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Classical factorization algorithms

Factorization of a polynomial f

Find fq, ..., fy, irreducible, s.t. f =17 x --- x f.
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Factorization of a polynomial f

Find fq, ..., ft, irreducible, s.t. f =17 x --- x fy.

Many algorithms

over Z, Q, Q(«), Q, Qp. F. R, C, ...;
in 1, 2, ..., n variables.

Complexity: polynomial in deg(f)

X102y101 | x10Ty102 _ 5 101y101 _ 5y 1 7
= (X+Y—1)x (X'OTyT0T _7)
=(X4+Y—=1)x (XY —=1) x (14+XY +---4Xx'00y100)



Goal

Definition

k
(X1, Xn) =) X7 X
j=1

> size(f) ~ k<maxj (size(c;)) +n log(deg f))
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Goal

Definition

k
(X1, Xn) =) X7 X
j=1

> size(f) ~ k(maxj (size(c;)) +n log(deg f))

Compute the degree-d factors of f in time poly(size(f), d)
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Definition

xq CX j
Xh ) § C)X1 i X5

> size(f) ~ k(maxj(size(cj)) + nlog(deg f))

Compute the degree-d factors of f in time poly(size(f), d) }
Let f € R[X] with k nonzero terms. Then #Zr(f) < 2k — 1.




Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors (integer roots) of f € Z[X|;  [Cucker-Koiran-Smale’98]
> low-degree factors of f € Q(o)[X]; [H. Lenstra’99]

> low-degree factors of f € Q(a)[X1,...,Xu]. [Kaltofen-Koiran’06]
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Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

> linear factors (integer roots) of f € Z[X|;  [Cucker-Koiran-Smale’98]
> low-degree factors of f € Q(o)[X]; [H. Lenstra’99]

> low-degree factors of f € Q(a)[X1,...,Xu]. [Kaltofen-Koiran’06]

It is NP-hard to compute roots of f € I, [X]. [Bi-Cheng-Rojas’13]

Bruno Grenet — Computing low-degree factors of lacunary polynomials 423




There exist deterministic polynomial-time algorithms computing

factors (integer roots) of f € i [Cucker-Koiran-Smale’98]
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Only available for number fields

Based on number-theoretic results ~» theoretical algorithms



There exist deterministic polynomial-time algorithms computing

factors (integer roots) of f € i [Cucker-Koiran-Smale’98]

factors of f € ; [H. Lenstra’99]

factors of f € 5 [Kaltofen-Koiran'06]

It is to compute . [Bi-Cheng-Rojas'13]

Only available for number fields

Based on number-theoretic results ~» theoretical algorithms

Generalization to other fields? More practical algorithms?




Let K be any field of characteristic 0.

Theorem (G."14)

The computation of the degree-d factors of f € K[Xy,...,Xn]
reduces to

» univariate lacunary factorizations plus post-processing, and

» multivariate low-degree factorizations,

in poly(size(f), d) bit operations.
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Let K be any field of characteristic 0.
Theorem (G."14)

The computation of the degree-d factors of f € K[Xy,...,Xn]
reduces to

» univariate lacunary factorizations plus post-processing, and

» multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

Case d =1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

New algorithm for K = Q(e); some factors for K = Q,R, C, Q,,
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[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Observation

(Y —uX —v) divides f(X,Y) <— f(X,uX+v)=0

Theorem

¢
val chX"Cj (uX +v)B | <oy + <§> if f#£0 and uv # 0.
=1

Gap Theorem

Let f = f1 +f2 € KIX, Y]. If valx(f2) > valx(f1) + (*I1), then for
all uv # 0, (Y —uX —v) divides f iff it divides both f; and f;.
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. X16Y15 + X17Y13 + X16Y14 + X]OYZ . X9Y3
+X7Y2 = XY + X3Y8 —2X3Y7 + X3Y°

1571 °
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f=X31Y0 —2X30Y7 4 X27Y8 — X27Y6

1571

1071

+ X]OYZ - X9Y3
+X7Y2 —XOY® + X3Y8 —2Xx3Y7 + x3Y®

10 15 20 25 30 X
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+X7Y2 = XY+ X3Y8 —2X3Y7 + X3Y°

f1 =X3YO(=X2 + Y2 —2Y +1)



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+ X072 —X7y?
+X7Y2 = XY+ X3Y8 —2X3Y7 + X3Y°

f1=X3Ye(X—=Y+1)(1=X—-Y)



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+ X072 —X7y?
+X7Y?2 - XYe - X3Y8 —2X3Y7 4+ X3Y®

f1=X3Ye(X=Y+1)(1=X—-Y)
f=XY2(X=Y+1)

