Root finding over finite fields

Bruno Grenet

LIRMM
Université de Montpellier

Joris van der Hoeven \& Grégoire Lecerf CNRS - LIX
École polytechnique

GT MC2 — April 8., 2015

Statement of the problem

Root finding over finite fields
Given $\mathrm{f} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{\mathrm{q}}: \mathrm{f}(\alpha)=0\right\}$.

Statement of the problem

Root finding over finite fields

Given $\mathrm{f} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{\mathrm{q}}: \mathrm{f}(\alpha)=0\right\}$.

- Building block for many algorithms in computer algebra: root finding over \mathbb{Z}, factorization, sparse interpolation, ...
- Applications in cryptography, error correcting codes, ...
- Derandomization
- Sparse interpolation: bottleneck in practice
[van der Hoeven \& Lecerf, 2014]

Finite fields

\mathbb{F}_{q} : field with q elements, $\mathrm{q}=\mathrm{p}^{r}$ for some prime number p

- $\mathbb{F}_{\mathfrak{p}} \simeq \mathbb{Z} / \mathrm{p} \mathbb{Z}$;
,,$+- \times$ and $/$ modulo p
- $\mathbb{F}_{\mathrm{q}} \simeq \mathbb{F}_{\mathrm{p}}[\lambda] /\langle\phi\rangle\left(\phi \in \mathbb{F}_{\mathrm{p}}[\lambda]\right.$ irreducible of degree r$) ;$
,,$+- \times$ and $/$ modulo p and ϕ

Finite fields

\mathbb{F}_{q} : field with q elements, $\mathrm{q}=\mathrm{p}^{r}$ for some prime number p

- $\mathbb{F}_{\mathfrak{p}} \simeq \mathbb{Z} / \mathrm{p} \mathbb{Z}$;
,,$+- \times$ and $/$ modulo p
- $\mathbb{F}_{\mathrm{q}} \simeq \mathbb{F}_{\mathrm{p}}[\lambda] /\langle\phi\rangle\left(\phi \in \mathbb{F}_{\mathrm{p}}[\lambda]\right.$ irreducible of degree r$) ;$
,,$+- \times$ and $/$ modulo p and ϕ
- $\mathbb{F}_{3}=\{0,1,2\}: \begin{array}{llll}0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1\end{array}$ and $\begin{array}{lllll}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1\end{array} ;$

Finite fields

\mathbb{F}_{q} : field with q elements, $\mathrm{q}=\mathrm{p}^{r}$ for some prime number p

- $\mathbb{F}_{\mathfrak{p}} \simeq \mathbb{Z} / \mathrm{p} \mathbb{Z}$;
,,$+- \times$ and / modulo p
- $\mathbb{F}_{\mathrm{q}} \simeq \mathbb{F}_{\mathrm{p}}[\lambda] /\langle\phi\rangle\left(\phi \in \mathbb{F}_{\mathrm{p}}[\lambda]\right.$ irreducible of degree r$) ;$,,$+- \times$ and $/$ modulo p and ϕ
- $\mathbb{F}_{3}=\{0,1,2\}:$| 0 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 0 |
| 2 | 2 | 0 | 1 | and | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 2 |
| 2 | 0 | 2 | 1 |$;$
- $\mathbb{F}_{4}=\mathbb{F}_{2}[\lambda] /\left\langle\lambda^{2}+\lambda+1\right\rangle=\{0,1, \lambda, \lambda+1\}:$
$\begin{array}{c|ccc}+ & 1 & \lambda & \lambda+1 \\
\hline 1 & 0 & \lambda+1 & \lambda \\
\lambda & \lambda+1 & 0 & 1 \\
\lambda+1 & \lambda & 1 & 0\end{array} \quad$ and \(\left.\begin{array}{c}x

\hline \lambda

\lambda+1\end{array}\right) 1\)| $\lambda+1$ | $\lambda+1$ |
| :---: | :---: |.

Multiplicative structure

2 is a primitive root of unity of order 8

Multiplicative structure

2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

Multiplicative structure

2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

3 is a primitive element of \mathbb{F}_{17}^{*} :
$\mathbb{F}_{17}^{*}=\left\{3^{i}: 0 \leqslant i<16\right\}$

Multiplicative structure

2 is a primitive root of unity of order 8

4 is a primitive root of unity of order 4

3 is a primitive element of \mathbb{F}_{17}^{*} :
$\mathbb{F}_{17}^{*}=\left\{3^{i}: 0 \leqslant i<16\right\}$
$\alpha^{q-1}=\zeta^{i(q-1)}=1$
$X^{q-1}-1=\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)$

Bruno Grenet - Root finding over finite fields

A first algorithm

Theorem

The roots of $f \in \mathbb{F}_{q}[X]$ can be computed in deterministic time poly (q, d_{f}).

