
Root finding over finite fields

Bruno Grenet
LIRMM

Université de Montpellier

Joris van der Hoeven & Grégoire Lecerf
CNRS – LIX

École polytechnique

GT MC2 — April 8., 2015

Statement of the problem

Root finding over finite fields
Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

I Building block for many algorithms in computer algebra: root
finding over Z, factorization, sparse interpolation, . . .

I Applications in cryptography, error correcting codes, . . .
I Derandomization
I Sparse interpolation: bottleneck in practice

[van der Hoeven & Lecerf, 2014]

2 / 24
Bruno Grenet – Root finding over finite fields

N

Statement of the problem

Root finding over finite fields
Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

I Building block for many algorithms in computer algebra: root
finding over Z, factorization, sparse interpolation, . . .

I Applications in cryptography, error correcting codes, . . .
I Derandomization
I Sparse interpolation: bottleneck in practice

[van der Hoeven & Lecerf, 2014]

2 / 24
Bruno Grenet – Root finding over finite fields

N

Finite fields

Fq: field with q elements, q = pr for some prime number p
I Fp ' Z/pZ; +, −, × and / modulo p
I Fq ' Fp[λ]/〈φ〉 (φ ∈ Fp[λ] irreducible of degree r);

+, −, × and / modulo p and φ

I F3 = {0, 1, 2}:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

and

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

;

I F4 = F2[λ]/〈λ2 + λ+ 1〉 = {0, 1, λ, λ+ 1}:
+ 1 λ λ+ 1
1 0 λ+ 1 λ
λ λ+ 1 0 1

λ+ 1 λ 1 0

and
× λ λ+ 1
λ λ+ 1 1

λ+ 1 1 λ
.

3 / 24
Bruno Grenet – Root finding over finite fields

N

Finite fields

Fq: field with q elements, q = pr for some prime number p
I Fp ' Z/pZ; +, −, × and / modulo p
I Fq ' Fp[λ]/〈φ〉 (φ ∈ Fp[λ] irreducible of degree r);

+, −, × and / modulo p and φ

I F3 = {0, 1, 2}:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

and

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

;

I F4 = F2[λ]/〈λ2 + λ+ 1〉 = {0, 1, λ, λ+ 1}:
+ 1 λ λ+ 1
1 0 λ+ 1 λ
λ λ+ 1 0 1

λ+ 1 λ 1 0

and
× λ λ+ 1
λ λ+ 1 1

λ+ 1 1 λ
.

3 / 24
Bruno Grenet – Root finding over finite fields

N

Finite fields

Fq: field with q elements, q = pr for some prime number p
I Fp ' Z/pZ; +, −, × and / modulo p
I Fq ' Fp[λ]/〈φ〉 (φ ∈ Fp[λ] irreducible of degree r);

+, −, × and / modulo p and φ

I F3 = {0, 1, 2}:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

and

× 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

;

I F4 = F2[λ]/〈λ2 + λ+ 1〉 = {0, 1, λ, λ+ 1}:
+ 1 λ λ+ 1
1 0 λ+ 1 λ
λ λ+ 1 0 1

λ+ 1 λ 1 0

and
× λ λ+ 1
λ λ+ 1 1

λ+ 1 1 λ
.

3 / 24
Bruno Grenet – Root finding over finite fields

N

Multiplicative structure

F∗17

1
9

13

15

16
8

4

22

3

10

5

11
14

7

12

6
3

4

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of F∗17:
F∗17 = {3i : 0 6 i < 16}

αq−1 = ζi(q−1) = 1

Xq−1 − 1 =
∏
α∈F∗q

(X− α)

4 / 24
Bruno Grenet – Root finding over finite fields

N

Multiplicative structure

F∗17

1
9

13

15

16
8

4

22

3

10

5

11
14

7

12

6
3

4

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of F∗17:
F∗17 = {3i : 0 6 i < 16}

αq−1 = ζi(q−1) = 1

Xq−1 − 1 =
∏
α∈F∗q

(X− α)

