Root finding over finite fields

Bruno Grenet LIRMM Université de Montpellier

Joris van der Hoeven & Grégoire Lecerf CNRS – LIX École polytechnique

GT MC2 — April 8., 2015

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_q[X]$, compute its roots, that is $\{\alpha \in \mathbb{F}_q : f(\alpha) = 0\}$.

- ▶ Building block for many algorithms in computer algebra: root finding over Z, factorization, sparse interpolation, ...
- Applications in cryptography, error correcting codes, ...
- Derandomization
- Sparse interpolation: bottleneck in practice

[van der Hoeven & Lecerf, 2014]

Finite fields

 \mathbb{F}_{q} : field with q elements, $q = p^{r}$ for some prime number p

- \blacktriangleright $\mathbb{F}_{p} \simeq \mathbb{Z}/p\mathbb{Z};$ $+, -, \times$ and / modulo p
- $\mathbb{F}_{q} \simeq \mathbb{F}_{p}[\lambda]/\langle \phi \rangle$ ($\phi \in \mathbb{F}_{p}[\lambda]$ irreducible of degree r); $+, -, \times$ and / modulo p and ϕ

Finite fields

 \mathbb{F}_q : field with q elements, $q = p^r$ for some prime number p

 \blacktriangleright $\mathbb{F}_{p} \simeq \mathbb{Z}/p\mathbb{Z};$ $+, -, \times$ and / modulo p

• $\mathbb{F}_{q} \simeq \mathbb{F}_{p}[\lambda]/\langle \phi \rangle$ ($\phi \in \mathbb{F}_{p}[\lambda]$ irreducible of degree r); $+, -, \times$ and / modulo p and ϕ

$$\blacktriangleright \mathbb{F}_{3} = \{0, 1, 2\}: \begin{array}{c|cccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \text{ and } \begin{array}{c|ccccc} \times & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{array};$$

Finite fields

 \mathbb{F}_q : field with q elements, $q = p^r$ for some prime number p

 \blacktriangleright $\mathbb{F}_{p} \simeq \mathbb{Z}/p\mathbb{Z};$ $+, -, \times$ and / modulo p

• $\mathbb{F}_{q} \simeq \mathbb{F}_{p}[\lambda]/\langle \phi \rangle$ ($\phi \in \mathbb{F}_{p}[\lambda]$ irreducible of degree r); $+, -, \times$ and / modulo p and ϕ

$$\blacktriangleright \mathbb{F}_{3} = \{0, 1, 2\}: \begin{array}{c|cccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \text{ and } \begin{array}{c|ccccc} \times & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{array};$$

$$\mathbb{F}_4 = \mathbb{F}_2[\lambda]/\langle \lambda^2 + \lambda + 1 \rangle = \{0, 1, \lambda, \lambda + 1\}:$$

$$\frac{+ 1 \lambda \lambda + 1}{1 0 \lambda + 1 \lambda} \text{ and } \frac{\times \lambda \lambda + 1}{\lambda \lambda + 1 1 \lambda}$$

$$\frac{\lambda \lambda + 1 0 \lambda \lambda + 1 \lambda}{\lambda \lambda + 1 0 \lambda \lambda + 1 \lambda}$$

Bruno Grenet – Root finding over finite fields 3 / 24

2 is a primitive root of unity of order 8

2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

3 is a primitive element of \mathbb{F}_{17}^* : $\mathbb{F}_{17}^* = \{3^i: 0 \leqslant i < 16\}$

4 / 24

A first algorithm

Theorem

The roots of $f \in \mathbb{F}_q[X]$ can be computed in **deterministic time** $poly(q, d_f).$

▶ Algo: Test each $\alpha \in \mathbb{F}_q$, sequentially.

A first algorithm

Theorem

The roots of $f \in \mathbb{F}_{a}[X]$ can be computed in **deterministic time** $poly(q, d_f)$.

- ▶ Algo: Test each $\alpha \in \mathbb{F}_q$, sequentially.
- \bigwedge Input size $(1 + d_f) \log q$: exponential time!

A first algorithm

Theorem

The roots of $f\in \mathbb{F}_q[X]$ can be computed in $\mbox{deterministic time} \ \mbox{poly}(q,d_f).$

- Algo: Test each $\alpha \in \mathbb{F}_q$, sequentially.
- \wedge Input size $(1 + d_f) \log q$: exponential time!
- ► Randomization: expected time $\frac{d_f}{d_f + 1}q$.

