Computing low-degree factors of lacunary polynomials. a Newton-Puiseux Approach

Bruno Grenet

LIX — École Polytechnique

MAP 2014 - May 30., 2014 - IHP, Paris

Factorization of a polynomial f

Factorization of a polynomial f

- ▶ Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - o in 1, 2, ..., n variables.

Factorization of a polynomial f

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- ▶ Complexity: polynomial in deg(f)

Factorization of a polynomial f

Find
$$f_1, \ldots, f_t$$
, irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

Factorization of a polynomial f

Find
$$f_1, \ldots, f_t$$
, irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \end{split}$$

Factorization of a polynomial f

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - o in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

Definition

$$f(X_1,\ldots,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

► $size(f) \simeq k \left(max_j(size(c_j)) + n log(deg f) \right)$

Definition

$$f(X_1,\ldots,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

 $ightharpoonup ext{size}(f) \simeq k \bigg(ext{max}_j(ext{size}(c_j)) + n \log(ext{deg } f) \bigg)$

Compute the degree-d factors of f in time poly(size(f), d)

Definition

$$f(X_1,\ldots,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

ightharpoonup size(f) $\simeq k \bigg(max_j(size(c_j)) + n \log(deg f) \bigg)$

Compute the degree-d factors of f in time poly(size(f), d)

Let $f \in \mathbb{R}[X]$ with k nonzero terms. Then $\#Z_{\mathbb{R}}(f) \leqslant 2k-1$.

Theorems

There exist deterministic polynomial-time algorithms computing

▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

Only available for number fields

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

- Only available for number fields
- ► Based on number-theoretic results \leadsto theoretical algorithms

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

- Only available for number fields
- ► Based on number-theoretic results \leadsto theoretical algorithms

Generalization to other fields? More practical algorithms?

Theorem [G.'14

Let $f \in \mathbb{K}[X_1, \dots, X_n]$ with k nonzero terms and d an integer. The computation of the degree-d factors of f reduces to

▶ the computation of the degree–d factors of $(nk)^{\mathcal{O}(1)}$ lacunary polynomials of $\mathbb{K}[X]$, plus $d^{\mathcal{O}(1)}$ bit operations per factor in post–processing,

Theorem [G.'14]

Let $f \in \mathbb{K}[X_1, \dots, X_n]$ with k nonzero terms and d an integer. The computation of the degree-d factors of f reduces to

▶ the computation of the degree–d factors of $(nk)^{\mathcal{O}(1)}$ lacunary polynomials of $\mathbb{K}[X]$, plus $d^{\mathcal{O}(1)}$ bit operations per factor in post–processing,

and

▶ the factorization of polynomials of $\mathbb{K}[X_1, \ldots, X_n]$ of total degree sum (size(f) + d) $^{O(1)}$,

Theorem [G.'14]

Let $f \in \mathbb{K}[X_1, \dots, X_n]$ with k nonzero terms and d an integer. The computation of the degree-d factors of f reduces to

▶ the computation of the degree–d factors of $(nk)^{\mathcal{O}(1)}$ lacunary polynomials of $\mathbb{K}[X]$, plus $d^{\mathcal{O}(1)}$ bit operations per factor in post–processing,

and

▶ the factorization of polynomials of $\mathbb{K}[X_1,\ldots,X_n]$ of total degree sum $(\text{size}(f)+d)^{\mathfrak{O}(1)}$,

in $(size(f) + d)^{O(1)}$ bit operations.

Theorem [G.'14]

Let $f \in \mathbb{K}[X_1, \dots, X_n]$ with k nonzero terms and d an integer. The computation of the degree-d factors of f reduces to

- ▶ the computation of the degree–d factors of $(nk)^{\mathcal{O}(1)}$ lacunary polynomials of $\mathbb{K}[X]$, plus $d^{\mathcal{O}(1)}$ bit operations per factor in post–processing,
 - and
- ▶ the factorization of polynomials of $\mathbb{K}[X_1,\ldots,X_n]$ of total degree sum (size(f) + d) $^{\mathfrak{O}(1)}$,
- in $(size(f) + d)^{O(1)}$ bit operations.
 - \triangleright Case d = 1

[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Theorem [G.'14]