4 / 24
Bruno Grenet – Root finding over finite fields

N

Multiplicative structure

F∗17

1
9

13

15

16
8

4

22

3

10

5

11
14

7

12

6
3

4

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of F∗17:
F∗17 = {3i : 0 6 i < 16}

αq−1 = ζi(q−1) = 1

Xq−1 − 1 =
∏
α∈F∗q

(X− α)

4 / 24
Bruno Grenet – Root finding over finite fields

N

Multiplicative structure

F∗17

1
9

13

15

16
8

4

22

3

10

5

11
14

7

12

6
3

4

2 is a primitive root of
unity of order 8

4 is a primitive root of
unity of order 4

3 is a primitive
element of F∗17:
F∗17 = {3i : 0 6 i < 16}

αq−1 = ζi(q−1) = 1

Xq−1 − 1 =
∏
α∈F∗q

(X− α)

4 / 24
Bruno Grenet – Root finding over finite fields

N

A first algorithm

Theorem
The roots of f ∈ Fq[X] can be computed in deterministic time
poly(q, df).

I Algo: Test each α ∈ Fq, sequentially.

B Input size (1+ df) logq: exponential time!

I Randomization: expected time df

df + 1
q.

5 / 24
Bruno Grenet – Root finding over finite fields

N

A first algorithm

Theorem
The roots of f ∈ Fq[X] can be computed in deterministic time
poly(q, df).

I Algo: Test each α ∈ Fq, sequentially.

B Input size (1+ df) logq: exponential time!

I Randomization: expected time df

df + 1
q.

5 / 24
Bruno Grenet – Root finding over finite fields

N

A first algorithm

Theorem
The roots of f ∈ Fq[X] can be computed in deterministic time
poly(q, df).

I Algo: Test each α ∈ Fq, sequentially.

B Input size (1+ df) logq: exponential time!

I Randomization: expected time df

df + 1
q.

5 / 24
Bruno Grenet – Root finding over finite fields

N

Settings

Objectives
Obtain fast algorithms for polynomial root finding in finite fields.

I Deterministic, probabilistic, heuristic; in practice or in theory.

I Assumption: f has df distinct and nonzero roots.
(easy reduction: f← gcd(f, Xq−1 − 1))

I Extra input: A primitive element ζ, or a primitive root of unity ξ.
I Smooth cardinality:

• q = ρπ1 · · ·πm + 1, where ρ, π1, . . . , πm are small;
• Practical purpose: q =M2m + 1 is a FFT prime.

6 / 24
Bruno Grenet – Root finding over finite fields

N

Settings

Objectives
Obtain fast algorithms for polynomial root finding in finite fields.

I Deterministic, probabilistic, heuristic; in practice or in theory.
I Assumption: f has df distinct and nonzero roots.

(easy reduction: f← gcd(f, Xq−1 − 1))

I Extra input: A primitive element ζ, or a primitive root of unity ξ.
I Smooth cardinality:

• q = ρπ1 · · ·πm + 1, where ρ, π1, . . . , πm are small;
• Practical purpose: q =M2m + 1 is a FFT prime.

6 / 24
Bruno Grenet – Root finding over finite fields

N

Settings

Objectives
Obtain fast algorithms for polynomial root finding in finite fields.

I Deterministic, probabilistic, heuristic; in practice or in theory.
I Assumption: f has df distinct and nonzero roots.

(easy reduction: f← gcd(f, Xq−1 − 1))
I Extra input: A primitive element ζ, or a primitive root of unity ξ.

I Smooth cardinality:
• q = ρπ1 · · ·πm + 1, where ρ, π1, . . . , πm are small;
• Practical purpose: q =M2m + 1 is a FFT prime.

6 / 24
Bruno Grenet – Root finding over finite fields

N

Settings

Objectives
Obtain fast algorithms for polynomial root finding in finite fields.

I Deterministic, probabilistic, heuristic; in practice or in theory.
I Assumption: f has df distinct and nonzero roots.

