Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach

Bruno Grenet
LIX - École Polytechnique

Groupe de travail MC2
Lyon, 18 juin 2014

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathbf{q}}, \mathbb{R}, \mathbb{C}, \ldots$;
- in $1,2, \ldots, n$ variables.

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathrm{q}}, \mathbb{R}, \mathbb{C}, \ldots ;$
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathrm{q}}, \mathbb{R}, \mathbb{C}, \ldots$;
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

$$
X^{102} Y^{101}+X^{101} Y^{102}-X^{101} Y^{101}-X-Y+1
$$

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathrm{q}}, \mathbb{R}, \mathbb{C}, \ldots$;
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

$$
\begin{aligned}
& X^{102} Y^{101}+X^{101} Y^{102}-X^{101} Y^{101}-X-Y+1 \\
& \quad=(X+Y-1) \times\left(X^{101} Y^{101}-1\right)
\end{aligned}
$$

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathbf{q}}, \mathbb{R}, \mathbb{C}, \ldots ;$
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

$$
\begin{aligned}
& X^{102} Y^{101}+X^{101} Y^{102}-X^{101} Y^{101}-X-Y+1 \\
& \quad=(X+Y-1) \times\left(X^{101} Y^{101}-1\right) \\
& \quad=(X+Y-1) \times(X Y-1) \times\left(1+X Y+\cdots+X^{100} Y^{100}\right)
\end{aligned}
$$

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$
Compute the degree- d factors of f in time poly(size(f), d)

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$
Compute the degree-d factors of f in time poly(size(f), d)
Let $f \in \mathbb{R}[X]$ with k nonzero terms. Then $\# Z_{\mathbb{R}}(f) \leqslant 2 k-1$.

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $\mathrm{f} \in \mathbb{Z}[\mathrm{X}$; [Cucker-Koiran-Smale'98]
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[\mathrm{X}$;
[H. Lenstra'99]
- low-degree factors of $f \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.
[Kaltofen-Koiran'06]

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $f \in \mathbb{Z}[X]$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[\mathrm{X}$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.

It is NP-hard to compute roots of $f \in \mathbb{F}_{p}[X]$.
[Kaltofen-Koiran'06]
[Cucker-Koiran-Smale'98]
[H. Lenstra'99]

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $f \in \mathbb{Z}[X]$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[X$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.
[Kaltofen-Koiran'06]
It is NP-hard to compute roots of $f \in \mathbb{F}_{p}[X]$.
- Only available for number fields
- Based on number-theoretic results \rightsquigarrow theoretical algorithms

Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $f \in \mathbb{Z}[X]$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[X$;
- low-degree factors of $f \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.

It is NP-hard to compute roots of $f \in \mathbb{F}_{p}[X]$.
[Cucker-Koiran-Smale'98]
[H. Lenstra'99]
[Kaltofen-Koiran'06]
[Bi-Cheng-Rojas'13]
> Only available for number fields

- Based on number-theoretic results \rightsquigarrow theoretical algorithms

Generalization to other fields? More practical algorithms?

Main result

Let \mathbb{K} be any field of characteristic 0 .
Theorem (G.'14)
The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations, in poly(size(f), d) bit operations.

Main result

Let \mathbb{K} be any field of characteristic 0 .
Theorem (G.'14)
The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations, in poly(size(f), d) bit operations.
- Case $d=1$
[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Main result

Let \mathbb{K} be any field of characteristic 0 .
Theorem (G.'14)
The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations, in poly(size(f), d) bit operations.
- Case $d=1$
[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]
- New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{\mathrm{p}}$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki ${ }_{r 3}$]

Observation

$(Y-u X-v)$ divides $f(X, Y) \Longleftrightarrow f(X, u X+v) \equiv 0$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki' ${ }_{3}$]

Observation

$(Y-u X-v)$ divides $f(X, Y) \Longleftrightarrow f(X, u X+v) \equiv 0$
Theorem
$\operatorname{val}\left(\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leqslant \alpha_{1}+\binom{\ell}{2}$ if $f \neq 0$ and $u v \neq 0$.

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki' ${ }_{3}$]

Observation

$(\mathrm{Y}-\mathrm{uX}-v)$ divides $\mathrm{f}(\mathrm{X}, \mathrm{Y}) \Longleftrightarrow \mathrm{f}(\mathrm{X}, \mathrm{uX}+\boldsymbol{v}) \equiv 0$
Theorem
$\operatorname{val}\left(\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leqslant \alpha_{1}+\binom{\ell}{2}$ if $f \neq 0$ and $u v \neq 0$.