- Algo: Test each $\alpha \in \mathbb{F}_{q}$, sequentially.

A first algorithm

Theorem

The roots of $f \in \mathbb{F}_{q}[X]$ can be computed in deterministic time poly (q, d_{f}).

- Algo: Test each $\alpha \in \mathbb{F}_{\mathrm{q}}$, sequentially.
\triangle Input size $\left(1+d_{f}\right) \log \mathrm{q}$: exponential time!

A first algorithm

Theorem

The roots of $f \in \mathbb{F}_{q}[X]$ can be computed in deterministic time poly (q, d_{f}).

- Algo: Test each $\alpha \in \mathbb{F}_{\mathrm{q}}$, sequentially.
© Input size $\left(1+d_{f}\right) \log q$: exponential time!
- Randomization: expected time $\frac{d_{f}}{d_{f}+1} q$.

Settings

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: f has d_{f} distinct and nonzero roots.
(easy reduction: $\mathrm{f} \leftarrow \operatorname{gcd}\left(\mathrm{f}, \mathrm{X}^{\mathrm{q}-1}-1\right)$)

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: f has d_{f} distinct and nonzero roots.
(easy reduction: $\mathrm{f} \leftarrow \operatorname{gcd}\left(\mathrm{f}, \mathrm{X}^{\mathrm{q}-1}-1\right)$)
- Extra input: A primitive element ζ, or a primitive root of unity ξ.

Objectives

Obtain fast algorithms for polynomial root finding in finite fields.

- Deterministic, probabilistic, heuristic; in practice or in theory.
- Assumption: f has d_{f} distinct and nonzero roots.
(easy reduction: $\mathrm{f} \leftarrow \operatorname{gcd}\left(\mathrm{f}, \mathrm{X}^{\mathrm{q}-1}-1\right)$)
- Extra input: A primitive element ζ, or a primitive root of unity ξ.
- Smooth cardinality:
- $q=\rho \pi_{1} \cdots \pi_{m}+1$, where $\rho, \pi_{1}, \ldots, \pi_{m}$ are small;
- Practical purpose: $\mathrm{q}=\mathrm{M} 2^{\mathrm{m}}+1$ is a FFT prime.

A (slow) recursive algorithm

$u=\prod_{\alpha \in S}(X-\alpha)$

A (slow) recursive algorithm

$$
f=\prod_{i=1}^{d}\left(X-\alpha_{i}\right)
$$

$$
u=\prod_{\alpha \in S}(X-\alpha)
$$

$$
\prod_{\alpha_{i} \in S}\left(X-\alpha_{i}\right)
$$

$$
\xrightarrow{f / \operatorname{gcd}(f, u)} \prod_{\alpha_{i} \in S^{c}}\left(X-\alpha_{i}\right)
$$

A (slow) recursive algorithm

$\mathbb{P}[\operatorname{gcd}(f, u) \in\{1, f\}]=\mathbb{P}\left[\forall i, \alpha_{i} \in S\right]+\mathbb{P}\left[\forall i, \alpha_{i} \in S^{c}\right]=1 / 2^{d-1}$
A (slow) recursive algorithm

$\mathbb{P}[g c d(f, u) \in\{1, f\}]=\mathbb{P}\left[\forall i, \alpha_{i} \in S\right]+\mathbb{P}\left[\forall i, \alpha_{i} \in S^{c}\right]=1 / 2^{\mathrm{d}-1}$
Good and bad news
The expected number of calls is 2 d , but the complexity is $\tilde{O}(q)$.

Cantor-Zassenhaus' algorithm

$>\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1$

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$
(q odd)

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{F}_{\mathfrak{q}}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$
(q odd)

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{P}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$
(q odd)

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{q-1}{2}}-1\right) \notin\{1, f\}$.