Obtain **fast** algorithms for polynomial root finding in finite fields.

Deterministic, probabilistic, heuristic; in practice or in theory. ►

Settings

Obtain **fast** algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory. ►
- ► **Assumption:** f has d_f **distinct** and **nonzero** roots.

(easy reduction: $f \leftarrow qcd(f, X^{q-1} - 1))$

Settings

Obtain **fast** algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory. ►
- **Assumption:** f has d_f **distinct** and **nonzero** roots. (easy reduction: $f \leftarrow qcd(f, X^{q-1} - 1))$
- **Extra input:** A primitive element ζ , or a primitive root of unity ξ . ►

Settings

Obtain **fast** algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- ► Assumption: f has d_f distinct and nonzero roots. (easy reduction: f ← qcd(f, X^{q-1} - 1))
- **Extra input:** A primitive element ζ , or a primitive root of unity ξ .
- Smooth cardinality:

- $q = \rho \pi_1 \cdots \pi_m + 1$, where ρ , π_1 , ..., π_m are *small*;
- Practical purpose: $q = M2^m + 1$ is a *FFT prime*.

$$\mathfrak{u} = \prod_{\alpha \in S} (X - \alpha)$$

Bruno Grenet - Root finding over finite fields

Bruno Grenet – Root finding over finite fields

7/24

 $\mathbb{P}[\mathsf{gcd}(\mathsf{f},\mathsf{u})\in\{1,\mathsf{f}\}]=\mathbb{P}[\forall i,\alpha_i\in S]+\mathbb{P}[\forall i,\alpha_i\in S^c]=1/2^{d-1}$

Bruno Grenet - Root finding over finite fields

 $\mathbb{P}[\mathsf{gcd}(\mathsf{f},\mathsf{u})\in\{1,\mathsf{f}\}]=\mathbb{P}[\forall i,\alpha_i\in S]+\mathbb{P}[\forall i,\alpha_i\in S^c]=1/2^{d-1}$

Good and bad news

The expected number of calls is 2d, but the complexity is $\tilde{O}(q)$.

$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1$$

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
(q odd)

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

• With some luck, $gcd(f, X^{\frac{q-1}{2}} - 1) \notin \{1, f\}$.

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

- With some luck, $gcd(f, X^{\frac{q-1}{2}} 1) \notin \{1, f\}$.
- ▶ Push your luck: $gcd(f, (X + \tau)^{\frac{q-1}{2}} 1)$ for some random $\tau \in \mathbb{F}_q$

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

- With some luck, $gcd(f, X^{\frac{q-1}{2}} 1) \notin \{1, f\}$.
- ▶ Push your luck: $gcd(f, (X + \tau)^{\frac{q-1}{2}} 1)$ for some random $\tau \in \mathbb{F}_q$

$$\mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[\gcd(f, X + \tau)^{\frac{q-1}{2}} - 1) \notin \{1, f\}\right] = \frac{q-1}{2q}$$

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

Π

With some luck, gcd(f, X^{q-1}/₂ − 1) ∉ {1, f}.
 Push your luck: gcd(f, (X + τ)^{q-1}/₂ − 1) for some random τ ∈ 𝔽_q
 [acd(f, X + τ)^{q-1}/₂ − 1) ∉ [1, f]] q⁻¹

$$\mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[\gcd(f, X + \tau)^{\frac{q-1}{2}} - 1) \notin \{1, f\}\right] = \frac{q-1}{2q}$$

• $gcd(f, (X + \tau)^{\frac{q-1}{2}} - 1)$ in time $\tilde{O}(d \log q)$

Bruno Grenet - Root finding over finite fields

•
$$\prod_{\alpha \in \mathbb{F}_q^*} (X - \alpha) = X^{q-1} - 1 = (X^{\frac{q-1}{2}} - 1)(X^{\frac{q-1}{2}} + 1)$$
 (q odd)

With some luck, gcd(f, X^{q-1}/₂ - 1) ∉ {1, f}.
 Push your luck: gcd(f, (X + τ)^{q-1}/₂ - 1) for some random τ ∈ F_q
 P_{τ∈F_q} [gcd(f, X + τ)^{q-1}/₂ - 1) ∉ {1, f}] = q - 1/2q
 gcd(f, (X + τ)^{q-1}/₂ - 1) in time Õ(d log q)

Randomized algorithm

The roots of $f \in \mathbb{F}_q[X]$ can be computed in time $\tilde{O}(d \log^2 q)$.