(easy reduction: f← gcd(f, Xq−1 − 1))
I Extra input: A primitive element ζ, or a primitive root of unity ξ.
I Smooth cardinality:

• q = ρπ1 · · ·πm + 1, where ρ, π1, . . . , πm are small;
• Practical purpose: q =M2m + 1 is a FFT prime.

6 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

A (slow) recursive algorithm

F∗q

f =

d∏
i=1

(X− αi)

×
×
×

×
×

×

×

S

Sc

random
split

u =
∏
α∈S

(X− α)

∏
αi∈S

(X− αi)

∏
αi∈Sc

(X− αi)

gcd(f, u)

f/ gcd(f, u)

P[gcd(f, u) ∈ {1, f}] = P[∀i, αi ∈ S] + P[∀i, αi ∈ Sc] = 1/2d−1

Good and bad news
The expected number of calls is 2d, but the complexity is Õ(q).

7 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1

= (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Cantor-Zassenhaus’ algorithm

I
∏
α∈F∗

q

(X− α) = Xq−1 − 1 = (X
q−1

2 − 1)(X
q−1

2 + 1) (q odd)

α
q−1
2 = 1

α
q−1
2 = −1

(α+ τ)
q−1
2

= 1

(α+ τ)
q−1
2

= −1

I With some luck, gcd(f, Xq−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
q−1

2 − 1) for
some random τ ∈ Fq

Pτ∈Fq
[
gcd(f, X+ τ)

q−1
2 − 1) /∈ {1, f}

]
=
q− 1

2q

I gcd(f, (X+ τ)
q−1

2 − 1) in time Õ(d logq)

Randomized algorithm
The roots of f ∈ Fq[X] can be computed in time Õ(d log2 q).

8 / 24
Bruno Grenet – Root finding over finite fields

N

Modified Cantor-Zassenhaus’ algorithm
(for smooth cardinality)

Let q = χρ+ 1. Then Xq−1 − 1 =
χ−1∏
i=0

(Xρ − ξi), where ξχ = 1.

ξ0

ξ1

ξ2

ξ3

αp =
gcd(f, (X+ τ)ρ − ξ0)

gcd(f, (X+ τ)ρ − ξ1)

gcd(f, (X+ τ)ρ − ξ2)

gcd(f, (X+ τ)ρ − ξ3)

If χ� logq/ logd, the speed-up is approximately log2 χ.

9 / 24
Bruno Grenet – Root finding over finite fields

N

Modified Cantor-Zassenhaus’ algorithm
(for smooth cardinality)

Let q = χρ+ 1. Then Xq−1 − 1 =
χ−1∏
i=0

(Xρ − ξi), where ξχ = 1.

ξ0

ξ1

ξ2

ξ3

αp =
gcd(f, (X+ τ)ρ − ξ0)

gcd(f, (X+ τ)ρ − ξ1)

gcd(f, (X+ τ)ρ − ξ2)

gcd(f, (X+ τ)ρ − ξ3)

If χ� logq/ logd, the speed-up is approximately log2 χ.

9 / 24
Bruno Grenet – Root finding over finite fields

N

Modified Cantor-Zassenhaus’ algorithm
(for smooth cardinality)

Let q = χρ+ 1. Then Xq−1 − 1 =
χ−1∏
i=0

(Xρ − ξi), where ξχ = 1.

ξ0

ξ1

ξ2

ξ3

αp =
gcd(f, (X+ τ)ρ − ξ0)

gcd(f, (X+ τ)ρ − ξ1)

gcd(f, (X+ τ)ρ − ξ2)

gcd(f, (X+ τ)ρ − ξ3)

If χ� logq/ logd, the speed-up is approximately log2 χ.

9 / 24
Bruno Grenet – Root finding over finite fields

N

Modified Cantor-Zassenhaus’ algorithm
(for smooth cardinality)

Let q = χρ+ 1. Then Xq−1 − 1 =
χ−1∏
i=0

(Xρ − ξi), where ξχ = 1.

