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Classical factorization algorithms

Factorization of a polynomial f

Find fq, ..., fy, irreducible, s.t. f =17 x --- x f.
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Factorization of a polynomial f

Find fq, ..., ft, irreducible, s.t. f =17 x --- x fy.

Many algorithms

over Z, Q, Q(«), Q, Qp. F. R, C, ...;
in 1, 2, ..., n variables.

Complexity: polynomial in deg(f)

X102y101 | x10Ty102 _ 5 101y101 _ 5y 1 7
= (X+Y—1)x (X'OTyT0T _7)
=(X4+Y—=1)x (XY —=1) x (14+XY +---4Xx'00y100)



Goal

Definition

k
(X1, Xn) =) X7 X
j=1

> size(f) ~ k<maxj (size(c;)) +n log(deg f))
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Definition

xq CX j
Xh ) § C)X1 i X5

> size(f) ~ k(maxj(size(cj)) + nlog(deg f))

Compute the degree-d factors of f in time poly(size(f), d) }
Let f € R[X] with k nonzero terms. Then #Zr(f) < 2k — 1.




Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors (integer roots) of f € Z[X|;  [Cucker-Koiran-Smale’98]
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There exist deterministic polynomial-time algorithms computing

factors (integer roots) of f € i [Cucker-Koiran-Smale’'98]

factors of f € ; [H. Lenstra’99]

factors of f € 5 [Kaltofen-Koiran'06]

It is to compute . [Bi-Cheng-Rojas'13]

Only available for number fields

Based on number-theoretic results ~» theoretical algorithms

Generalization to other fields? More practical algorithms?
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Theorem
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Let K be any field of characteristic 0.
Theorem [G14]

Let f € K[Xy,...,Xn] with k nonzero terms and d an integer.
The computation of the degree-d factors of f reduces to

> the computation of the degree-d factors of (nk)®(") lacunary
polynomials of K[X], plus d°(7) bit operations per factor in
post-processing,

and

» the factorization of polynomials of K[Xj,...,X;] of total degree
sum (size(f) + )9,

in (size(f) + d)2U1) bit operations.

Cased =1 [G.-Chattopadhyay-Koiran-Portier-Strozecki’'13]
New algorithm for K = Q(c); some factors for K = Q, R, C, Qyp;




n g o X
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n g o X

f= Y3 £2XY = X3V X3Y3 —2X2Y2 —4 X3 +2X4Y3 —2X°Y2
+X3YC + 2 XYY — XPY7 + XOY®
= (Y =2X2+X3YH) (Y2 +2X = X?2Y3 + X3Y?)



A polynomial g = 3 ; b;XY1Y®
\\ is (p, q)-homogeneous of order

w if py; + qd; = w for all j.




A polynomial g = 3 ; b;XY1Y®
\\ is (p, q)-homogeneous of order

w if py; + qd; = w for all j.

00 1 2 3 45 6 7 Y

Algorithm for (p, q)-homogeneous factors

1. Write f = f; +--- + f5 as a sum of (p, q)-homogeneous
polynomials;

2. Compute the common degree-(d/q) factors of the f((X'/9,1)’s;
~~ univariate lacunary factorization

3. Return YPde9(9)g(X9/YP) for each factor g.




Puiseux series

Observation
(Y—uX—v) divides f(X,Y) <<
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Theorem

Letf; = Zf:] ch"‘J‘YBi and g a degree-d irreducible polynomial
with a root ¢ € K((X)) of valuation v.
If the family (X“id)ﬁi)j is linearly independent,

val(f1(X, &) < min(e; +vf;) + (2d(4d +1) —v) (ﬁ)

Proof idea. Let {; = X% bPBi for all j.

Wronskian: wr(q,...,P¢) = det (lbj“)) = &wr(ﬁ,lj)z,...,l])e)
val(wr(f1, b2, ..., e)) > val(fr) + 3 ;- val(w;)

val(wr(ir,...,he) < ¥ val(W;) + (2d(4d + 1) —v)(3)




Gap Theorem

Let : ¢
f=) X9YPi4 3 Xx0YP
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Gap Theorem

Let : ¢
f=) X9YPi4 3 Xx0YP
j=1 j=t+1

fy f2

with a7 +vf37 < -+ - < ax +vPBk. Let g a degree-d irreducible
poynomial, with a root of valuation v.

If £ is the smallest index s.t.

og1 +VvPBer1 > (o +vB7) + (2d(4d + 1) —v) <§>

then g divides f iff it divides both f; and f5.

Depends only on v.

Bounds the growth of o5 +vf3; in fy.
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Observation + Gap Theorem (recursively)

Let g(X,Y) be irreducible, with a root ¢ € K((X)) of valuation v.

Then g divides f(X,Y) < f(X;$) =0
<= ¢ divides each f(X,Y)

jet+le—1
fi = Z C]'XochBi with

=it

¢
o5 +vBj < o4, + VB, + (2d(4d+1)—v)(2t>

Neither o nor (35 is bounded.

A second root of distinct valuation is needed!




Proposition

Let f1 = Zf:] ch"‘iYﬁJ‘ and vq # v, such that for all j

{OCj+V1Bj o1 +V1B1+(2d(4d+1)—vl)(§)

a2 +v2B2 + (2d(4d + 1) —v2)(5)-

N IN

[0 & —I—VZB]'

Then for all p, q, [0ty — gl < O(¢2d*) and IBp — Bgql < O(¢2d*).




Proposition

Let f1 = Zf:1 CjX"‘iYﬁJ‘ and vq # v, such that for all j

{(X].JFWBJ. 1 +viB1 + (2d(4d +1) —v1) (Y

a2 +v2B2 + (2d(4d + 1) —v2)(5)-

N IN

[0 & —|—vz[5]~

Then for all p, q, [0ty — gl < O(¢2d*) and IBp — Bgql < O(¢2d*).