= XY (X + V)X =Y +1)
f2 =XV (X+Y—-1)(X=Y+1)



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+ X072 —X7y?
+X7Y?2 - XYe - X3Y8 —2X3Y7 4+ X3Y®

f1=X3Ye(X=Y+1)(1=X—-Y)
f=XY2(X=Y+1)

= XY (X + V)X =Y +1)
f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y+1,1)



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+ X072 —X7y?
+X7Y?2 - XYe - X3Y8 —2X3Y7 4+ X3Y®

f1=X3Ye(X=Y+1)(1=X—-Y)
f=XY2(X=Y+1)

= XY (X + V)X =Y +1)
f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y +1,1), (X,3), (V,2)



Algorithm for linear factors

Find linear factors of f(X,Y) = Z c: X% YR

j=1
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Find linear factors of f(X,Y) Zc X% YP;
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[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Find linear factors of f(X,Y) Zc X% YP;
j=1

monomials binomials trinomials

/ J N\

(X, minj og;) (X—a) Conjnl(gn f1act0rs of
; o j =
(Y, mtn; BJ) Factors of Zj ¢ X% - :t Zt ch“jYﬁj
(Y —uX) j=it
Roots of u +— Zj cjuﬁi (deg(fy) < O(2))

Low-degree factorization

Univariate lacunary factorization
[Kaltofen'82, ..., Lecerf'07]

[H. Lenstra’99]



[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Let f = Zc X9YPi € Q(x)[X, Y] be given in lacunary repre-
j=1

sentation. There exists a deterministic polynomial-time algo-

rithm to compute its linear factors, with multiplicities.

{
monomials binomials trinomials

/ J N\

(X, minj og;) (X—a) Conjnl(gn f1act0rs of
; o j =
(Y, mtn; BJ) Factors of Zj ¢ X% - :t Zt ch“jYﬁj
(Y —uX) j=it
Roots of u +— Zj cjuﬁi (deg(fy) < O(2))

Low-degree factorization

Univariate lacunary factorization
[Kaltofen'82, ..., Lecerf'07]

[H. Lenstra’99]
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Observation for low-degree factors

g(X,Y) divides f(X,Y) <= f(X;$(X)) =0

degy (g)

gX,Y)=go(X) [ (¥—¢u(X)

i=1
go € K[X]
$1, ..., da € K{X)) are Puiseux series:

t>to

d(X) = Z a XY™ with a; € K, ag, #0.

If g is irreducible, g divides f < i, f(X, d1)
— Yi, (X, i)

0
0

Valuation: val(¢) = to/n.
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Theorem

Letf; = Zf:] ch"‘J‘YBi and g a degree-d irreducible polynomial
with a root ¢ € K((X)) of valuation v.
If the family (X“id)ﬁi)j is linearly independent,

val(f1(X, &) < min(e; +vf;) + (2d(4d +1) —v) (ﬁ)

Proof idea. Let {; = X% bPBi for all j.

Wronskian: wr(q,...,P¢) = det (lbj“)) = &wr(ﬁ,lj)z,...,l])e)
val(wr(f1, b2, ..., e)) > val(fr) + 3 ;- val(w;)

val(wr(ir,...,he) < ¥ val(W;) + (2d(4d + 1) —v)(3)




Gap Theorem [G/14]

(4 k
f=) X9YPi4 3 Xx0YP
j=1 j=t+1

Let

fy f2

with uv # 0, o1 + VP71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

og1 +VvPBer1 > (o +vB7) + (2d(4d + 1) —v) (g)

then g divides f iff it divides both f; and f5.
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Let

fy f2
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Gap Theorem [G.14]

Let : ¢
f=) X9YPi4 3 Xx0YP
j=1 j=t+1

fy f2

with uv # 0, o1 + VP71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

og1 +VvPBer1 > (o +vB7) + (2d(4d + 1) —v) <§>

then g divides f iff it divides both f; and f5.

Depends on v.

Does not bound 5 nor f3;



Proposition

Let f; = Zf:1 ch"‘iYBi and v1 # v, such that for all j

{O(j + Vv Bj

[0® —i—vZB]‘

Then for all p, q, [otp — gl < O(¢2d*) and IBp —Bgql < O(e%ah).

NN

o1 +viB1+ (2d(4d+ 1) —vq)(
x2 +v2B2 + (2d(4d+ 1) — v2)(

2)
2)




Proposition

Let f; = Zf’:] ch“iYBi and v1 # v, such that for all j

{O(j + Vi Bj

[0® —i—vZB]‘

o1 +v1B1 + (2d(4d +1) —v1) (Y)
o +v2Ba + (2d(4d + 1) —v2) (§).

