable multilinear n-variate polynomials.

- Equals number of self-dual codes of length $2 n+2$ over \mathbb{F}_{2}

Links with coding theory?

Conjecture

Over \mathbb{F}_{2}, there are $\prod_{i=1}^{n}\left(2^{i}+1\right)$ nonzero representable multilinear n-variate polynomials.

- Equals number of self-dual codes of length $2 n+2$ over \mathbb{F}_{2}
- Linear code of length N : Subspace of the vector space \mathbb{F}_{2}^{N}

Links with coding theory?

Conjecture

Over \mathbb{F}_{2}, there are $\prod_{i=1}^{n}\left(2^{i}+1\right)$ nonzero representable multilinear n-variate polynomials.

- Equals number of self-dual codes of length $2 n+2$ over \mathbb{F}_{2}
- Linear code of length N : Subspace of the vector space \mathbb{F}_{2}^{N}
- Self-dual code C : for all $x, y \in C, x \cdot y=0$.

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

In characteristic 2, some polynomials have no SDR.

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

In characteristic 2, some polynomials have no SDR.

- Characterization for multilinear polynomials

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

In characteristic 2, some polynomials have no SDR.

- Characterization for multilinear polynomials
- Algorithms to build SDRs

Conclusion

Same expressiveness:

- (Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

In characteristic 2, some polynomials have no SDR.

- Characterization for multilinear polynomials
- Algorithms to build SDRs

Main open question (Algebraic " $\mathrm{P}=\mathrm{NP}$?")
What is the smallest N s.t. the permanent of dimension n is a projection of the determinant of dimension N ?
3. Factorization of lacunary polynomials

Introduction

Definition (reminder)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}
$$

Introduction

Definition (reminder)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}
$$

- Lacunary representation:

$$
\left\{\left(\alpha_{1 j}, \ldots, \alpha_{n j}: a_{j}\right): 1 \leq j \leq k\right\}
$$

Introduction

Definition (reminder)

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}
$$

- Lacunary representation:

$$
\left\{\left(\alpha_{1 j}, \ldots, \alpha_{n j}: a_{j}\right): 1 \leq j \leq k\right\}
$$

- Size:

$$
\operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{1 j}\right)+\cdots+\log \left(\alpha_{n j}\right)
$$

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

$$
\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]
$$

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time [Lenstra-Lenstra-Lovász' 82]

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time
$\leadsto \mathbb{Q}(\alpha)[X]$
[Lenstra-Lenstra-Lovász' 82]
[A. Lenstra'83, Landau'83]

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time
$\leadsto \mathbb{Q}(\alpha)[X]$
$\leadsto \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$
[Lenstra-Lenstra-Lovász' 82]
[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time
$\leadsto \mathbb{Q}(\alpha)[X]$
[Lenstra-Lenstra-Lovász' 82]
$\leadsto \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$
[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]
Example

$$
X^{p}-1=(X-1)\left(1+X+\cdots+X^{p-1}\right)
$$

Factorization: dense/sparse vs. lacunary

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time
$\leadsto \mathbb{Q}(\alpha)[X]$
$\leadsto \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$
[Lenstra-Lenstra-Lovász' 82]
[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]
Example

$$
X^{p}-1=(X-1)\left(1+X+\cdots+X^{p-1}\right)
$$

\Longrightarrow restriction to finding some factors

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.
Theorem (H. Lenstra'99)
Polynomial-time algorithm to find factors of degree $\leq d$ if $a_{j} \in \mathbb{Q}(\alpha)$.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Common ideas

Gap Theorem

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P)
$$

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P),
$$

then every factor of P divides both P_{0} and P_{1}.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P),
$$

then every factor of P divides both P_{0} and P_{1}.
$\operatorname{gap}(P)$: function of the algebraic height of P.

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$
- Factor out only P_{1} \& check which factors divide the other P_{t}^{\prime} 's

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{s}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$
- Factor out only P_{1} \& check which factors divide the other P_{t} 's
- ...

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
 Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]
> gap (P) independent of the height

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]
> gap (P) independent of the height
\leadsto More elementary algorithms

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]
> gap (P) independent of the height
\leadsto More elementary algorithms
\leadsto Gap Theorem valid over any field of characteristic 0

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]
> gap (P) independent of the height
\leadsto More elementary algorithms
\rightsquigarrow Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]
> gap (P) independent of the height
\leadsto More elementary algorithms
\leadsto Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors
- Results in positive characteristics

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

- Study of polynomials of the form $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

- Study of polynomials of the form $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$
- \mathbb{K} : any field of characteristic 0

Bound on the valuation

Definition

$\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$

Bound on the valuation

Definition

```
val}(P)=\mathrm{ degree of the lowest degree monomial of P}\in\mathbb{K}[X
```