Let $f \in \mathbb{K}[X_1, \dots, X_n]$ with k nonzero terms and d an integer. The computation of the degree-d factors of f reduces to

▶ the computation of the degree–d factors of $(nk)^{\mathcal{O}(1)}$ lacunary polynomials of $\mathbb{K}[X]$, plus $d^{\mathcal{O}(1)}$ bit operations per factor in post–processing,

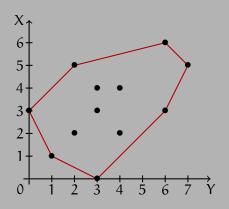
and

▶ the factorization of polynomials of $\mathbb{K}[X_1,\ldots,X_n]$ of total degree sum (size(f) + d) $^{\mathfrak{O}(1)}$,

in $(size(f) + d)^{O(1)}$ bit operations.

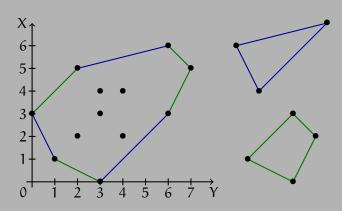
- ightharpoonup Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]
- New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}},\mathbb{R},\mathbb{C},\mathbb{Q}_{\mathfrak{p}}$;

Newton polygon



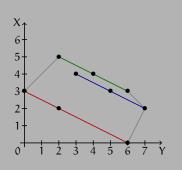
$$f = Y^3 + 2XY - X^2Y^4 + X^3Y^3 - 2X^2Y^2 - 4X^3 + 2X^4Y^3 - 2X^5Y^2 + X^3Y^6 + 2X^4Y^4 - X^5Y^7 + X^6Y^6$$

Newton polygon



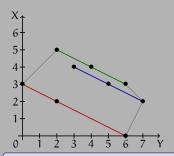
$$f = Y^{3} + 2XY - X^{2}Y^{4} + X^{3}Y^{3} - 2X^{2}Y^{2} - 4X^{3} + 2X^{4}Y^{3} - 2X^{5}Y^{2} + X^{3}Y^{6} + 2X^{4}Y^{4} - X^{5}Y^{7} + X^{6}Y^{6}$$
$$= (Y - 2X^{2} + X^{3}Y^{4})(Y^{2} + 2X - X^{2}Y^{3} + X^{3}Y^{2})$$

Weighted-homogeneous factors



A polynomial $g = \sum_j b_j X^{\gamma_j} Y^{\delta_j}$ is (p,q)-homogeneous of order ω if $p\gamma_j + q\delta_j = \omega$ for all j.

Weighted-homogeneous factors



A polynomial $g = \sum_j b_j X^{\gamma_j} Y^{\delta_j}$ is (p,q)-homogeneous of order ω if $p\gamma_j + q\delta_j = \omega$ for all j.

Algorithm for (p, q)-homogeneous factors

- 1. Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-homogeneous polynomials;
- 2. Compute the common degree-(d/q) factors of the $f_{\mathbf{t}}(X^{1/q},1)\text{'s};$ \rightsquigarrow univariate lacunary factorization
- 3. Return $Y^{p \operatorname{deg}(g)} g(X^q/Y^p)$ for each factor g.

Puiseux series

Observation

$$(Y - uX - v)$$
 divides $f(X,Y)$ \iff $f(X,uX + v)$ $\equiv 0$

Puiseux series

Observation					
(Y - uX - v)	divides	f(X, Y)	\iff	f(X, uX + v)	≡ 0
g(X, Y)	divides	f(X, Y)	\iff	$f(X, \phi(X))$	≡ 0

$$\begin{array}{cccc} (Y-uX-\nu) & \text{divides} & f(X,Y) & \iff & f(X,uX+\nu) & \equiv 0 \\ g(X,Y) & \text{divides} & f(X,Y) & \iff & f(X,\varphi(X)) & \equiv 0 \end{array}$$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

- $ightharpoonup g_0 \in \mathbb{K}[X]$
- $ho \ \phi_1, \ldots, \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t \geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0.$$

$$\begin{array}{cccc} (Y-uX-\nu) & \text{divides} & f(X,Y) & \iff & f(X,uX+\nu) & \equiv 0 \\ g(X,Y) & \text{divides} & f(X,Y) & \iff & f(X,\varphi(X)) & \equiv 0 \end{array}$$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