Let
$$q = \chi \rho + 1$$
. Then $X^{q-1} - 1 = \prod_{i=0}^{\chi-1} (X^{\rho} - \xi^i)$, where $\xi^{\chi} = 1$.

Let
$$q = \chi \rho + 1$$
. Then $X^{q-1} - 1 = \prod_{i=0}^{\chi-1} (X^{\rho} - \xi^{i})$, where $\xi^{\chi} = 1$.

Bruno Grenet - Root finding over finite fields

If $\chi \ll \log q / \log d$, the **speed-up is approximately** $\log_2 \chi$.

Bruno Grenet - Root finding over finite fields

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If $g(X) = \prod_i (\alpha_i - X)$, then $h(X) = \prod_i (\alpha_i^2 - X)$.
The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If
$$g(X) = \prod_i (\alpha_i - X)$$
, then $h(X) = \prod_i (\alpha_i^2 - X)$.

The **generalized Graeffe transform** of $g \in \mathbb{F}_q[X]$ of order π is

$$G_{\pi}(g)(X) = (-1)^{\pi \deg g} \operatorname{res}_{z}(g(z), z^{\pi} - x).$$

If $g = \prod_i (\alpha_i - X)$, then $G_{\pi}(g)(X) = \prod_i (\alpha_i^{\pi} - X)$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g\in \mathbb{F}_q[X]$ is the unique polynomial $h\in \mathbb{F}_q[X]$ such that

$$h(X^2) = g(X)g(-X).$$

If
$$g(X) = \prod_i (\alpha_i - X)$$
, then $h(X) = \prod_i (\alpha_i^2 - X)$.

The **generalized Graeffe transform** of $g \in \mathbb{F}_q[X]$ of order π is

$$G_{\pi}(g)(X) = (-1)^{\pi \deg g} \operatorname{res}_{z}(g(z), z^{\pi} - x).$$

If $g = \prod_i (\alpha_i - X)$, then $G_{\pi}(g)(X) = \prod_i (\alpha_i^{\pi} - X)$.

Note. $G_{\pi_1\pi_2} = G_{\pi_1} \circ G_{\pi_2}$

10 / 24

Let $q = \rho \pi_1 \cdots \pi_m + 1$.

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.

Remark

$$G_{q-1}(g)(X) = \pm \prod_{i} (X - \alpha_{i}^{q-1}) = \pm (X - 1)^{deg(g)}$$

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.
Remark
 $G_{q-1}(g)(X) = \pm \prod_i (X - \alpha_i^{q-1}) = \pm (X - 1)^{\deg(g)}$
 $f \xrightarrow{G_{\rho}} h_0 \xrightarrow{G_{\pi_1}} h_1 \xrightarrow{G_{\pi_2}} \cdots \xrightarrow{G_{\pi_{m-1}}} h_{m-1} \xrightarrow{G_{\pi_m}} h_m$

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.
Remark
 $G_{q-1}(g)(X) = \pm \prod_i (X - \alpha_i^{q-1}) = \pm (X - 1)^{deg(g)}$
 $f \xrightarrow{G_{\rho}} h_0 \xrightarrow{G_{\pi_1}} h_1 \xrightarrow{G_{\pi_2}} \cdots \xrightarrow{G_{\pi_{m-1}}} h_{m-1} \xrightarrow{G_{\pi_m}} h_m$

$$\downarrow$$
 $\{1\}$

.

Let
$$q = \rho \pi_1 \cdots \pi_m + 1$$
.

$$\boxed{\begin{array}{c} \textbf{Remark} \\ \hline G_{q-1}(g)(X) = \pm \prod_i (X - \alpha_i^{q-1}) = \pm (X - 1)^{deg(g)} \\ f \xrightarrow{G_{\rho}} h_0 \xrightarrow{G_{\pi_1}} h_1 \xrightarrow{G_{\pi_2}} \cdots \xrightarrow{G_{\pi_{m-1}}} h_{m-1} \xrightarrow{G_{\pi_m}} h_m \\ \hline & \downarrow \\ Z(f) \longleftarrow Z_0 \longleftarrow Z_1 \longleftarrow \cdots \longleftarrow Z_{m-1} \longleftarrow \{1\}$$