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{q-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathrm{q}}$

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{q-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathrm{q}}$

$$
\left.\mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[\operatorname{gcd}(f, X+\tau)^{\frac{q-1}{2}}-1\right) \notin\{1, f\}\right]=\frac{q-1}{2 q}
$$

Cantor-Zassenhaus' algorithm

- $\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{q-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathrm{q}}$

$$
\begin{gathered}
\left.\mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[\operatorname{gcd}(f, X+\tau)^{\frac{q-1}{2}}-1\right) \notin\{1, f\}\right]=\frac{q-1}{2 q} \\
-\operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right) \text { in time } \tilde{O}(d \log q)
\end{gathered}
$$

Cantor-Zassenhaus' algorithm

$-\prod_{\alpha \in \mathbb{F}_{q}^{*}}(X-\alpha)=X^{q-1}-1=\left(X^{\frac{q-1}{2}}-1\right)\left(X^{\frac{q-1}{2}}+1\right)$

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{q-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathrm{q}}$

$$
\begin{aligned}
& \left.\mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[\operatorname{gcd}(f, X+\tau)^{\frac{q-1}{2}}-1\right) \notin\{1, f\}\right]=\frac{q-1}{2 q} \\
& \qquad \operatorname{gcd}\left(f,(X+\tau)^{\frac{q-1}{2}}-1\right) \text { in time } \tilde{O}(d \log q)
\end{aligned}
$$

Randomized algorithm
The roots of $f \in \mathbb{F}_{q}[X]$ can be computed in time $\tilde{O}\left(d \log ^{2} q\right)$.

Modified Cantor-Zassenhaus' algorithm

(for smooth cardinality)
Let $\mathrm{q}=\chi \rho+1$. Then $X^{\mathrm{q}-1}-1=\prod_{i=0}^{\chi-1}\left(X^{\rho}-\xi^{i}\right)$, where $\xi^{\chi}=1$.

Modified Cantor-Zassenhaus' algorithm

(for smooth cardinality)
Let $\mathrm{q}=\chi \rho+1$. Then $\chi^{q-1}-1=\prod_{i=0}^{\chi-1}\left(X^{\rho}-\xi^{i}\right)$, where $\xi^{\chi}=1$.

Modified Cantor-Zassenhaus' algorithm

(for smooth cardinality)
Let $\mathrm{q}=\chi \rho+1$. Then $X^{q-1}-1=\prod_{i=0}^{\chi-1}\left(X^{\rho}-\xi^{i}\right)$, where $\xi^{\chi}=1$.

$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{0}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{1}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{2}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{3}\right)$

Modified Cantor-Zassenhaus' algorithm

(for smooth cardinality)
Let $\mathrm{q}=x \rho+1$. Then $X^{q-1}-1=\prod_{i=0}^{x-1}\left(X^{\rho}-\xi^{i}\right)$, where $\xi^{\chi}=1$.

$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{0}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{1}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{2}\right)$
$\longrightarrow \operatorname{gcd}\left(f,(X+\tau)^{\rho}-\xi^{3}\right)$

If $\chi \ll \log q / \log d$, the speed-up is approximately $\log _{2} x$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ is the unique polynomial $h \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ such that

$$
h\left(X^{2}\right)=g(X) g(-X) .
$$

If $g(X)=\prod_{i}\left(\alpha_{i}-X\right)$, then $h(X)=\prod_{i}\left(\alpha_{i}^{2}-X\right)$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $g \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ is the unique polynomial $h \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ such that

$$
h\left(X^{2}\right)=g(X) g(-X) .
$$

If $g(X)=\prod_{i}\left(\alpha_{i}-X\right)$, then $h(X)=\prod_{i}\left(\alpha_{i}^{2}-X\right)$.
The generalized Graeffe transform of $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ of order π is

$$
\mathrm{G}_{\pi}(\mathrm{g})(\mathrm{X})=(-1)^{\pi \operatorname{deg} g} \operatorname{res}_{z}\left(\mathrm{~g}(z), z^{\pi}-x\right)
$$

If $\mathrm{g}=\prod_{\mathrm{i}}\left(\alpha_{\mathrm{i}}-\mathrm{X}\right)$, then $\mathrm{G}_{\pi}(\mathrm{g})(\mathrm{X})=\prod_{\mathrm{i}}\left(\alpha_{\mathrm{i}}^{\pi}-\mathrm{X}\right)$.