ξ0

ξ1

ξ2

ξ3

αp =
gcd(f, (X+ τ)ρ − ξ0)

gcd(f, (X+ τ)ρ − ξ1)

gcd(f, (X+ τ)ρ − ξ2)

gcd(f, (X+ τ)ρ − ξ3)

If χ� logq/ logd, the speed-up is approximately log2 χ.

9 / 24
Bruno Grenet – Root finding over finite fields

N

The (generalized) Grae�e transform

Definition
The Graeffe transform of g ∈ Fq[X] is the unique polynomial
h ∈ Fq[X] such that

h(X2) = g(X)g(−X).

If g(X) =
∏
i(αi − X), then h(X) =

∏
i(α

2
i − X).

The generalized Graeffe transform of g ∈ Fq[X] of order π is

Gπ(g)(X) = (−1)π degg resz(g(z), zπ − x).

If g =
∏
i(αi − X), then Gπ(g)(X) =

∏
i(α

π
i − X).

Note. Gπ1π2 = Gπ1 ◦Gπ2

10 / 24
Bruno Grenet – Root finding over finite fields

N

The (generalized) Grae�e transform

Definition
The Graeffe transform of g ∈ Fq[X] is the unique polynomial
h ∈ Fq[X] such that

h(X2) = g(X)g(−X).

If g(X) =
∏
i(αi − X), then h(X) =

∏
i(α

2
i − X).

The generalized Graeffe transform of g ∈ Fq[X] of order π is

Gπ(g)(X) = (−1)π degg resz(g(z), zπ − x).

If g =
∏
i(αi − X), then Gπ(g)(X) =

∏
i(α

π
i − X).

Note. Gπ1π2 = Gπ1 ◦Gπ2

10 / 24
Bruno Grenet – Root finding over finite fields

N

The (generalized) Grae�e transform

Definition
The Graeffe transform of g ∈ Fq[X] is the unique polynomial
h ∈ Fq[X] such that

h(X2) = g(X)g(−X).

If g(X) =
∏
i(αi − X), then h(X) =

∏
i(α

2
i − X).

The generalized Graeffe transform of g ∈ Fq[X] of order π is

Gπ(g)(X) = (−1)π degg resz(g(z), zπ − x).

If g =
∏
i(αi − X), then Gπ(g)(X) =

∏
i(α

π
i − X).

Note. Gπ1π2 = Gπ1 ◦Gπ2

10 / 24
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

Let q = ρπ1 · · ·πm + 1.

Remark
Gq−1(g)(X) = ±

∏
i(X− αq−1i) = ±(X− 1)deg(g)

f h0 h1 . . . hm−1 hm

Z(f) Z0 Z1 . . . Zm−1 {1}

Gρ Gπ1 Gπ2 Gπm−1 Gπm

11 / 24
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

Let q = ρπ1 · · ·πm + 1.
Remark
Gq−1(g)(X) = ±

∏
i(X− αq−1i) = ±(X− 1)deg(g)

f h0 h1 . . . hm−1 hm

Z(f) Z0 Z1 . . . Zm−1 {1}

Gρ Gπ1 Gπ2 Gπm−1 Gπm

11 / 24
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

Let q = ρπ1 · · ·πm + 1.
Remark
Gq−1(g)(X) = ±

∏
i(X− αq−1i) = ±(X− 1)deg(g)

f h0 h1 . . . hm−1 hm

Z(f) Z0 Z1 . . . Zm−1 {1}

Gρ Gπ1 Gπ2 Gπm−1 Gπm

11 / 24
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

Let q = ρπ1 · · ·πm + 1.
Remark
Gq−1(g)(X) = ±

∏
i(X− αq−1i) = ±(X− 1)deg(g)

f h0 h1 . . . hm−1 hm

Z(f) Z0 Z1 . . . Zm−1 {1}

Gρ Gπ1 Gπ2 Gπm−1 Gπm

11 / 24
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

Let q = ρπ1 · · ·πm + 1.
Remark
Gq−1(g)(X) = ±

∏
i(X− αq−1i) = ±(X− 1)deg(g)

f h0 h1 . . . hm−1 hm

Z(f) Z0 Z1 . . . Zm−1 {1}

Gρ Gπ1 Gπ2 Gπm−1 Gπm

11 / 24
Bruno Grenet – Root finding over finite fields

N

Grae�e transform computation

Lemma
Let π divide q− 1, and ξ a primitive root of unity of order π. Then

Gπ(g)(X
π) = g(X)g(ξX) · · ·g(ξπ−1X).