- $ightharpoonup g_0 \in \mathbb{K}[X]$
- $ho \ \phi_1, \ldots, \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t \geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0.$$

If g is irreducible, g divides $f \iff \exists i, \ f(X, \varphi_i) = 0 \iff \forall i, \ f(X, \varphi_i) = 0$

$$\begin{array}{cccc} (Y-uX-\nu) & \text{divides} & f(X,Y) & \iff & f(X,uX+\nu) & \equiv 0 \\ g(X,Y) & \text{divides} & f(X,Y) & \iff & f(X,\varphi(X)) & \equiv 0 \end{array}$$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

- $ightharpoonup g_0 \in \mathbb{K}[X]$
- $ho \ \phi_1, \ldots, \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t\geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0.$$

- If g is irreducible, g divides $f \iff \exists i, \ f(X, \varphi_i) = 0$ $\iff \forall i, \ f(X, \varphi_i) = 0$
- ▶ Valuation: $val(\phi) = t_0/n$.

$$\begin{array}{cccc} (Y-uX-\nu) & \text{divides} & f(X,Y) & \iff & f(X,uX+\nu) & \equiv 0 \\ g(X,Y) & \text{divides} & f(X,Y) & \iff & f(X,\varphi(X)) & \equiv 0 \end{array}$$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

- $ightharpoonup g_0 \in \mathbb{K}[X]$
- $ho \ \phi_1, \ldots, \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t\geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0.$$

- If g is irreducible, g divides $f \iff \exists i, \ f(X, \varphi_i) = 0$ $\iff \forall i, \ f(X, \varphi_i) = 0$
- ▶ Valuation: $val(\phi) = t_0/n$.

Valuation bound

Theorem

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree–d irreducible polynomial with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \varphi^{\beta_j})_i$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (2\mathsf{d}(4\mathsf{d} + 1) - \nu)\binom{\ell}{2}.$$

Valuation bound

Theorem

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \varphi^{\beta_j})_i$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (2\mathsf{d}(4\mathsf{d} + 1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

Valuation bound

Theorem

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \varphi^{\beta_j})_i$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (2\mathsf{d}(4\mathsf{d} + 1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

 $\qquad \qquad \text{Wronskian: } \mathsf{wr}(\psi_1,\ldots,\psi_\ell) = \mathsf{det}\left(\psi_j^{(\mathfrak{i})}\right) = \tfrac{1}{c_1}\,\mathsf{wr}(f_1,\psi_2,\ldots,\psi_\ell)$

Theorem

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \varphi^{\beta_j})_i$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (2\mathsf{d}(4\mathsf{d} + 1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

- $\qquad \qquad \text{Wronskian: } \mathsf{wr}(\psi_1,\ldots,\psi_\ell) = \mathsf{det}\left(\psi_{\mathfrak{f}}^{(\mathfrak{i})}\right) = \tfrac{1}{c_1}\,\mathsf{wr}(f_1,\psi_2,\ldots,\psi_\ell)$
- ho val(wr(f₁, ψ_2 , ..., ψ_ℓ)) \geqslant val(f₁) + $\sum_{j>1}$ val(ψ_j)

Theorem

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

If the family $(X^{\alpha_j}\varphi^{\beta_j})_j$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (2\mathsf{d}(4\mathsf{d} + 1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

- $\qquad \qquad \text{Wronskian: } \mathsf{wr}(\psi_1,\ldots,\psi_\ell) = \mathsf{det}\left(\psi_j^{(\mathfrak{i})}\right) = \tfrac{1}{c_1}\,\mathsf{wr}(f_1,\psi_2,\ldots,\psi_\ell)$
- ho val(wr(f₁, ψ_2, \dots, ψ_ℓ)) \geqslant val(f₁) + $\sum_{j>1}$ val(ψ_j)
- ho val(wr(ψ_1, \dots, ψ_ℓ) $\leqslant \sum_j \text{val}(\psi_j) + (2d(4d+1) v)\binom{\ell}{2}$

Gap Theorem

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leqslant \cdots \leqslant \alpha_k + \nu \beta_k$. Let g a degree-d irreducible poynomial, with a root of valuation ν .