The (generalized) Graeffe transform

Definition

The Graeffe transform of $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ is the unique polynomial $h \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ such that

$$
\begin{gathered}
h\left(X^{2}\right)=g(X) g(-X) . \\
\text { If } g(X)=\prod_{i}\left(\alpha_{i}-X\right) \text {, then } h(X)=\prod_{i}\left(\alpha_{i}^{2}-X\right) .
\end{gathered}
$$

The generalized Graeffe transform of $g \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ of order π is

$$
\begin{aligned}
& G_{\pi}(g)(X)=(-1)^{\pi \operatorname{deg} g} \operatorname{res}_{z}\left(g(z), z^{\pi}-x\right) . \\
& \text { If } g=\prod_{i}\left(\alpha_{i}-X\right) \text {, then } G_{\pi}(g)(X)=\prod_{i}\left(\alpha_{i}^{\pi}-X\right) .
\end{aligned}
$$

Note. $G_{\pi_{1} \pi_{2}}=G_{\pi_{1}} \circ G_{\pi_{2}}$

Using Graeffe transforms

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$.

Using Graeffe transforms

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$.
Remark
$\mathrm{G}_{\mathrm{q}-1}(\mathrm{~g})(\mathrm{X})= \pm \prod_{i}\left(\mathrm{X}-\alpha_{i}^{\mathrm{q}-1}\right)= \pm(\mathrm{X}-1)^{\operatorname{deg}(\mathrm{g})}$

Using Graeffe transforms

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$.
Remark
$\mathrm{G}_{\mathrm{q}-1}(\mathrm{~g})(\mathrm{X})= \pm \prod_{i}\left(\mathrm{X}-\alpha_{i}^{\mathrm{q}-1}\right)= \pm(\mathrm{X}-1)^{\operatorname{deg}(\mathrm{g})}$
$f \xrightarrow{\mathrm{G}_{\rho}} h_{0} \xrightarrow{\mathrm{G}_{\pi_{1}}} h_{1} \xrightarrow{\mathrm{G}_{\pi_{2}}} \cdots \xrightarrow{\mathrm{G}_{\pi_{m-1}}} h_{m-1} \xrightarrow{\mathrm{G}_{\pi_{m}}} h_{m}$

Using Graeffe transforms

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$.
Remark
$\mathrm{G}_{\mathrm{q}-1}(\mathrm{~g})(\mathrm{X})= \pm \prod_{i}\left(\mathrm{X}-\alpha_{i}^{\mathrm{q}-1}\right)= \pm(\mathrm{X}-1)^{\operatorname{deg}(\mathrm{g})}$

\{1\}

Using Graeffe transforms

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$.
Remark
$\mathrm{G}_{\mathrm{q}-1}(\mathrm{~g})(\mathrm{X})= \pm \prod_{i}\left(\mathrm{X}-\alpha_{i}^{\mathrm{q}-1}\right)= \pm(\mathrm{X}-1)^{\operatorname{deg}(\mathrm{g})}$
$\mathrm{f} \xrightarrow{\mathrm{G}_{\rho}} h_{0} \xrightarrow{\mathrm{G}_{\pi_{1}}} h_{1} \xrightarrow{\mathrm{G}_{\pi_{2}}} \cdots \stackrel{\mathrm{G}_{\pi_{m-1}}}{\longrightarrow} h_{m-1} \xrightarrow{\mathrm{G}_{\pi_{m}}} h_{m}$
$\mathrm{Z}(\mathrm{f}) \longleftarrow$
$\mathrm{Z}_{0} \longleftarrow \mathrm{Z}_{1} \longleftarrow \longleftarrow$

Graeffe transform computation

Lemma

Let π divide $q-1$, and ξ a primitive root of unity of order π. Then

$$
G_{\pi}(g)\left(X^{\pi}\right)=g(X) g(\xi X) \cdots g\left(\xi^{\pi-1} X\right)
$$

Graeffe transform computation

Lemma

Let π divide $q-1$, and ξ a primitive root of unity of order π. Then

$$
G_{\pi}(g)\left(X^{\pi}\right)=g(X) g(\xi X) \cdots g\left(\xi^{\pi-1} X\right)
$$

Theorem

Given $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ and a primitive root of unity ξ of order $\pi, \mathrm{G}_{\pi}(\mathrm{g})$ can be computed in $\tilde{O}(\pi d \log q)$ operations.

Improved Graeffe transform computation

Theorem
 Let $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ of degree d . For all $\delta>0$ such that $\mathrm{d}^{1+\delta} \leqslant \mathrm{q}-1$, $\mathrm{G}_{\pi}(\mathrm{g})$ can be computed in time $(\mathrm{d} \log \mathrm{q})^{1+\delta}+\mathrm{O}(\mathrm{d} \log \mathrm{q} \log \pi)$.