Theorem
Given g ∈ Fq[X] and a primitive root of unity ξ of order π, Gπ(g)
can be computed in Õ(πd logq) operations.

12 / 24
Bruno Grenet – Root finding over finite fields

N

Grae�e transform computation

Lemma
Let π divide q− 1, and ξ a primitive root of unity of order π. Then

Gπ(g)(X
π) = g(X)g(ξX) · · ·g(ξπ−1X).

Theorem
Given g ∈ Fq[X] and a primitive root of unity ξ of order π, Gπ(g)
can be computed in Õ(πd logq) operations.

12 / 24
Bruno Grenet – Root finding over finite fields

N

Improved Grae�e transform computation

Theorem
Let g ∈ Fq[X] of degree d. For all δ > 0 such that d1+δ 6 q− 1,
Gπ(g) can be computed in time (d logq)1+δ + Õ(d logq logπ).

Based on:
Theorem [Kedlaya-Umans’11]
Let f, g, h ∈ Fq[X] of degree d. For all δ > 0, (f ◦ g mod h) can
be computed in time d1+δÕ(logq).

Corollary
Let g ∈ Fq[X] and q = ρπ1 · · ·πm + 1. For all δ, Gρ(g), Gρπ1(g),
. . . , Gρπ1···πm−1

(g) can be computed in time (d log2 q)1+δ.

13 / 24
Bruno Grenet – Root finding over finite fields

N

Improved Grae�e transform computation

Theorem
Let g ∈ Fq[X] of degree d. For all δ > 0 such that d1+δ 6 q− 1,
Gπ(g) can be computed in time (d logq)1+δ + Õ(d logq logπ).

Based on:
Theorem [Kedlaya-Umans’11]
Let f, g, h ∈ Fq[X] of degree d. For all δ > 0, (f ◦ g mod h) can
be computed in time d1+δÕ(logq).

Corollary
Let g ∈ Fq[X] and q = ρπ1 · · ·πm + 1. For all δ, Gρ(g), Gρπ1(g),
. . . , Gρπ1···πm−1

(g) can be computed in time (d log2 q)1+δ.

13 / 24
Bruno Grenet – Root finding over finite fields

N

Improved Grae�e transform computation

Theorem
Let g ∈ Fq[X] of degree d. For all δ > 0 such that d1+δ 6 q− 1,
Gπ(g) can be computed in time (d logq)1+δ + Õ(d logq logπ).

Based on:
Theorem [Kedlaya-Umans’11]
Let f, g, h ∈ Fq[X] of degree d. For all δ > 0, (f ◦ g mod h) can
be computed in time d1+δÕ(logq).

Corollary
Let g ∈ Fq[X] and q = ρπ1 · · ·πm + 1. For all δ, Gρ(g), Gρπ1(g),
. . . , Gρπ1···πm−1

(g) can be computed in time (d log2 q)1+δ.

13 / 24
Bruno Grenet – Root finding over finite fields

N

Following roots

Let q = ρπ1 · · ·πm + 1 = ρχ+ 1 and g = Gρ(f) =
∏
i(αi − X)

r∏
i=1

(αi − X)
Gπ−−−→

r∏
i=1

(απi − X)

ξ: primitive root of unity of order χ
r∏
i=1

(ξei − X)
Gπ−−−→

r∏
i=1

(ξfi − X)