Gap Theorem

Let $f=f_{1}+f_{2} \in \mathbb{K}[X, Y]$. If $\operatorname{val}_{\mathrm{X}}\left(\mathrm{f}_{2}\right)>\operatorname{val}_{\mathrm{x}}\left(\mathrm{f}_{1}\right)+\binom{\# \mathrm{f}_{1}}{2}$, then for all $u v \neq 0,(Y-u X-v)$ divides f iff it divides both f_{1} and f_{2}.

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
&-X^{16} Y^{15}+ X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
&-X^{16} Y^{15}+ X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
&-X^{16} Y^{15}+ X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
&-X^{16} Y^{15}+X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
&-X^{16} Y^{15}+X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
f=X^{31} Y^{6}-2 X^{30} Y^{7} & +X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{15} \\
-X^{16} Y^{15} & +X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
& +X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6} \\
f_{1}= & X^{3} Y^{6}\left(-X^{2}+Y^{2}-2 Y+1\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& f=X^{31} Y^{6}-2 X^{30} Y^{7}+X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{15} \\
&-X^{16} Y^{15}+X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
&+X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6} \\
& f_{1}= X^{3} Y^{6}(X-Y+1)(1-X-Y)
\end{aligned}
$$

Example

$$
\begin{aligned}
f=X^{31} Y^{6}-2 X^{30} Y^{7} & +X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
-X^{16} Y^{15} & +X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
& +X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6} \\
f_{1}= & X^{3} Y^{6}(X-Y+1)(1-X-Y) \\
f_{2}= & X^{9} Y^{2}(X-Y+1) \\
f_{3}= & X^{16} Y^{13}(X+Y)(X-Y+1) \\
f_{4}= & X^{29} Y^{6}(X+Y-1)(X-Y+1)
\end{aligned}
$$

Example

$$
\begin{aligned}
f=X^{31} Y^{6}-2 X^{30} Y^{7} & +X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{15} \\
-X^{16} Y^{15} & +X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
& +X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6} \\
f_{1}= & X^{3} Y^{6}(X-Y+1)(1-X-Y) \\
f_{2}= & X^{9} Y^{2}(X-Y+1) \\
f_{3}= & X^{16} Y^{13}(X+Y)(X-Y+1) \\
f_{4}= & X^{29} Y^{6}(X+Y-1)(X-Y+1)
\end{aligned}
$$

\Longrightarrow linear factors of $f:(X-Y+1,1)$

Example

$$
\begin{aligned}
f=X^{31} Y^{6}-2 X^{30} Y^{7}+ & X^{29} Y^{8}-X^{29} Y^{6}+X^{18} Y^{13} \\
-X^{16} Y^{15} & +X^{17} Y^{13}+X^{16} Y^{14}+X^{10} Y^{2}-X^{9} Y^{3} \\
& +X^{9} Y^{2}-X^{5} Y^{6}+X^{3} Y^{8}-2 X^{3} Y^{7}+X^{3} Y^{6} \\
f_{1}= & X^{3} Y^{6}(X-Y+1)(1-X-Y) \\
f_{2}= & X^{9} Y^{2}(X-Y+1) \\
f_{3}= & X^{16} Y^{13}(X+Y)(X-Y+1) \\
f_{4}= & X^{29} Y^{6}(X+Y-1)(X-Y+1)
\end{aligned}
$$

\Longrightarrow linear factors of $f:(X-Y+1,1),(X, 3),(Y, 2)$

Algorithm for linear factors

[Chattopadhyay-G.-Koiran-Portier-Strozecki' 13]

$$
\text { Find linear factors of } f(X, Y)=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Find linear factors of $f(X, Y)=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

monomials

Find linear factors of $f(X, Y)=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

monomials binomials
$\left(X, \min _{j} \alpha_{j}\right)$ $\left(\mathrm{Y}, \min _{\mathrm{j}} \beta_{\mathrm{j}}\right)$

Univariate lacunary factorization
[H. Lenstra' 99]

Algorithm for linear factors

[Chattopadhyay-G.-Koiran-Portier-Strozecki' ${ }^{\prime} 3$]