Improved Graeffe transform computation

Theorem

Let $g \in \mathbb{F}_{\mathrm{q}}[X]$ of degree d . For all $\delta>0$ such that $\mathrm{d}^{1+\delta} \leqslant \mathrm{q}-1$, $\mathrm{G}_{\pi}(\mathrm{g})$ can be computed in time $(\mathrm{d} \log \mathrm{q})^{1+\delta}+\tilde{O}(\mathrm{~d} \log \mathrm{q} \log \pi)$.

Based on:

Theorem

[Kedlaya-Umans'11]
Let $f, g, h \in \mathbb{F}_{q}[X]$ of degree d. For all $\delta>0,(f \circ g \bmod h)$ can be computed in time $d^{1+\delta} \tilde{O}(\log q)$.

Improved Graeffe transform computation

Theorem

Let $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ of degree d . For all $\delta>0$ such that $\mathrm{d}^{1+\delta} \leqslant \mathrm{q}-1$, $\mathrm{G}_{\pi}(\mathrm{g})$ can be computed in time $(\mathrm{d} \log \mathrm{q})^{1+\delta}+\tilde{O}(\mathrm{~d} \log \mathrm{q} \log \pi)$.

Based on:

Theorem

[Kedlaya-Umans'11]
Let $f, g, h \in \mathbb{F}_{q}[X]$ of degree d. For all $\delta>0,(f \circ g \bmod h)$ can be computed in time $d^{1+\delta} \tilde{O}(\log q)$.

Corollary

Let $\mathrm{g} \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$ and $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1$. For all $\delta, \mathrm{G}_{\rho}(\mathrm{g}), \mathrm{G}_{\rho \pi_{1}}(\mathrm{~g})$, $\ldots, G_{\rho \pi_{1} \cdots \pi_{m-1}}(g)$ can be computed in time $\left(d \log ^{2} q\right)^{1+\delta}$.

Following roots

$$
\text { Let } \mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1=\rho \chi+1 \text { and } \mathrm{g}=\mathrm{G}_{\rho}(\mathrm{f})=\prod_{i}\left(\alpha_{i}-X\right)
$$

$$
\prod_{i=1}^{r}\left(\alpha_{i}-X\right) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}\left(\alpha_{i}^{\pi}-X\right)
$$

Following roots

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1=\rho \chi+1$ and $\mathrm{g}=\mathrm{G}_{\rho}(\mathrm{f})=\prod_{i}\left(\alpha_{i}-X\right)$

$$
\prod_{i=1}^{r}\left(\alpha_{i}-X\right) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}\left(\alpha_{i}^{\pi}-X\right)
$$

ξ : primitive root of unity of order χ

$$
\prod_{i=1}^{r}\left(\xi^{e_{i}}-X\right) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}\left(\xi^{f_{i}}-X\right)
$$

Following roots

Let $\mathrm{q}=\rho \pi_{1} \cdots \pi_{\mathrm{m}}+1=\rho \chi+1$ and $\mathrm{g}=\mathrm{G}_{\rho}(\mathrm{f})=\prod_{i}\left(\alpha_{i}-X\right)$

$$
\prod_{i=1}^{r}\left(\alpha_{i}-X\right) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}\left(\alpha_{i}^{\pi}-X\right)
$$

ξ : primitive root of unity of order χ

$$
\prod_{i=1}^{r}\left(\xi^{e_{i}}-X\right) \xrightarrow{G_{\pi}} \prod_{i=1}^{r}\left(\xi^{f_{i}}-X\right)
$$

$$
\begin{aligned}
& \forall i,\left(\xi^{e_{i}}\right)^{\pi}=\xi^{f_{i}} \\
\Longleftrightarrow & \forall i, \pi e_{i}=f_{i} \bmod \chi \\
\Longleftrightarrow & \forall i, e_{i} \in\left\{\frac{f_{i}+j \chi}{\pi}: 0 \leqslant j \leqslant \pi-1\right\}
\end{aligned}
$$