Graeffe transform computation

Lemma

Let π divide q - 1, and ξ a primitive root of unity of order π . Then

$$G_{\pi}(g)(X^{\pi}) = g(X)g(\xi X)\cdots g(\xi^{\pi-1}X).$$

Graeffe transform computation

Lemma

Let π divide q-1, and ξ a primitive root of unity of order π . Then

$$G_{\pi}(g)(X^{\pi}) = g(X)g(\xi X)\cdots g(\xi^{\pi-1}X).$$

Theorem

Given $g \in \mathbb{F}_q[X]$ and a primitive root of unity ξ of order π , $G_{\pi}(g)$ can be computed in $\tilde{O}(\pi d \log q)$ operations.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leq q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leqslant q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Based on:

$\label{eq:constraint} \hline \begin{array}{c} \hline \mbox{Kedlaya-Umans'11} \\ \mbox{Let } f, \ g, \ h \in \mathbb{F}_q[X] \ \mbox{of degree } d. \ \mbox{For all } \delta > 0, \ (f \circ g \ \ \mbox{mod } h) \ \mbox{can} \\ \mbox{be computed in time } d^{1+\delta} \tilde{O}(\log q). \end{array}$

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_q[X]$ of degree d. For all $\delta > 0$ such that $d^{1+\delta} \leqslant q-1$, $G_{\pi}(g)$ can be computed in time $(d \log q)^{1+\delta} + \tilde{O}(d \log q \log \pi)$.

Based on:

$\label{eq:constraint} \hline \begin{array}{c} \hline \textbf{Kedlaya-Umans'11} \\ \mbox{Let f, g, } h \in \mathbb{F}_q[X] \mbox{ of degree d. For all } \delta > 0, \mbox{ (f \circ g mod h) can} \\ \mbox{be computed in time } d^{1+\delta} \tilde{O}(\log q). \end{array}$

Corollary

Let
$$g \in \mathbb{F}_q[X]$$
 and $q = \rho \pi_1 \cdots \pi_m + 1$. For all δ , $G_\rho(g)$, $G_{\rho \pi_1}(g)$, \ldots , $G_{\rho \pi_1 \cdots \pi_{m-1}}(g)$ can be computed in time $(d \log^2 q)^{1+\delta}$.

Following roots

Let $q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$ and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$

$$\prod_{i=1}^{r} (\alpha_i - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\alpha_i^{\pi} - X)$$

Following roots

Let $q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$ and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$

$$\prod_{i=1}^{r} (\alpha_i - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\alpha_i^{\pi} - X)$$

ξ: primitive root of unity of order χ

$$\prod_{i=1}^{r} (\xi^{e_i} - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\xi^{f_i} - X)$$

Following roots

Let $q = \rho \pi_1 \cdots \pi_m + 1 = \rho \chi + 1$ and $g = G_{\rho}(f) = \prod_i (\alpha_i - X)$

$$\prod_{i=1}^{r} (\alpha_i - X) \xrightarrow{G_{\pi}} \prod_{i=1}^{r} (\alpha_i^{\pi} - X)$$

 ξ : primitive root of unity of order χ

$$\prod_{i=1}^r (\xi^{e_i} - X) \xrightarrow{G_\pi} \prod_{i=1}^r (\xi^{f_i} - X)$$

$$\begin{array}{l} \forall \mathbf{i}, (\xi^{e_{i}})^{\pi} = \xi^{f_{i}} \\ \Longleftrightarrow \quad \forall \mathbf{i}, \pi e_{i} = f_{i} \mod \chi \\ \iff \quad \forall \mathbf{i}, e_{i} \in \left\{ \frac{f_{i} + j\chi}{\pi} : \mathbf{0} \leqslant j \leqslant \pi - 1 \right\} \end{array}$$

Bruno Grenet - Root finding over finite fields

5/24

Following roots faster

Lemma

Given $h = G_{\pi}(g)$, and $\{a_1, \ldots, a_l\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi}d\log q) + (d\log q)^{1+\delta}$ for all $\delta > 0$.

Following roots faster

Lemma

Given $h = G_{\pi}(g)$, and $\{a_1, \ldots, a_l\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi}d\log q) + (d\log q)^{1+\delta}$ for all $\delta > 0$.