Find linear factors of $f(X, Y)=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$
monomials binomials trinomials
$\left(X, \min _{j} \alpha_{j}\right)$
$\left(Y, \min _{j} \beta_{j}\right)$

$$
\begin{gathered}
(X-a) \\
\text { Factors of } \sum_{j} c_{j} X^{\alpha_{j}}
\end{gathered}
$$

$$
\begin{aligned}
& \quad(\mathrm{Y}-\mathrm{uX}) \\
& \text { Roots of } u \mapsto \sum_{j} \mathrm{c}_{\mathrm{j}} \mathbf{u}^{\beta_{j}}
\end{aligned}
$$

Univariate lacunary factorization
[H. Lenstra' 99]

$$
\begin{aligned}
& \substack{\text { Common factors of } \\
\boldsymbol{j}_{t}+\ell_{t}-1} \\
& f_{t}=\sum_{\substack{j=j_{t}}} c_{j} X^{\alpha_{j}} \gamma^{\beta_{j}} \\
& \left(\operatorname{deg}\left(f_{t}\right) \leqslant \mathcal{O}\left(\ell_{t}^{2}\right)\right)
\end{aligned}
$$

Low-degree factorization
[Kaltofen'82, Lecerf'07]

Algorithm for linear factors

[Chattopadhyay-G.-Koiran-Portier-Strozecki' 13]
Let $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{Q}(\alpha)[X, Y]$ be given in lacunary representation. There exists a deterministic polynomial-time algorithm to compute its linear factors, with multiplicities.
monomials binomials trinomials
$\left(X, \min _{j} \alpha_{j}\right)$
$\left(Y, \min _{j} \beta_{j}\right)$

Univariate lacunary factorization
[H. Lenstra'99]

$$
\begin{aligned}
& \text { Common factors of } \\
& f_{t}=\sum_{\substack{j_{t}+\ell_{t}-1}} c_{j} X^{\alpha_{j}} \gamma^{\beta_{j}} \\
& \left(\operatorname{deg}\left(f_{t}\right) \leqslant \mathcal{O}\left(\ell_{t}^{2}\right)\right)
\end{aligned}
$$

Low-degree factorization
[Kaltofen'82,, Lecerf'07]

Observation for low-degree factors $g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

Observation for low-degree factors

 $g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right)
$$

Observation for low-degree factors

 $g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right)
$$

$>g_{0} \in \mathbb{K}[X]$
> $\phi_{1}, \ldots, \phi_{\mathrm{d}} \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ are Puiseux series:

$$
\phi(X)=\sum_{t \geqslant t_{0}} a_{t} X^{t / n} \text { with } a_{t} \in \overline{\mathbb{K}}, a_{t_{0}} \neq 0 .
$$

Observation for low-degree factors

$g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right)
$$

$>g_{0} \in \mathbb{K}[X]$

- $\phi_{1}, \ldots, \phi_{\mathrm{d}} \in \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ are Puiseux series:

$$
\phi(X)=\sum_{t \geqslant t_{0}} a_{t} X^{t / n} \text { with } a_{t} \in \overline{\mathbb{K}}, a_{t_{0}} \neq 0 .
$$

- If g is irreducible, g divides $f \Longleftrightarrow \exists i, f\left(X, \phi_{i}\right)=0$

$$
\Longleftrightarrow \forall \mathrm{i}, \mathrm{f}\left(\mathrm{X}, \phi_{\mathrm{i}}\right)=0
$$

Observation for low-degree factors

$g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right)
$$

$>g_{0} \in \mathbb{K}[X]$

- $\phi_{1}, \ldots, \phi_{\mathrm{d}} \in \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ are Puiseux series:

$$
\phi(X)=\sum_{t \geqslant t_{0}} a_{t} X^{t / n} \text { with } a_{t} \in \overline{\mathbb{K}}, a_{t_{0}} \neq 0 .
$$

- If g is irreducible, g divides $\mathrm{f} \Longleftrightarrow \exists \mathrm{i}, \mathrm{f}\left(\mathrm{X}, \phi_{\mathrm{i}}\right)=0$ $\Longleftrightarrow \forall \mathrm{i}, \mathrm{f}\left(\mathrm{X}, \phi_{\mathrm{i}}\right)=0$
Valuation: $\operatorname{val}(\phi)=\mathrm{t}_{0} / \mathrm{n}$.

Valuation bound

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation v. If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2} .
$$

Valuation bound

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation v. If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2} .
$$

Proof idea. Let $\psi_{j}=X^{\alpha_{j}} \phi^{\beta_{j}}$ for all j.