A deterministic algorithm

$$
Z_{m}=\left\{\xi^{0}\right\}
$$

A deterministic algorithm

$$
\left\{\xi^{\frac{j x}{\pi_{m}}}: 0 \leqslant j \leqslant \pi_{m}\right\}
$$

$$
Z_{m}=\left\{\xi^{0}\right\}
$$

A deterministic algorithm

$$
\begin{gathered}
\left\{\xi^{\frac{j x}{\pi_{m}}}: 0 \leqslant j \leqslant \pi_{m}\right\} \\
h_{m-1}\left(\xi^{e}\right)=0
\end{gathered}
$$

A deterministic algorithm

$$
\begin{cases}\left\{\xi^{\frac{e+j x}{\pi_{m}-1}}: 0 \leqslant j \leqslant \pi_{m-1}\right\} & \left\{\frac{j x}{\xi_{m}^{m}}: 0 \leqslant j \leqslant \pi_{m}\right\} \\ h_{m-1}\left(\xi^{e}\right)=0\end{cases}
$$

$Z_{m}=\left\{\xi^{0}\right\}$

A deterministic algorithm

$$
\begin{array}{cc}
\left\{\xi^{\frac{e+i x}{\pi_{m-1}}}: 0 \leqslant j \leqslant \pi_{m-1}\right\} & \left\{\frac{j x}{\xi^{m}}: 0 \leqslant j \leqslant \pi_{m}\right\} \\
h_{m-2}\left(\xi^{e}\right)=0 & h_{m-1}\left(\xi^{e}\right)=0
\end{array}
$$

A deterministic algorithm

$$
\begin{gathered}
\left\{\frac{e+j x}{\epsilon_{m}^{m-1}}: 0 \leq j \leqslant \pi_{m-1}\right\} \\
h_{m-2}\left(\xi^{e}\right)=0
\end{gathered}
$$

$Z_{m}=\left\{\xi^{0}\right\}$

A deterministic algorithm

$$
\begin{array}{cc}
\left\{\xi^{\frac{e+i x}{\pi_{m}-1}}: 0 \leqslant j \leqslant \pi_{m-1}\right\} & \left\{\frac{j x}{\xi_{m} \pi_{m}}: 0 \leqslant j \leqslant \pi_{m}\right\} \\
h_{m-2}\left(\xi^{e}\right)=0 & h_{m-1}\left(\xi^{e}\right)=0
\end{array}
$$

$$
Z_{m}=\left\{\xi^{0}\right\}
$$

Theorem

If $\rho, \max _{i} \pi_{i}=\mathrm{O}(\log q)$, the algorithm runs in time $\tilde{O}\left(\mathrm{~d}^{\log }{ }^{3} q\right)$.

Following roots faster

Lemma

Given $h=G_{\pi}(g)$, and $\left\{a_{1}, \ldots, a_{l}\right\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi} d \log q)+(d \log q)^{1+\delta}$ for all $\delta>0$.

Following roots faster

Lemma

Given $h=G_{\pi}(g)$, and $\left\{a_{1}, \ldots, a_{l}\right\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi} d \log q)+(d \log q)^{1+\delta}$ for all $\delta>0$.

Theorem

Given $f \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(f)$ distinct roots in \mathbb{F}_{q}^{*} and a primitive element of $\mathbb{F}_{\mathrm{q}}^{*}$, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+\delta}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

Following roots faster

Lemma

Given $h=G_{\pi}(g)$, and $\left\{a_{1}, \ldots, a_{l}\right\}$ its roots, one can compute the roots of g in time $\tilde{O}(\sqrt{\pi} d \log q)+(d \log q)^{1+\delta}$ for all $\delta>0$.

Theorem

Given $f \in \mathbb{F}_{q}[X]$ with $\operatorname{deg}(f)$ distinct roots in \mathbb{F}_{q}^{*} and a primitive element of $\mathbb{F}_{\mathrm{q}}^{*}$, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+\delta}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

- Best known bound for smooth q;
- If $q=M 2^{m}+1, M=O(\log q)$, complexity $\tilde{O}\left(d \log ^{2} q\right)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g \in \mathbb{F}_{\mathrm{q}}[X]$ is

$$
\mathrm{G}_{\pi}(\mathrm{g}(\mathrm{X}+\varepsilon)) \in\left(\mathbb{F}_{\mathrm{q}}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[\mathrm{X}] .
$$

Remark. $G_{\pi}(g(X+\varepsilon))=h(X)+\varepsilon \bar{h}(X)$ where $h=G_{\pi}(g)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $g \in \mathbb{F}_{\mathrm{q}}[X]$ is

$$
\mathrm{G}_{\pi}(\mathrm{g}(\mathrm{X}+\varepsilon)) \in\left(\mathbb{F}_{\mathrm{q}}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[\mathrm{X}] .
$$

Remark. $G_{\pi}(g(X+\varepsilon))=h(X)+\varepsilon \bar{h}(X)$ where $h=G_{\pi}(g)$.