Givend € Zy, vi,v2 € Q and f = ZL] ch“iYBi, we can write

f=XUYPIfy .. XOYPs g

where ), deg(f¢) < O(k?d*), such that g divides f iff g divides
each fy as soon as g has roots of valuation v; and v;.
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f=X31Y0 —2X30Y7 4 X27Y8 — X27Y6

1571

1071

+ X]OYZ - X9Y3
+X7Y2 —XOY® + X3Y8 —2x3Y7 + x3Y®

10 15 20 25 30 X
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f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+ X072 —X7y?
+X7Y?2 = XYe - X3Y8 —2X3Y7 4+ X3Y®

f1=X3Ye(X=Y+1)(1=X—-Y)
f=XY2(X=Y+1)

= XY (X + V)X =Y +1)
f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y +1,1), (X,3), (V,2)



For each edge in the lower hull
of slope —v, f has a root
¢ € K({(X)) of valuation v.




For each edge in the lower hull
of slope —v, f has a root
¢ € K({(X)) of valuation v.

Non-homogeneous factors:

The Newton polygon has at least two non-parallel edges;

The factor has two roots of distinct valuations.
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f=3 %, X5YPiand d € Zy;
The irreducible degree-d factors of f, with multiplicity.

Compute the Newton polygon Ny of f;

For each pair of non-parallel edges of slopes vi & v,:

Using the Gap Theorem twice, with vi and vy, write
f=XTYPIfy 4. XOYOs A

where 3 deg(f) < O(k?d%);
Compute the degree-d factors of ged(fy,...,fs);

Return the union of the sets of computed factors, with
multiplicity.



Complete algorithm

3
Find degree-d factors of f = Z c]-X"‘J'Yﬁj

j=1
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k
Find degree-d factors of f = Z ch"‘"YBi
j=1

: weighted
monomials h non-hom.
om.
/ | \

(X, minj og;) Degree-d factors Common factors of
(Y, min; 35) of univariate et B
) )

lacunary polynomials Z ¢ XY

J=jt
Available for Q(cc) only (deg(fy) < O(£2d*))

Impossible for @ C
Low-degree factorization

Q(“J)@a R, (C, Qp, etc.



Multivariate polynomials

k
Degree-d factors of f = Z ch;x” Xy

j=1
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13
Degree-d factors of f = Z ch?ﬂ’j e Xp™
i=1

Do not compute the n-dimensional Newton polygon!

For all i < j, compute the Newton polygon Ny ; of f € R[Xj, X;]
where R = K[X\ Xj, Xjl;

Weighted homogeneous factors ~~ T-dimensional factors

Every Ny ; is 1-dimensional (or 0-dimensional)
Univariate lacunary factorization

Non-homogeneous factors ~» multidimensional factors

At least one Ny ; is multidimensional
Multivariate low-degree factorization



Consider f as before, and let g be a multidimensional factor of f:

If “X; ¢ g", g divides each coefficient of T € K[X \ Xi][X;];
Else Ni;(g) is multidimensional for some j.



Consider f as before, and let g be a multidimensional factor of f:

If “X; ¢ g", g divides each coefficient of T € K[X \ Xi][X;];
Else Ni;(g) is multidimensional for some j.

Let H ={f};
For each variable X;, and h € X:

Partition h = Y 4 hi(X\ X{)X&;

For each Xj such that Ny ;(h) is multidimensional,
partition h with respect to each pair of non-parallel
edges in Ny ;(h);

Merge those O(nk?) partitions to get Jy,;

Replace h by the elements of H;, in H.

Return the degree-d factors of gcd(H°).
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k
Find linear factors of f = Z ch"‘jYBj
j=1
where ¢; € Fps and p > deg(f)

monomials trinomials
(X, minj og;) Comm%n f1actors of
(Y, min; B;) itJr - oy Bj
fe=) XMY
J=jt

(deg(fe) < O(6))

Low-degree factorization
[Gao’'03, Lecerf’10]
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k
Find linear factors of f = Z ch"‘jYBj
j=1
where ¢; € Fps and p > deg(f)

|

monomials binomials trinomials
(X, minj og;) (uX —vY) Common factors of
(Y, m'm)- B]) II Jot b=

fe=) ¢X9YP;
=it
(deg(fi) < O(£7))

Roots of univariate
lacunary polynomials

Low-degree factorization
[Gao’'03, Lecerf’10]
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k
Find linear factors of f = Z ch"‘iYE’j
j=1
where ¢; € Fps and p > deg(f)

|

monomials binomials trinomials

N

Common factors of
el —1

fe=) ¢X9YP;
=it
(deg(fi) < O(£7))

[Kipnis-Shamir'99,Bi-Cheng-Rojas’13]  Low-degree factorization
[Gao’'03, Lecerf’10]
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“Field-independent”

Simpler and more general than previous algorithms

Partial results in large positive characteristic

Implementation: work in progress

Open questions:

Can we compute lacunary factors in polynomial time?

More general settings: arithmetic circuits/straight-line programs
Higher degree factors in positive characteristic: Hahn series?
What can be done in small positive characteristic?
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Computing low-degree factors of lacunary multivariate polynomials

Reduction fo {univariate lacunary polynomials
low-degree multivariate polynomials

“Field-independent”

Simpler and more general than previous algorithms

Partial results in large positive characteristic

Implementation: work in progress

Open questions:

Can we compute lacunary factors in polynomial time?

More general settings: arithmetic circuits/straight-line programs
Higher degree factors in positive characteristic: Hahn series?
What can be done in small positive characteristic?

Thank you!

arXiv:1401.4720
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