∀i, (ξei)π = ξfi

⇐⇒ ∀i, πei = fi mod χ

⇐⇒ ∀i, ei ∈
{
fi + jχ

π
: 0 6 j 6 π− 1

}

14 / 24
Bruno Grenet – Root finding over finite fields

N

Following roots

Let q = ρπ1 · · ·πm + 1 = ρχ+ 1 and g = Gρ(f) =
∏
i(αi − X)

r∏
i=1

(αi − X)
Gπ−−−→

r∏
i=1

(απi − X)

ξ: primitive root of unity of order χ
r∏
i=1

(ξei − X)
Gπ−−−→

r∏
i=1

(ξfi − X)

∀i, (ξei)π = ξfi

⇐⇒ ∀i, πei = fi mod χ

⇐⇒ ∀i, ei ∈
{
fi + jχ

π
: 0 6 j 6 π− 1

}

14 / 24
Bruno Grenet – Root finding over finite fields

N

Following roots

Let q = ρπ1 · · ·πm + 1 = ρχ+ 1 and g = Gρ(f) =
∏
i(αi − X)

r∏
i=1

(αi − X)
Gπ−−−→

r∏
i=1

(απi − X)

ξ: primitive root of unity of order χ
r∏
i=1

(ξei − X)
Gπ−−−→

r∏
i=1

(ξfi − X)

∀i, (ξei)π = ξfi

⇐⇒ ∀i, πei = fi mod χ

⇐⇒ ∀i, ei ∈
{
fi + jχ

π
: 0 6 j 6 π− 1

}

14 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

A deterministic algorithm

×

Zm = {ξ0}

×
×

×

×
×

×

{ξ
jχ
πm : 0 6 j 6 πm}
hm−1(ξ

e) = 0

×
×
×

×
×

×

×

×

×

×

{ξ
e+jχ
πm−1 : 0 6 j 6 πm−1}
hm−2(ξ

e) = 0

. . .

Theorem
If ρ,maxi πi = O(logq), the algorithm runs in time Õ(d log3 q).

15 / 24
Bruno Grenet – Root finding over finite fields

N

Following roots faster

Lemma
Given h = Gπ(g), and {a1, . . . , al} its roots, one can compute the
roots of g in time Õ(

√
πd logq) + (d logq)1+δ for all δ > 0.

Theorem
Given f ∈ Fq[X] with deg(f) distinct roots in F∗q and a primitive
element of F∗q, the roots of f can be computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+δ

where S1(q− 1) is the largest factor of q− 1.

I Best known bound for smooth q;
I If q =M2m + 1, M = O(logq), complexity Õ(d log2 q).

16 / 24
Bruno Grenet – Root finding over finite fields
N

Following roots faster

Lemma
Given h = Gπ(g), and {a1, . . . , al} its roots, one can compute the
roots of g in time Õ(

√
πd logq) + (d logq)1+δ for all δ > 0.

Theorem
Given f ∈ Fq[X] with deg(f) distinct roots in F∗q and a primitive
element of F∗q, the roots of f can be computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+δ

where S1(q− 1) is the largest factor of q− 1.

I Best known bound for smooth q;
I If q =M2m + 1, M = O(logq), complexity Õ(d log2 q).

16 / 24
Bruno Grenet – Root finding over finite fields
N

Following roots faster

Lemma
Given h = Gπ(g), and {a1, . . . , al} its roots, one can compute the
roots of g in time Õ(

√
πd logq) + (d logq)1+δ for all δ > 0.

Theorem
Given f ∈ Fq[X] with deg(f) distinct roots in F∗q and a primitive
element of F∗q, the roots of f can be computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+δ

where S1(q− 1) is the largest factor of q− 1.

I Best known bound for smooth q;
I If q =M2m + 1, M = O(logq), complexity Õ(d log2 q).

16 / 24
Bruno Grenet – Root finding over finite fields
N

Tangent Grae�e transform

Definition
The tangent Graeffe transform of order π of g ∈ Fq[X] is

Gπ(g(X+ ε)) ∈ (Fq[ε]/〈ε2〉)[X].