Theorem

Given $f\in \mathbb{F}_q[X]$ with deg(f) distinct roots in \mathbb{F}_q^* and a primitive element of \mathbb{F}_q^* , the roots of f can be computed in time

$$\tilde{O}(\sqrt{S_1(q-1)}d\log^2 q) + (d\log^2 q)^{1+\delta}$$

where $S_1(q-1)$ is the largest factor of q-1.

Following roots faster

Lemma

Given $h = G_{\pi}(g)$, and $\{a_1, \ldots, a_l\}$ its roots, one can compute the roots of q in time $\tilde{O}(\sqrt{\pi}d\log q) + (d\log q)^{1+\delta}$ for all $\delta > 0$.

Theorem

Given $f \in \mathbb{F}_{q}[X]$ with deg(f) distinct roots in \mathbb{F}_{q}^{*} and a primitive element of \mathbb{F}_{q}^{*} , the roots of f can be computed in time

$$\tilde{O}(\sqrt{S_1(q-1)}d\log^2 q) + (d\log^2 q)^{1+\delta}$$

where $S_1(q-1)$ is the largest factor of q-1.

- Best known bound for *smooth* q;
- If $q = M2^m + 1$, $M = O(\log q)$, complexity $\tilde{O}(d \log^2 q)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g \in \mathbb{F}_q[X]$ is

$$G_{\pi}(g(X+\epsilon)) \in (\mathbb{F}_q[\epsilon]/\langle \epsilon^2 \rangle)[X].$$

Remark. $G_{\pi}(g(X + \varepsilon)) = h(X) + \varepsilon \overline{h}(X)$ where $h = G_{\pi}(g)$.

Bruno Grenet – Root finding over finite fields 17 / 24

.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g \in \mathbb{F}_q[X]$ is

$$G_{\pi}(g(X + \varepsilon)) \in (\mathbb{F}_q[\varepsilon]/\langle \varepsilon^2 \rangle)[X].$$

Remark. $G_{\pi}(g(X + \varepsilon)) = h(X) + \varepsilon \overline{h}(X)$ where $h = G_{\pi}(g)$.

Lemma

A nonzero root β of h is a **simple root** iff $\overline{h}(\beta) \neq 0$. The corresponding root of q is $\alpha = \pi \beta h'(\beta) / \overline{h}(\beta)$.

Proof. $\overline{\mathbf{h}}(\alpha^{\pi}) = \pi \alpha^{\pi-1} \mathbf{h}'(\alpha^{\pi}).$

Bruno Grenet – Root finding over finite fields 17 / 24

.

Goal: Ensure many simple roots.

Goal: Ensure many **simple roots**.

• Replace f by $f_{\tau}(X) = f(X - \tau)$ for a random $\tau \in \mathbb{F}_q$.

Bruno Grenet - Root finding over finite fields 18 / 24

Goal: Ensure many **simple roots**.

• Replace f by $f_{\tau}(X) = f(X - \tau)$ for a random $\tau \in \mathbb{F}_q$.

Lemma

If $q = \rho \chi + 1$ with $\chi \ge d(d-1)$,

$$\mathbb{P}_{\tau \in \mathbb{F}_q}[G_{\rho}(f_{\tau}) \text{ has multiple roots}] \leqslant \frac{1}{2}.$$

Goal: Ensure many **simple roots**.

▶ Replace f by $f_{\tau}(X) = f(X - \tau)$ for a random $\tau \in \mathbb{F}_q$.

Lemma

If
$$q = \rho \chi + 1$$
 with $\chi \ge d(d-1)$,

$$\mathbb{P}_{\tau\in\mathbb{F}_q}[G_\rho(f_\tau) \text{ has multiple roots}]\leqslant \frac{1}{2}.$$

Proof. Given $\alpha_i \neq \alpha_j$,

$$\#\left\{\tau\in\mathbb{F}_q:(\tau+\alpha_i)^\rho=(\tau+\alpha_j)^\rho\right\}\leqslant\rho.$$

 $\implies G_\rho(f_\tau) \text{ has multiple roots for at most } \tfrac{d(d-1)}{2}\rho \text{ values of }\tau.$

Bruno Grenet - Root finding over finite fields 18 / 24

.

▶ $q = M \cdot 2^m + 1$

- ▶ $q = M \cdot 2^m + 1$
- Find the largest l s.t. $M2^{m-1} \ge d(d-1)$

Bruno Grenet - Root finding over finite fields 19 / 24

.