Lemma

A nonzero root β of h is a simple root iff $\bar{h}(\beta) \neq 0$. The corresponding root of g is $\alpha=\pi \beta h^{\prime}(\beta) / \bar{h}(\beta)$.

Proof. $\bar{h}\left(\alpha^{\pi}\right)=\pi \alpha^{\pi-1} h^{\prime}\left(\alpha^{\pi}\right)$.

Randomization

Goal: Ensure many simple roots.

Randomization

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X-\tau)$ for a random $\tau \in \mathbb{F}_{q}$.

Randomization

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X-\tau)$ for a random $\tau \in \mathbb{F}_{q}$.
Lemma

\quad| If $=\rho \chi+1$ with $x \geqslant d(d-1)$, |
| :--- |
| |
| $\quad \mathbb{P}_{\tau \in \mathbb{F}_{q}}\left[G_{\rho}\left(f_{\tau}\right)\right.$ has multiple roots $] \leqslant \frac{1}{2}$. |

Randomization

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X-\tau)$ for a random $\tau \in \mathbb{F}_{q}$.

Lemma

If $q=\rho \chi+1$ with $\chi \geqslant d(d-1)$,

$$
\mathbb{P}_{\tau \in \mathbb{F}_{\mathrm{q}}}\left[\mathrm{G}_{\rho}\left(\mathrm{f}_{\tau}\right) \text { has multiple roots }\right] \leqslant \frac{1}{2} .
$$

Proof. Given $\alpha_{i} \neq \alpha_{j}$,

$$
\#\left\{\tau \in \mathbb{F}_{q}:\left(\tau+\alpha_{i}\right)^{\rho}=\left(\tau+\alpha_{j}\right)^{\rho}\right\} \leqslant \rho .
$$

$\Longrightarrow G_{\rho}\left(f_{\tau}\right)$ has multiple roots for at most $\frac{d(d-1)}{2} \rho$ values of τ.

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

$$
f(X-\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{l}+\varepsilon \bar{h}_{l} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{m}+\varepsilon \bar{h}_{m}
$$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

$$
\begin{aligned}
& f(X-\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{l}+\varepsilon \bar{h}_{l} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{m}+\varepsilon \bar{h}_{m} \\
& \prod_{Z_{m}}^{n} \\
&\left\{\xi^{e}: 0 \leqslant e<M\right\}
\end{aligned}
$$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

$$
\begin{aligned}
f(X-\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{l}+\varepsilon \bar{h}_{l} \xrightarrow{G_{2}} \cdots & \xrightarrow{G_{2}} h_{m}+\varepsilon \bar{h}_{m} \\
Z_{l} \longleftarrow & Z_{m}^{\longleftrightarrow} \\
& \left\{\xi^{e}: 0 \leqslant e<M\right\}
\end{aligned}
$$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

$$
\begin{aligned}
& f(X-\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{l}+\varepsilon \bar{h}_{l} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{m}+\varepsilon \bar{h}_{m} \\
& \text { I } \\
& Z_{0} \underset{\text { Only simple roots }}{\cdots} Z_{l} \longleftarrow \cdots \longleftarrow Z_{m}
\end{aligned}
$$

A randomized algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $M 2^{m-l} \geqslant d(d-1)$

$$
\begin{aligned}
& f(X-\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{l}+\varepsilon \bar{h}_{l} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} h_{m}+\varepsilon \bar{h}_{m} \\
& \text { I } \\
& Z_{0} \\
& \text { Only simple roots }
\end{aligned}
$$

- Recursive call with $f / \prod_{\alpha \in Z_{0}}(X-\alpha)$.

Complexity and beuristic

Theorem

If $\mathrm{q}=\mathrm{M} 2^{\mathrm{m}}+1$ with $\mathrm{M}=\mathrm{O}(\log \mathrm{q})$, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} q\right)$.

Complexity and beuristic

Theorem

If $\mathrm{q}=\mathrm{M} 2^{\mathrm{m}}+1$ with $\mathrm{M}=\mathrm{O}(\log \mathrm{q})$, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} q\right)$.