Remark. Gπ(g(X+ ε)) = h(X) + εh(X) where h = Gπ(g).

Lemma
A nonzero root β of h is a simple root iff h(β) 6= 0. The
corresponding root of g is α = πβh ′(β)/h(β).

Proof. h(απ) = παπ−1h ′(απ).

17 / 24
Bruno Grenet – Root finding over finite fields

N

Tangent Grae�e transform

Definition
The tangent Graeffe transform of order π of g ∈ Fq[X] is

Gπ(g(X+ ε)) ∈ (Fq[ε]/〈ε2〉)[X].

Remark. Gπ(g(X+ ε)) = h(X) + εh(X) where h = Gπ(g).

Lemma
A nonzero root β of h is a simple root iff h(β) 6= 0. The
corresponding root of g is α = πβh ′(β)/h(β).

Proof. h(απ) = παπ−1h ′(απ).

17 / 24
Bruno Grenet – Root finding over finite fields

N

Randomization

Goal: Ensure many simple roots.

I Replace f by fτ(X) = f(X− τ) for a random τ ∈ Fq.

Lemma
If q = ρχ+ 1 with χ > d(d− 1),

Pτ∈Fq [Gρ(fτ) has multiple roots] 6 1

2
.

Proof. Given αi 6= αj,

#
{
τ ∈ Fq : (τ+ αi)

ρ = (τ+ αj)
ρ
}
6 ρ.

=⇒ Gρ(fτ) has multiple roots for at most d(d−1)2 ρ values of τ.

18 / 24
Bruno Grenet – Root finding over finite fields

N

Randomization

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X− τ) for a random τ ∈ Fq.

Lemma
If q = ρχ+ 1 with χ > d(d− 1),

Pτ∈Fq [Gρ(fτ) has multiple roots] 6 1

2
.

Proof. Given αi 6= αj,

#
{
τ ∈ Fq : (τ+ αi)

ρ = (τ+ αj)
ρ
}
6 ρ.

=⇒ Gρ(fτ) has multiple roots for at most d(d−1)2 ρ values of τ.

18 / 24
Bruno Grenet – Root finding over finite fields

N

Randomization

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X− τ) for a random τ ∈ Fq.

Lemma
If q = ρχ+ 1 with χ > d(d− 1),

Pτ∈Fq [Gρ(fτ) has multiple roots] 6 1

2
.

Proof. Given αi 6= αj,

#
{
τ ∈ Fq : (τ+ αi)

ρ = (τ+ αj)
ρ
}
6 ρ.

=⇒ Gρ(fτ) has multiple roots for at most d(d−1)2 ρ values of τ.

18 / 24
Bruno Grenet – Root finding over finite fields

N

Randomization

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X− τ) for a random τ ∈ Fq.

Lemma
If q = ρχ+ 1 with χ > d(d− 1),

Pτ∈Fq [Gρ(fτ) has multiple roots] 6 1

2
.

Proof. Given αi 6= αj,

#
{
τ ∈ Fq : (τ+ αi)

ρ = (τ+ αj)
ρ
}
6 ρ.

=⇒ Gρ(fτ) has multiple roots for at most d(d−1)2 ρ values of τ.

18 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

A randomized algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > d(d− 1)

f(X− τ+ ε) . . . hl + εhl . . . hm + εhm

Z0 . . . Zl . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

19 / 24
Bruno Grenet – Root finding over finite fields

N

Complexity and heuristic

Theorem
If q =M2m + 1 with M = O(logq), the randomized algorithm
runs in expected time Õ(d log2 q).

I Same asymptotic as Cantor-Zassenhaus’ algorithm;
I Better efficiency in practice.

Heuristic
Let q = ρχ+ 1 and f ∈ Fq[X] with d = deg(f) roots in F∗q. If
χ > 4d, Gρ(f(X+ τ)) has > d/3 simple roots with probability at
least 1/2, for a random τ ∈ Fq.

Justification: holds for a random f rather than f(X+ τ).