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation v. If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

Proof idea. Let $\psi_{j}=X^{\alpha_{j}} \phi^{\beta_{j}}$ for all j.

- Wronskian: $\operatorname{wr}\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\operatorname{det}\left(\psi_{j}^{(i)}\right)=\frac{1}{c_{1}} \operatorname{wr}\left(f_{1}, \psi_{2}, \ldots, \psi_{\ell}\right)$

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation v. If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

Proof idea. Let $\psi_{j}=X^{\alpha_{j}} \phi^{\beta_{j}}$ for all j.

- Wronskian: $\operatorname{wr}\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\operatorname{det}\left(\psi_{j}^{(i)}\right)=\frac{1}{c_{1}} \operatorname{wr}\left(f_{1}, \psi_{2}, \ldots, \psi_{\ell}\right)$
$>\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \psi_{2}, \ldots, \psi_{\ell}\right)\right) \geqslant \operatorname{val}\left(f_{1}\right)+\sum_{j>1} \operatorname{val}\left(\psi_{j}\right)$

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation v. If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 d(4 d+1)-v)\binom{\ell}{2}
$$

Proof idea. Let $\psi_{j}=X^{\alpha_{j}} \phi^{\beta_{j}}$ for all j.

- Wronskian: $\operatorname{wr}\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\operatorname{det}\left(\psi_{j}^{(i)}\right)=\frac{1}{c_{1}} \operatorname{wr}\left(f_{1}, \psi_{2}, \ldots, \psi_{\ell}\right)$
$>\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \psi_{2}, \ldots, \psi_{\ell}\right)\right) \geqslant \operatorname{val}\left(f_{1}\right)+\sum_{j>1} \operatorname{val}\left(\psi_{j}\right)$
$>\operatorname{val}\left(\operatorname{wr}\left(\psi_{1}, \ldots, \psi_{\ell}\right) \leqslant \sum_{j} \operatorname{val}\left(\psi_{j}\right)+(2 d(4 d+1)-v)\binom{\ell}{2}\right.$

Gap Theorem
Let

$$
f=\underbrace{\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{1}}+\underbrace{\sum_{j=\ell+1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{2}}
$$

with $u v \neq 0, \alpha_{1}+v \beta_{1} \leqslant \cdots \leqslant \alpha_{k}+v \beta_{k}$. Let g a degree-d irreducible poynomial, with a root of valuation v. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}+v \beta_{\ell+1}>\left(\alpha_{1}+v \beta_{1}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

then g divides f iff it divides both f_{1} and f_{2}.

Gap Theorem
Let

$$
f=\underbrace{\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{1}}+\underbrace{\sum_{j=\ell+1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{2}}
$$

with $u v \neq 0, \alpha_{1}+v \beta_{1} \leqslant \cdots \leqslant \alpha_{k}+v \beta_{k}$. Let g a degree-d irreducible poynomial, with a root of valuation v. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}+v \beta_{\ell+1}>\left(\alpha_{1}+v \beta_{1}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

then g divides f iff it divides both f_{1} and f_{2}.

Gap Theorem
Let

$$
f=\underbrace{\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{1}}+\underbrace{\sum_{j=\ell+1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{2}}
$$

with $u v \neq 0, \alpha_{1}+v \beta_{1} \leqslant \cdots \leqslant \alpha_{k}+v \beta_{k}$. Let g a degree- d irreducible poynomial, with a root of valuation v. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}+v \beta_{\ell+1}>\left(\alpha_{1}+v \beta_{1}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

then g divides f iff it divides both f_{1} and f_{2}.

- Depends on v.
- Does not bound α_{j} nor β_{j}

Combining two valuations

Proposition

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $\nu_{1} \neq \nu_{2}$ such that for all j

$$
\left\{\begin{array}{l}
\alpha_{j}+v_{1} \beta_{j} \leqslant \alpha_{1}+v_{1} \beta_{1}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{1}\right)\binom{\ell}{2} \\
\alpha_{j}+v_{2} \beta_{j} \leqslant \alpha_{2}+v_{2} \beta_{2}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{2}\right)\binom{\ell}{2} .
\end{array}\right.
$$

Then for all $p, q,\left|\alpha_{p}-\alpha_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$ and $\left|\beta_{p}-\beta_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$.