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Complexity and beuristic

Theorem

If $\mathrm{q}=\mathrm{M} 2^{\mathrm{m}}+1$ with $\mathrm{M}=\mathrm{O}(\log \mathrm{q})$, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} q\right)$.

- Same asymptotic as Cantor-Zassenhaus' algorithm;
- Better efficiency in practice.

Heuristic

Let $\mathrm{q}=\rho \chi+1$ and $f \in \mathbb{F}_{\mathrm{q}}[X]$ with $\mathrm{d}=\operatorname{deg}(f)$ roots in $\mathbb{F}_{\mathrm{q}}^{*}$. If $\chi \geqslant 4 \mathrm{~d}, \mathrm{G}_{\rho}(\mathrm{f}(\mathrm{X}+\tau))$ has $\geqslant \mathrm{d} / 3$ simple roots with probability at least $1 / 2$, for a random $\tau \in \mathbb{F}_{\mathrm{q}}$.
Justification: holds for a random f rather than $f(X+\tau)$.

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $\mathrm{M} 2^{m-l} \geqslant 4 \mathrm{~d}$

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $\mathrm{M} 2^{\mathrm{m}-\mathrm{l}} \geqslant 4 \mathrm{~d}$

$$
f(X-\tau+\varepsilon) \xrightarrow{G_{2 l}} h_{l}+\varepsilon \bar{h}_{l}
$$

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $\mathrm{M} 2^{m-l} \geqslant 4 \mathrm{~d}$

$$
\mathrm{f}(\mathrm{X}-\tau+\varepsilon) \xrightarrow{\mathrm{G}_{2 \mathrm{l}}} \mathrm{~h}_{\mathrm{l}}+\varepsilon \overline{\mathrm{h}}_{\mathrm{l}}
$$

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $\mathrm{M} 2^{\mathrm{m}-\mathrm{l}} \geqslant 4 \mathrm{~d}$

$$
\begin{gathered}
\mathrm{f}(\mathrm{X}-\tau+\varepsilon) \xrightarrow{\mathrm{G}_{2 l}} \mathrm{~h}_{l}+\varepsilon \overline{\mathrm{h}}_{l} \\
\mathrm{Z}_{0} \longleftrightarrow \text { only simple roots } \\
\left\{\xi^{e}: 0 \leqslant \mathrm{e}<\mathrm{M} 2^{l}\right\}
\end{gathered}
$$

A beuristic algorithm

- $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1$
- Find the largest l s.t. $\mathrm{M} 2^{m-l} \geqslant 4 \mathrm{~d}$

$$
\begin{gathered}
\mathrm{f}(\mathrm{X}-\tau+\varepsilon) \xrightarrow{\mathrm{G}_{2^{l}}} \mathrm{~h}_{l}+\varepsilon \overline{\mathrm{h}}_{l} \\
\mathrm{Z}_{0} \longleftrightarrow \text { only simple roots } \\
\left\{\xi^{e}: 0 \leqslant \mathrm{e}<\mathrm{M} 2^{l}\right\}
\end{gathered}
$$

- Recursive call with $f / \prod_{\alpha \in Z_{0}}(X-\alpha)$.

Implementation

- Algorithms implemented in Mathemagix (http://mathemagix.org/);
- Heuristic algorithm faster than FLINT and NTL by factors up to 80;
- Modification of Cantor-Zassenhaus algorithm: gain for large q only.

$$
q=7 \cdot 2^{26}+1
$$

$$
q=5 \cdot 2^{55}+1
$$

Conclusion

- Revisit classical algorithms for finite fields of smooth cardinality;

Conclusion

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:

Conclusion

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
- Good deterministic complexity bounds;
- Good probabilistic complexity bounds;
- Good computation times.

Conclusion

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
- Good deterministic complexity bounds;
- Good probabilistic complexity bounds;
- Good computation times.
- Open questions:
- Deterministic alg.: use of tangent Graeffe transforms;
- Heuristic alg.: Graeffe transform of order 2^{l} is the bottleneck;
- Prove the heuristic!

Conclusion

- Revisit classical algorithms for finite fields of smooth cardinality;
- New approach using Graeffe transforms:
- Good deterministic complexity bounds;
- Good probabilistic complexity bounds;
- Good computation times.
- Open questions:
- Deterministic alg.: use of tangent Graeffe transforms;
- Heuristic alg.: Graeffe transform of order 2^{l} is the bottleneck;
- Prove the heuristic!

Thank you!