20 / 24
Bruno Grenet – Root finding over finite fields

N

Complexity and heuristic

Theorem
If q =M2m + 1 with M = O(logq), the randomized algorithm
runs in expected time Õ(d log2 q).

I Same asymptotic as Cantor-Zassenhaus’ algorithm;
I Better efficiency in practice.

Heuristic
Let q = ρχ+ 1 and f ∈ Fq[X] with d = deg(f) roots in F∗q. If
χ > 4d, Gρ(f(X+ τ)) has > d/3 simple roots with probability at
least 1/2, for a random τ ∈ Fq.

Justification: holds for a random f rather than f(X+ τ).

20 / 24
Bruno Grenet – Root finding over finite fields

N

Complexity and heuristic

Theorem
If q =M2m + 1 with M = O(logq), the randomized algorithm
runs in expected time Õ(d log2 q).

I Same asymptotic as Cantor-Zassenhaus’ algorithm;
I Better efficiency in practice.

Heuristic
Let q = ρχ+ 1 and f ∈ Fq[X] with d = deg(f) roots in F∗q. If
χ > 4d, Gρ(f(X+ τ)) has > d/3 simple roots with probability at
least 1/2, for a random τ ∈ Fq.

Justification: holds for a random f rather than f(X+ τ).

20 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

A heuristic algorithm

I q =M · 2m + 1

I Find the largest l s.t. M2m−l > 4d

f(X− τ+ ε) hl + εhl

ZlZ0 ⊂

{ξe : 0 6 e < M2l}

G2l

only simple roots

I Recursive call with f/
∏
α∈Z0

(X− α).

21 / 24
Bruno Grenet – Root finding over finite fields

N

Implementation

I Algorithms implemented in Mathemagix
(http://mathemagix.org/);

I Heuristic algorithm faster than flint and ntl by factors up to 80;
I Modification of Cantor-Zassenhaus algorithm: gain for large q

only.

22 / 24
Bruno Grenet – Root finding over finite fields

N

http://mathemagix.org/

Timings

q = 7 · 226 + 1

8 10 12 14 16 18
0

5

10

15

20

25

Degree in log scale

Ti
m

e
(s

ec
on

ds
)

NTL
Randomized alg.
Heuristic alg.

23 / 24
Bruno Grenet – Root finding over finite fields

N

Timings

q = 5 · 255 + 1

8 10 12 14 16 18
0

100

200

300

400

Degree in log scale

Ti
m

e
(s

ec
on

ds
)

Flint
Randomized alg.
Heuristic alg.

23 / 24
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for finite fields of smooth cardinality;

I New approach using Graeffe transforms:

• Good deterministic complexity bounds;

• Good probabilistic complexity bounds;

• Good computation times.

I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms;
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck;
• Prove the heuristic!

Thank you!

24 / 24
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for finite fields of smooth cardinality;
I New approach using Graeffe transforms:

• Good deterministic complexity bounds;

• Good probabilistic complexity bounds;

• Good computation times.

I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms;
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck;
• Prove the heuristic!

Thank you!

24 / 24
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for finite fields of smooth cardinality;
I New approach using Graeffe transforms:

• Good deterministic complexity bounds;

• Good probabilistic complexity bounds;

• Good computation times.

I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms;
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck;
• Prove the heuristic!

Thank you!

24 / 24
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for finite fields of smooth cardinality;
I New approach using Graeffe transforms:

• Good deterministic complexity bounds;

• Good probabilistic complexity bounds;

• Good computation times.

I Open questions:
• Deterministic alg.: use of tangent Graeffe transforms;
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck;
• Prove the heuristic!

Thank you!

24 / 24
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for finite fields of smooth cardinality;
I New approach using Graeffe transforms:

• Good deterministic complexity bounds;

• Good probabilistic complexity bounds;

• Good computation times.

I Open questions:
• Deterministic alg.: use of tangent Graeffe transforms;
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck;
• Prove the heuristic!

Thank you!

24 / 24
Bruno Grenet – Root finding over finite fields

N