If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu \beta_{\ell+1} > (\alpha_1 + \nu \beta_1) + (2d(4d+1) - \nu) {\ell \choose 2},$$

then g divides f iff it divides both f_1 and f_2 .

Gap Theorem

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leqslant \cdots \leqslant \alpha_k + \nu \beta_k$. Let g a degree-d irreducible poynomial, with a root of valuation ν .

If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu \beta_{\ell+1} > (\alpha_1 + \nu \beta_1) + (2d(4d+1) - \nu) {\ell \choose 2},$$

then g divides f iff it divides both f_1 and f_2 .

 \triangleright Depends only on ν .

Gap Theorem

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leqslant \cdots \leqslant \alpha_k + \nu \beta_k$. Let g a degree-d irreducible poynomial, with a root of valuation ν .

If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu \beta_{\ell+1} > (\alpha_1 + \nu \beta_1) + (2d(4d+1) - \nu) {\ell \choose 2},$$

then g divides f iff it divides both f_1 and f_2 .

- \triangleright Depends only on ν .
- ► Bounds the growth of $\alpha_i + \nu \beta_i$ in f_1 .

Finding factors

Observation + Gap Theorem (recursively)

Let g(X,Y) be irreducible, with a root $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

Then g divides $f(X,Y) \iff f(X,\varphi) \equiv 0$

Finding factors

Observation + Gap Theorem (recursively)

Then g divides
$$f(X,Y) \iff f(X,\varphi) \equiv 0$$

 $\iff f_1(X,\varphi) \equiv \cdots \equiv f_s(X,\varphi) \equiv 0$

Finding factors

Observation + Gap Theorem (recursively)

Then g divides
$$f(X,Y) \iff f(X,\varphi) \equiv 0$$

$$\iff f_1(X,\varphi) \equiv \cdots \equiv f_s(X,\varphi) \equiv 0$$

$$\iff g \text{ divides each } f_t(X,Y)$$

Observation + Gap Theorem (recursively)

Then g divides
$$f(X,Y) \iff f(X,\varphi) \equiv 0$$

$$\iff f_1(X,\varphi) \equiv \cdots \equiv f_s(X,\varphi) \equiv 0$$

$$\iff g \text{ divides each } f_t(X,Y)$$

$$\begin{array}{l} F_t = \displaystyle\sum_{j=j_{\,t}}^{j_{\,t}+\ell_{\,t}-1} c_j X^{\alpha_j} Y^{\beta_{\,j}} \text{ with} \\ \\ \alpha_j + \nu \beta_j \leqslant \alpha_{j_{\,t}} + \nu \beta_{j_{\,t}} + (2d(4d+1) - \nu) \binom{\ell_t}{2} \end{array}$$

Observation + Gap Theorem (recursively)

Let g(X,Y) be irreducible, with a root $\phi \in \overline{\mathbb{K}}\langle\langle X \rangle\rangle$ of valuation ν .

Then g divides
$$f(X,Y) \iff f(X,\varphi) \equiv 0$$

 $\iff f_1(X,\varphi) \equiv \cdots \equiv f_s(X,\varphi) \equiv 0$
 $\iff g \text{ divides each } f_t(X,Y)$

$$\begin{array}{l} F_t = \displaystyle\sum_{j=j_{\,t}}^{j_{\,t}+\ell_{\,t}-1} c_j X^{\alpha_j} Y^{\beta_{\,j}} \text{ with} \\ \\ \alpha_j + \nu \beta_j \leqslant \alpha_{j_{\,t}} + \nu \beta_{j_{\,t}} + (2d(4d+1) - \nu) \binom{\ell_t}{2} \end{array}$$

Neither α_i nor β_i is bounded.