NN

Then for all p, q, [otp — gl < O(¢2d*) and IBp —Bgql < O(e%ah).

Degree-d factors of f having two roots of valuation vi and vy:
Write f = f1 + - .- + fg, using v; and then vy;
Write fi = X4YP£S with deg(f) < O(£2d*);
Factor gcd(f9,...,f3).



Proposition

Let f; = Zf’:] ch"‘iYBi and v1 # v, such that for all j

{O(j + Vv Bj

o +VviB1 + (2d(4d + 1) —v1)(5)
0 + V2B + (2d(4d + 1) —v2) (4).

NN

[0® —i—vZB]‘

Then for all p, q, [otp — gl < O(¢2d*) and IBp —Bgql < 0(e2d4).

Degree-d factors of f having two roots of valuation vi and vy:
Write f = f1 + - .- + fg, using v; and then vy;
Write fi = X4YP£S with deg(f) < O(£2d*);

Factor gcd(f9,...,f3). ~+ low-degree bivariate factorization




n g o X

f= Y3 £2XY = X3V X3Y3 —2X2Y2 —4 X3 +2X4Y3 —2X°Y2
+X3YC + 2 XYY — XPY7 + XOY®



n g o X

f= Y3 £2XY = X3V X3Y3 —2X2Y2 —4 X3 +2X4Y3 —2X°Y2
+X3YC + 2 XYY — XPY7 + XOY®
= (Y =2X2+X3YH) (Y2 +2X = X?2Y3 + X3Y?)



For each edge in the lower hull
of slope —v, f has a root
¢ € K(X)) of valuation v.




For each edge in the lower hull
of slope —v, f has a root
¢ € K(X)) of valuation v.

Corollary

A polynomial f € K[X, Y] has a factor g with a root of valuation v
iff the Newton polygon of f has an edge of slope —v.




Weighted-homogeneity

A polynomial g = 3 ; b; X1 Y%
is (p, q)-homogeneous of order
w if py; + q6; = w for all j.




Weighted-homogeneity

A polynomial g = 3 ; b; X1 Y%
is (p,q)-homogeneous of order
w if py; + q6; = w for all j.

00 1 23456 7Y

Weighted-homogeneous factors Non-homogeneous factors
0 )
Only one valuation Two distinct valuations
0 U
Unidimensional Newton polygons Bidimensional Newton polygons

0 )

Univariate lacunary factorization Bivariate low-degree factorization
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f=3 1, cX4YPiand d € Z,.

The non-homogeneous degree-d factors of f.

Compute the Newton polygon Ny of f;

For each pair of non-parallel edges of slopes —vy, —v,:

Write f = X4 YP1f; ... 4 X%sYPsfo using the Gap
Theorem with v and vy, st. Y, deg(f) < O(k?d%);
Compute the degree-d factors of ged(fy,...,fs);

~> low-degree bivariate factorization

Return the union of the sets of factors, with multiplicity.
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f=3 1, cX4YPiand d € Z,.

The weighted-homogeneous degree-d factors of f.
Compute the Newton polygon Ny of f;

For each pair of parallel edges, of slope —q/p:

Write f = f1 4+ --- + f5 as a sum of (p, q)-homogeneous
polynomials;
Compute the degree—% factors of the ft(X%, 1)'s;

~> univariate lacunary factorization
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Compute the Newton polygon Ny of f;

For each pair of parallel edges, of slope —q/p:
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Compute the degree—% factors of the f¢(X4a,1)’s;

~> univariate lacunary factorization
Compute YP4e9(9)g(X9/YP) for each common factor g.



f=3 1, cX4YPiand d € Z,.

The weighted-homogeneous degree-d factors of f.
Compute the Newton polygon Ny of f;

For each pair of parallel edges, of slope —q/p:

Write f = f1 4+ --- + f5 as a sum of (p, q)-homogeneous
polynomials;

1
Compute the degree—% factors of the f¢(X4a,1)’s;

~> univariate lacunary factorization
Compute YP4e9(9)g(X9/YP) for each common factor g.

Return the union of the sets of factors, with multiplicity.



Complete algorithm

3
Find degree-d factors of f = Z c]-X"‘J'Yﬁj

j=1
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Find degree-d factors of f = Z ch"‘"YBi
j=1

monomials

/

(X, minj og;)
(Y, min; B5)
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k
Find degree-d factors of f = Z ch"‘"YBi
j=1

: weighted
monomials h non-hom.
om.
/ | \

(X, minj og;) Degree-d factors Common factors of
(Y, min; 35) of univariate et B
) )

lacunary polynomials Z ¢ XY

J=jt
Available for Q(cc) only (deg(fy) < O(£2d*))

Impossible for @ C
Low-degree factorization

Q(“J)@a R, (C, Qp, etc.