Combining two valuations

Proposition

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $\nu_{1} \neq \nu_{2}$ such that for all j

$$
\left\{\begin{array}{l}
\alpha_{j}+v_{1} \beta_{j} \leqslant \alpha_{1}+v_{1} \beta_{1}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{1}\right)\binom{\ell}{2} \\
\alpha_{j}+v_{2} \beta_{j} \leqslant \alpha_{2}+v_{2} \beta_{2}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{2}\right)\binom{\ell}{2} .
\end{array}\right.
$$

Then for all $p, q,\left|\alpha_{p}-\alpha_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$ and $\left|\beta_{p}-\beta_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$.

Degree- d factors of f having two roots of valuation v_{1} and v_{2} :

- Write $\mathrm{f}=\mathrm{f}_{1}+\cdots+\mathrm{f}_{\mathrm{s}}$, using ν_{1} and then ν_{2};
- Write $f_{t}=X^{a} Y^{b} f_{t}^{\circ}$ with $\operatorname{deg}\left(f_{t}^{\circ}\right) \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$;
- Factor $\operatorname{gcd}\left(f_{1}^{\circ}, \ldots, f_{s}^{\circ}\right)$.

Proposition

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $v_{1} \neq \nu_{2}$ such that for all j

$$
\left\{\begin{array}{l}
\alpha_{j}+v_{1} \beta_{j} \leqslant \alpha_{1}+v_{1} \beta_{1}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{1}\right)\binom{\ell}{2} \\
\alpha_{j}+v_{2} \beta_{j} \leqslant \alpha_{2}+v_{2} \beta_{2}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{2}\right)\binom{\ell}{2} .
\end{array}\right.
$$

Then for all $p, q,\left|\alpha_{p}-\alpha_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$ and $\left|\beta_{p}-\beta_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$.

Degree- d factors of f having two roots of valuation ν_{1} and ν_{2} :

- Write $\mathrm{f}=\mathrm{f}_{1}+\cdots+\mathrm{f}_{\mathrm{s}}$, using ν_{1} and then ν_{2};
- Write $f_{t}=X^{a} Y^{b} f_{t}^{\circ}$ with $\operatorname{deg}\left(f_{t}^{\circ}\right) \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$;
- Factor $\operatorname{gcd}\left(f_{1}^{\circ}, \ldots, f_{s}^{\circ}\right)$.
\rightsquigarrow low-degree bivariate factorization

$$
\begin{aligned}
f=Y^{3}+2 X Y-X^{2} Y^{4}+X^{3} Y^{3}-2
\end{aligned}
$$

Newton polygon

$$
\begin{aligned}
& f=Y^{3}+2 X Y-X^{2} Y^{4}+X^{3} Y^{3}-2 X^{2} Y^{2}-4 X^{3}+2 X^{4} Y^{3}-2 X^{5} Y^{2} \\
& +X^{3} Y^{6}+2 X^{4} Y^{4}-X^{5} Y^{7}+X^{6} Y^{6} \\
& =\left(Y-2 X^{2}+X^{3} Y^{4}\right)\left(Y^{2}+2 X-X^{2} Y^{3}+X^{3} Y^{2}\right)
\end{aligned}
$$

Newton polygon and Puiseux series

Newton-Puiseux Theorem

For each edge in the lower hull of slope $-v, f$ has a root $\phi \in \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ of valuation ν.

Newton polygon and Puiseux series

Newton-Puiseux Theorem

For each edge in the lower hull of slope $-v, \mathrm{f}$ has a root $\phi \in \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ of valuation ν.

Corollary

A polynomial $f \in \mathbb{K}[X, Y]$ has a factor g with a root of valuation v iff the Newton polygon of f has an edge of slope $-v$.

Two kind of factors

Weighted-homogeneity

A polynomial $g=\sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$
is (p, q)-homogeneous of order
ω if $p \gamma_{j}+q \delta_{j}=\omega$ for all j.

Two kind of factors

Weighted-homogeneous factors
Only one valuation
Unidimensional $\stackrel{\Uparrow}{\downarrow}$ Newton polygons I
Univariate lacunary factorization

Weighted-homogeneity

A polynomial $g=\sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$
is (p, q)-homogeneous of order ω if $p \gamma_{j}+q \delta_{j}=\omega$ for all j.

Non-homogeneous factors §
Two distinct valuations
\Uparrow
Bidimensional Newton polygons ॥
Bivariate low-degree factorization

Non-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The non-homogeneous degree-d factors of f.