Theorem

$$
\text { Let } P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0, \text { with } u v \neq 0 \text { and } \alpha_{1} \leq \cdots \leq \alpha_{k} .
$$

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$
Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

> $X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ linearly independent

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$
Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

- $X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ linearly independent
- Hajós' Lemma: if $\alpha_{1}=\cdots=\alpha_{k}, \operatorname{val}(P) \leq \alpha_{1}+(k-1)$

Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If

$$
\alpha_{\ell+1}>\max _{1 \leq j \leq \ell}\left(\alpha_{j}+\binom{\ell+1-j}{2}\right)
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}>\alpha_{1}+\binom{\ell}{2}
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

Proposition (Bôcher, 1900)
$\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right) \neq 0 \Longleftrightarrow$ the f_{j} 's are linearly independent.

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Proof of the theorem. $\mathrm{wr}\left(P, f_{2}, \ldots, f_{k}\right)=a_{1} \mathrm{wr}\left(f_{1}, \ldots, f_{k}\right)$

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Proof of the theorem. $\mathrm{wr}\left(P, f_{2}, \ldots, f_{k}\right)=a_{1} \mathrm{wr}\left(f_{1}, \ldots, f_{k}\right)$

$$
\sum_{j=1}^{k} \alpha_{j} \geq \operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \operatorname{val}(P)+\sum_{j=2}^{k} \alpha_{j}-\binom{k}{2}
$$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$

$$
\Longleftrightarrow P(X, u X+v) \equiv 0
$$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$
$\Longleftrightarrow P(X, u X+v) \equiv 0$
$\Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$

$$
\Longleftrightarrow P(X, u X+v) \equiv 0
$$

$$
\Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0
$$

$\Longleftrightarrow(Y-u X-v)$ divides each $P_{t}(X, Y)$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$

$$
\begin{aligned}
& \Longleftrightarrow P(X, u X+v) \equiv 0 \\
& \Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0 \\
& \Longleftrightarrow(Y-u X-v) \text { divides each } P_{t}(X, Y)
\end{aligned}
$$

- Find linear factors of low-degree polynomials $\rightsquigarrow[$ Kaltofen'82, ..., Lecerf'07]

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$

$$
\begin{aligned}
& \Longleftrightarrow P(X, u X+v) \equiv 0 \\
& \Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0 \\
& \Longleftrightarrow(Y-u X-v) \text { divides each } P_{t}(X, Y)
\end{aligned}
$$

- Find linear factors of low-degree polynomials $\rightsquigarrow[$ Kaltofen'82, ..., Lecerf'07]
- $\mathbb{K}=\mathbb{Q}(\alpha)$: algebraic number field

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[H. Lenstra'99]
[H. Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[H. Lenstra'99]
3. If $u, v \neq 0$:

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[H. Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with

$$
\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}
$$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[H. Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[H. Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[H. Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$
- Apply some dense factorization algorithm [Kaltofen'82, ..., Lecerf'07]

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \bmod 2
$$

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \bmod 2
$$

Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.
Then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$, provided $P \not \equiv 0$.

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \bmod 2
$$

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.
Then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$, provided $P \not \equiv 0$.

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u \vee w \neq 0$;

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \quad \bmod 2
$$

Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.
Then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$, provided $P \not \equiv 0$.

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u \vee w \neq 0$;
- NP-hard under randomized reductions otherwise.

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

- More elementary proofs for [Kaltofen-Koiran'05]

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

- More elementary proofs for [Kaltofen-Koiran'05]
- There exists $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ s.t. $\operatorname{val}(P)=\alpha_{1}+(2 k-3)$

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

- More elementary proofs for [Kaltofen-Koiran'05]
- There exists $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ s.t. $\operatorname{val}(P)=\alpha_{1}+(2 k-3)$
- Results in large positive characteristic

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

- More elementary proofs for [Kaltofen-Koiran'05]
- There exists $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ s.t. $\operatorname{val}(P)=\alpha_{1}+(2 k-3)$
- Results in large positive characteristic

Main open problem
Extend to low-degree factors of multivariate polynomials

Conclusion

Summary

Representations of polynomials, algorithms and lower bounds

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations
- Lower Bounds:

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations
- Lower Bounds:
- For the resolution of polynomial systems

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations
- Lower Bounds:
- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations
- Lower Bounds:
- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2
- For the arithmetic complexity of the permanent

Summary

Representations of polynomials, algorithms and lower bounds

- Representations of polynomials:
- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
- Construction of determinantal representations
- Factorization of lacunary polynomials
- Polynomial identity testing for several representations
- Lower Bounds:
- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2
- For the arithmetic complexity of the permanent

Thank you!