Observation + Gap Theorem (recursively)

Then g divides
$$f(X,Y) \iff f(X,\varphi) \equiv 0$$

 $\iff f_1(X,\varphi) \equiv \cdots \equiv f_s(X,\varphi) \equiv 0$
 $\iff g \text{ divides each } f_t(X,Y)$

$$\begin{array}{l} {\displaystyle \ \, \vdash \ \, f_t = \sum_{j=j_{\,t}}^{j_{\,t} + \ell_t - 1} c_j X^{\alpha_j} Y^{\beta_j} \ \, \text{with}} \\ \\ {\displaystyle \ \, \alpha_j + \nu \beta_j \leqslant \alpha_{j_{\,t}} + \nu \beta_{j_{\,t}} + (2d(4d+1) - \nu) \binom{\ell_t}{2}} \end{array}$$

- \triangleright Neither α_i nor β_i is bounded.
- ➤ A second root of distinct valuation is needed!

Proposition

Let
$$f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$$
 and $\nu_1 \neq \nu_2$ such that for all j

$$\begin{cases} \alpha_j + \nu_1\beta_j \leqslant \alpha_1 + \nu_1\beta_1 + (2d(4d+1) - \nu_1)\binom{\ell}{2} \\ \alpha_j + \nu_2\beta_j \leqslant \alpha_2 + \nu_2\beta_2 + (2d(4d+1) - \nu_2)\binom{\ell}{2}. \end{cases}$$

 $\overline{ \text{Then for all } p,q, |\alpha_p-\alpha_q|\leqslant \mathcal{O}(\ell^2d^4)} \text{ and } |\beta_p-\beta_q|\leqslant \mathcal{O}(\ell^2d^4).$

Proposition

Let $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$ and $\nu_1 \neq \nu_2$ such that for all j

$$\begin{cases} \alpha_j + \nu_1 \beta_j \leqslant \alpha_1 + \nu_1 \beta_1 + (2d(4d+1) - \nu_1) \binom{\ell}{2} \\ \alpha_j + \nu_2 \beta_j \leqslant \alpha_2 + \nu_2 \beta_2 + (2d(4d+1) - \nu_2) \binom{\ell}{2}. \end{cases}$$

Then for all p, q, $|\alpha_p - \alpha_q| \le O(\ell^2 d^4)$ and $|\beta_p - \beta_q| \le O(\ell^2 d^4)$.

Given $d\in \mathbb{Z}_+$, $\nu_1,\nu_2\in \mathbb{Q}$ and $f=\sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$, we can write

$$f = X^{\alpha_1}Y^{b_1}f_1 + \cdots X^{\alpha_s}Y^{b_s}f_s$$

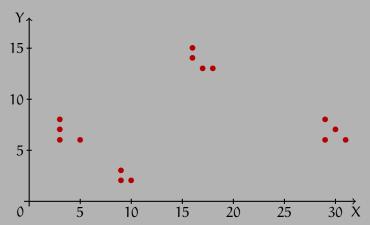
where $\sum_t \text{deg}(f_t) \leq \mathcal{O}(k^2 d^4)$, such that g divides f iff g divides each f_t as soon as g has roots of valuation v_1 and v_2 .

An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

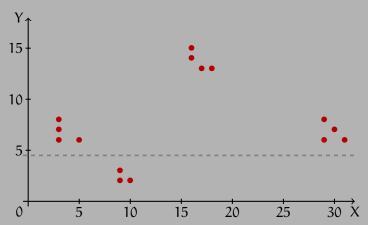
An example with $v_1 = 0$, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



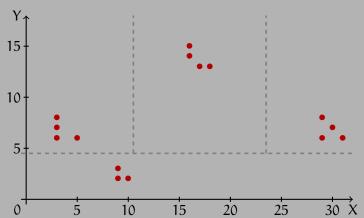
An example with $v_1 = 0$, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



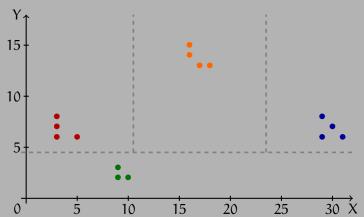
An example with $v_1 = 0$, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f = X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ - \,X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ + \,X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (-X^2 + Y^2 - 2Y + 1)$$

An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

 \implies linear factors of f: (X - Y + 1, 1)

An example with
$$v_1 = 0$$
, $v_2 = \infty$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

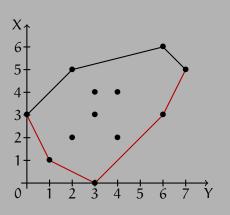
$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