- ▶ $q = M \cdot 2^m + 1$
- Find the largest l s.t. $M2^{m-1} \ge d(d-1)$

 $f(X - \tau + \epsilon) \xrightarrow{G_2} \cdots \xrightarrow{G_2} h_1 + \epsilon \overline{h}_1 \xrightarrow{G_2} \cdots \xrightarrow{G_2} h_m + \epsilon \overline{h}_m$

- ▶ $q = M \cdot 2^m + 1$
- Find the largest l s.t. $M2^{m-1} \ge d(d-1)$

Bruno Grenet - Root finding over finite fields 19 / 24

.

- ▶ $q = M \cdot 2^m + 1$
- Find the largest l s.t. $M2^{m-1} \ge d(d-1)$

A randomized algorithm

Bruno Grenet – Root finding over finite fields 19 / 24

A randomized algorithm

• Recursive call with $f/\prod_{\alpha\in Z_0} (X - \alpha)$.

Bruno Grenet - Root finding over finite fields 19 / 24

Complexity and heuristic

Theorem

If $q = M2^m + 1$ with $M = O(\log q)$, the randomized algorithm runs in expected time $\tilde{O}(d \log^2 q)$.

Complexity and heuristic

Theorem

If $q=M2^m+1$ with $M=O(\log q),$ the randomized algorithm runs in expected time $\tilde{O}(d\log^2 q).$

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Complexity and heuristic

Theorem

If $q = M2^m + 1$ with $M = O(\log q)$, the randomized algorithm runs in expected time $\tilde{O}(d \log^2 q)$.

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Heuristic

Let $q = \rho \chi + 1$ and $f \in \mathbb{F}_q[X]$ with d = deg(f) roots in \mathbb{F}_q^* . If $\chi \ge 4d$, $G_\rho(f(X + \tau))$ has $\ge d/3$ simple roots with probability at least 1/2, for a random $\tau \in \mathbb{F}_q$.

Justification: holds for a random f rather than $f(X + \tau)$.

▶ $q = M \cdot 2^m + 1$

Bruno Grenet – Root finding over finite fields 21 / 24

- ▶ $q = M \cdot 2^m + 1$
- Find the largest l s.t. $M2^{m-1} \ge 4d$

▶
$$q = M \cdot 2^m + 1$$

Find the largest l s.t.
$$M2^{m-l} \ge 4d$$

$$f(X - \tau + \epsilon) \xrightarrow{G_{2^1}} h_1 + \epsilon \overline{h}_1$$

▶
$$q = M \cdot 2^m + 1$$

▶ Find the largest l s.t. $M2^{m-1} \ge 4d$

Bruno Grenet – Root finding over finite fields 21 / 24

▶
$$q = M \cdot 2^m + 1$$

▶ Find the largest l s.t. $M2^{m-1} \ge 4d$

▶
$$q = M \cdot 2^m + 1$$

▶ Find the largest l s.t. $M2^{m-1} \ge 4d$

• Recursive call with $f/\prod_{\alpha\in Z_0} (X-\alpha)$.

Bruno Grenet – Root finding over finite fields 21 / 24

Implementation

- ► Algorithms implemented in MATHEMAGIX (http://mathemagix.org/);
- Heuristic algorithm faster than FLINT and NTL by factors up to 80; ►
- Modification of Cantor-Zassenhaus algorithm: gain for large g only.

Timings

Time (seconds)

Timings

Revisit classical algorithms for finite fields of smooth cardinality;

- Revisit classical algorithms for finite fields of smooth cardinality;
- ► New approach using Graeffe transforms:

- Revisit classical algorithms for finite fields of smooth cardinality;
- ► New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.

- Revisit classical algorithms for finite fields of smooth cardinality;
- ► New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.
- Open questions:
 - Deterministic alg.: use of tangent Graeffe transforms;
 - Heuristic alg.: Graeffe transform of order 2¹ is the bottleneck;
 - Prove the heuristic!

24 / 24

- Revisit classical algorithms for finite fields of smooth cardinality;
- ► New approach using Graeffe transforms:
 - Good deterministic complexity bounds;
 - Good probabilistic complexity bounds;
 - Good computation times.
- Open questions:
 - Deterministic alg.: use of tangent Graeffe transforms;
 - Heuristic alg.: Graeffe transform of order 2¹ is the bottleneck;
 - Prove the heuristic!

Thank you!