Multivariate polynomials

k
Degree-d factors of f = Z ch;x” Xy

j=1
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i=1

Do not compute the n-dimensional Newton polytope!

For all i < j, compute the Newton polygon Ny ; of f € R[Xj, X;]
where R = K[X\ Xj, Xjl;
Weighted homogeneous factors ~~ unidimensional factors

Every N ; is unidimensional (or 0-dimensional)
Univariate lacunary factorization

Non-homogeneous factors ~» multidimensional factors

At least one Ny ; is multidimensional
Multivariate low-degree factorization
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Consider f as before, and let g be a multidimensional factor of f:

If “X; ¢ g", g divides each coefficient of T € K[X \ Xi][X;];
Else Ni;(g) is multidimensional for some j.

Let H ={f};
For each variable X; and each h € H:

Partition h = Y 4 hi(X\ X{)X&;

For each Xj such that Ny ;(h) is multidimensional,
partition h with respect to each pair of non-parallel
edges in Ny ;(h);

Merge those O(nk?) partitions to get Jy,;

Replace h by the elements of H;, in H.

Return the degree-d factors of gcd(H°).



Mmx]

Mmx]

use "lacunaryx";
X == coordinate(’x); x == mvpolynomial(l:>Integer, X);
Y == coordinate(’y); y == mvpolynomial(l:>Integer, Y);
49 msec

c () :Integer == (-1)~(random() rem 2)*(random() rem 10);
lin () : MVPolynomial (Integer) == c()*x + c(Q*y + c();
quad () : MVPolynomial(Integer) == c()*x~2+c()*x*y+c()*y~2+cQ*x+cO*y+c();
randpol (): MVPolynomial(Integer) ==
p: MVPolynomial (Integer) := mvpolynomial (1:>Integer);
q: MVPolynomial (Integer) := mvpolynomial (0:>Integer);
for i:Int in 1 to 10 do {
1 == 1in(); e == i+random() rem 3; p*=l-e¢;
mmout << "(" << 1 << ")°" << e << " ; ";}
for i:Int in 1 to 30 do g+= c()*x~random()*y random() * quad();
P*q;};
d (p: MVPolynomial (Integer)) == if deg(p) < O then deg(p)+2-32 else deg(p);
test () : Void == { p == randpel(); mmout << 1f << "Polynomial of degree
" << d(p) << " with " << #(p) << " nonzero monomials." << 1f << "Linear
factors: " << linear_factors (p) << 1f;};

26 msec



Mmx] test();
Gy+D~3,; Gy+2z+D"1; Bx-—D"2 ; (By+7z+ND"2; Uy—2-6)"3 ;
My+4x+5)"1 ; (—4y+6x—6)"1 ; By—2z—-8)3; (y+T7x+2)"1; (—8y+
9z —2)-2 ;
Polynomial of degree 3181006535 with 6801 nonzero monomials.
Linear factors: [[z,61475114], [3x —4,2], [y, 76556243], 5y +7,3],[3y+22+1,1], [y +
Te+21,dy+4x+51],[-2y+3z—3,1],[-8y+92—2,2,[-8y+T7x+9,2,[-3y+
22+8,3],[-4y+2+6,3]

Mmx] test();
(—5y—3x—-2)"3 ; (-8y+8)-1; Cy+82z—-6)2 ; (y+6x—-6)"2 ; (y+x+4"3 ;
Qy—6x+3)-3 ; (Ty+4z)~3 ; (—y—62z+1)"3 ; (Tz+1)"3 ; (y+Tx+6)"2 ;
Polynomial of degree 3310508792 with 10976 nonzero monomials.
Linear factors: [[x,41780031], (7= +1,3],[y,436756), [y —1,1],[Ty+4x,3], [y +6z —6,2],
ly+72+6,2), [y+42—-3,2,-2y+62—3,3],[y+6x—1,3],[y+2+4,3,[by+3z+2,3|
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univariate lacunary polynomials

low-degree multivariate polynomials

Reduction to {

“Field-independent”
and than previous algorithms
Implementation: work in progress

Open questions:

Lacunary factors in polynomial time?
More general settings: arithmetic circuits

Degree-d factors in positive characteristic?
Small positive characteristic?

Thank you!

arXiv:1401.4720
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