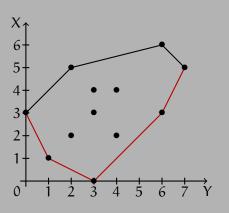
$$\implies$$
 linear factors of f: $(X - Y + 1, 1)$, $(X, 3)$, $(Y, 2)$

Newton polygon and Puiseux series



Newton-Puiseux Theorem For each edge in the **lower hull** of slope $-\nu$, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

Newton polygon and Puiseux series



Newton-Puiseux Theorem For each edge in the **lower hull** of slope -v, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation v.

Non-homogeneous factors:

- The Newton polygon has at least two non-parallel edges;
- The factor has two roots of distinct valuations.

Input:
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;

Output: The irreducible degree-d factors of f, with multiplicity.

Input:
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;

Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute the Newton polygon N_f of f;

Input:
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;

Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes v_1 & v_2 :
 - 2.1 Using the Gap Theorem twice, with v_1 and v_2 , write

$$f=X^{\alpha_1}Y^{b_1}f_1+\cdots+X^{\alpha_s}Y^{b_s}f_s,$$
 where $\sum_t \text{deg}(f_t)\leqslant \text{O}(k^2d^4);$

Input:
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;

Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes v_1 & v_2 :
 - 2.1 Using the Gap Theorem twice, with v_1 and v_2 , write

$$f = X^{\alpha_1}Y^{b_1}f_1 + \dots + X^{\alpha_s}Y^{b_s}f_s,$$

where
$$\sum_{t} deg(f_{t}) \leq O(k^{2}d^{4})$$
;

2.2 Compute the degree-d factors of $gcd(f_1, ..., f_s)$;

Input:
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;

Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes v_1 & v_2 :
 - 2.1 Using the Gap Theorem twice, with v_1 and v_2 , write

$$f = X^{\alpha_1}Y^{b_1}f_1 + \dots + X^{\alpha_s}Y^{b_s}f_s,$$

where
$$\sum_{t} deg(f_t) \leq O(k^2 d^4)$$
;

- 2.2 Compute the degree-d factors of $gcd(f_1, ..., f_s)$;
- Return the union of the sets of computed factors, with multiplicity.

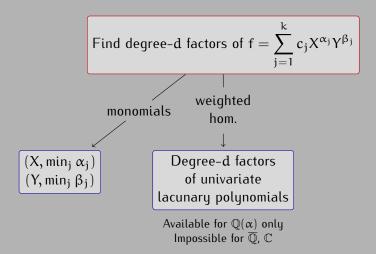
Find degree–d factors of
$$\mathsf{f} = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$

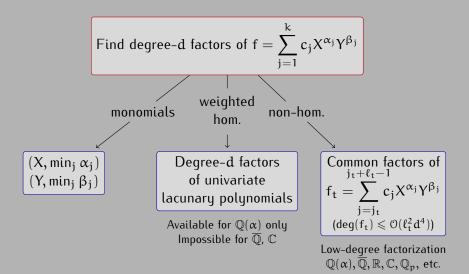
Find degree-d factors of
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$

monomials

$$(X, \min_j \alpha_j)$$

 $(Y, \min_j \beta_j)$





Multivariate polynomials

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Multivariate polynomials

Degree-d factors of
$$f = \sum_{i=1}^k c_i X_1^{\alpha_{1,i}} \cdots X_n^{\alpha_{n,j}}$$

Do not compute the n-dimensional Newton polygon!

Multivariate polynomials

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polygon!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_i]$;

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polygon!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- ▶ Weighted homogeneous factors → 1-dimensional factors

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polygon!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors → 1-dimensional factors
 - Every $N_{i,j}$ is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polygon!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors → 1-dimensional factors
 - Every $N_{i,j}$ is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors → multidimensional factors

Degree-d factors of
$$f = \sum_{j=1}^k c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polygon!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors → 1-dimensional factors
 - Every N_{i,j} is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors → multidimensional factors
 - At least one $N_{i,j}$ is multidimensional
 - Multivariate low-degree factorization

Multidimensional factors

- Consider f as before, and let g be a multidimensional factor of f:
 - If " $X_i \notin g$ ", g divides each coefficient of $f \in \mathbb{K}[X \setminus X_i][X_i]$;
 - Else $N_{i,j}(g)$ is multidimensional for some j.

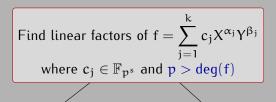
Multidimensional factors

- Consider f as before, and let g be a multidimensional factor of f:
 - If " $X_i \notin g$ ", g divides each coefficient of $f \in \mathbb{K}[X \setminus X_i][X_i]$;
 - Else $N_{i,j}(g)$ is multidimensional for some j.
- 1. Let $\mathcal{H} = \{f\}$;
- 2. For each variable X_i , and $h \in \mathcal{H}$:
 - 2.1 Partition $h = \sum_{d} h_i(X \setminus X_i)X_i^d$;
 - 2.2 For each X_j such that $N_{i,j}(h)$ is multidimensional, partition h with respect to each pair of non-parallel edges in $N_{i,j}(h)$;
 - 2.3 Merge those $O(nk^2)$ partitions to get \mathcal{H}_h ;
 - 2.4 Replace h by the elements of \mathcal{H}_h in \mathcal{H} .
- 3. Return the degree-d factors of $gcd(\mathcal{H}^{\circ})$.

[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Find linear factors of
$$f=\sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$
 where $c_j\in\mathbb{F}_{p^s}$ and $p>\text{deg}(f)$

[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]



monomials

 $\begin{array}{c} (X, \min_j \alpha_j) \\ (Y, \min_j \beta_j) \end{array}$

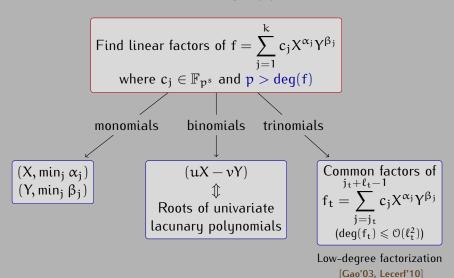
trinomials

Common factors of
$$f_{t} = \sum_{j=j_{t}}^{j_{t}+\ell_{t}-1} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$$

$$(\text{deq}(f_{t}) \leq \mathcal{O}(\ell_{t}^{2}))$$

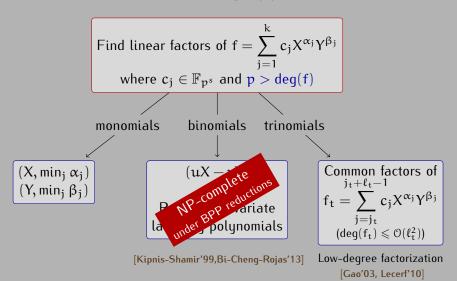
Low-degree factorization [Gao'03, Lecerf'10]

[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]



uno Grenet – Computing low-degree factors of lacunary polynomials

[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]



Bruno Grenet – Computing low-degree factors of lacunary polynomials

- Computing low-degree factors of lacunary multivariate polynomials
 - \circ Reduction to $\left\{ egin{align*} \mbox{univariate lacunary polynomials} \ \mbox{low-degree multivariate polynomials} \end{array}
 ight.$

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\left\{ egin{aligned} & \text{univariate lacunary polynomials} \\ & \text{low-degree multivariate polynomials} \\ \end{array}
 ight.$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\left\{ egin{aligned} & \text{univariate lacunary polynomials} \\ & \text{low-degree multivariate polynomials} \end{aligned}
 ight.$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress
- Open questions:
 - Can we compute lacunary factors in polynomial time?
 - More general settings: arithmetic circuits/straight-line programs
 - Higher degree factors in positive characteristic: Hahn series?
 - What can be done in small positive characteristic?

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\begin{cases} \text{univariate lacunary polynomials} \\ \text{low-degree multivariate polynomials} \end{cases}$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress
- Open questions:
 - Can we compute lacunary factors in polynomial time?
 - More general settings: arithmetic circuits/straight-line programs
 - **Higher degree factors** in positive characteristic: Hahn series?
 - What can be done in small positive characteristic?

Thank you!

arXiv:1401.4720