Non-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The non-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;

Non-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The non-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of non-parallel edges of slopes $-v_{1},-v_{2}$:
2.1 Write $f=X^{a_{1}} Y^{b_{1}} f_{1}+\cdots+X^{a_{s}} \gamma^{b_{s}} f_{s}$ using the Gap Theorem with v_{1} and v_{2}, s.t. $\sum_{t} \operatorname{deg}\left(f_{t}\right) \leqslant \mathcal{O}\left(k^{2} d^{4}\right)$;

Non-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The non-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of non-parallel edges of slopes $-v_{1},-v_{2}$:
2.1 Write $f=X^{a_{1}} Y^{b_{1}} f_{1}+\cdots+X^{a_{s}} Y^{b_{s}} f_{s}$ using the Gap Theorem with v_{1} and v_{2}, s.t. $\sum_{t} \operatorname{deg}\left(f_{t}\right) \leqslant \mathcal{O}\left(k^{2} d^{4}\right)$;
2.2 Compute the degree-d factors of $\operatorname{gcd}\left(f_{1}, \ldots, f_{s}\right)$;
\rightsquigarrow low-degree bivariate factorization

Non-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The non-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of non-parallel edges of slopes $-v_{1},-v_{2}$:
2.1 Write $f=X^{a_{1}} Y^{b_{1}} f_{1}+\cdots+X^{a_{s}} \gamma^{b_{s}} f_{s}$ using the Gap Theorem with v_{1} and v_{2}, s.t. $\sum_{t} \operatorname{deg}\left(f_{t}\right) \leqslant \mathcal{O}\left(k^{2} d^{4}\right)$;
2.2 Compute the degree-d factors of $\operatorname{gcd}\left(f_{1}, \ldots, f_{s}\right)$;
\rightsquigarrow low-degree bivariate factorization
3. Return the union of the sets of factors, with multiplicity.

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of parallel edges, of slope $-q / p$:
2.1 Write $f=f_{1}+\cdots+f_{s}$ as a sum of (p, q)-homogeneous polynomials;

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of parallel edges, of slope $-q / p$:
2.1 Write $f=f_{1}+\cdots+f_{s}$ as a sum of (p, q)-homogeneous polynomials;
2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_{t}\left(X^{\frac{1}{q}}, 1\right)$'s; \rightsquigarrow univariate lacunary factorization

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of parallel edges, of slope $-q / p$:
2.1 Write $f=f_{1}+\cdots+f_{s}$ as a sum of (p, q)-homogeneous polynomials;
2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_{t}\left(X^{\frac{1}{q}}, 1\right)^{\prime}$; \rightsquigarrow univariate lacunary factorization
2.3 Compute $Y^{p \operatorname{deg}(g)} g\left(X^{q} / Y^{p}\right)$ for each common factor g.

Weighted-bomogeneous factors

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+}$.
Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_{f} of f;
2. For each pair of parallel edges, of slope $-q / p$:
2.1 Write $f=f_{1}+\cdots+f_{s}$ as a sum of (p, q)-homogeneous polynomials;
2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_{t}\left(X^{\frac{1}{q}}, 1\right)^{\prime}$'s; \rightsquigarrow univariate lacunary factorization
2.3 Compute $Y^{p \operatorname{deg}(g)} g\left(X^{q} / Y^{p}\right)$ for each common factor g.
3. Return the union of the sets of factors, with multiplicity.

Complete algorithm

Find degree-d factors of $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

Complete algorithm

Find degree-d factors of $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$
monomials

Complete algorithm

Available for $\mathbb{Q}(\alpha)$ only Impossible for $\overline{\mathbb{Q}}, \mathbb{C}$

Complete algorithm

Multivariate polynomials

$$
\text { Degree-d factors of } \mathrm{f}=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

Multivariate polynomials

$$
\text { Degree-d factors of } \mathrm{f}=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- For all $i<j$, compute the Newton polygon $N_{i, j}$ of $f \in R\left[X_{i}, X_{j}\right]$ where $R=\mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]$;

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- For all $i<j$, compute the Newton polygon $N_{i, j}$ of $f \in R\left[X_{i}, X_{j}\right]$ where $R=\mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]$;
- Weighted homogeneous factors \rightsquigarrow unidimensional factors

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- For all $i<j$, compute the Newton polygon $N_{i, j}$ of $f \in R\left[X_{i}, X_{j}\right]$ where $R=\mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]$;
- Weighted homogeneous factors \rightsquigarrow unidimensional factors
- Every $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is unidimensional (or 0-dimensional)
- Univariate lacunary factorization

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- For all $i<j$, compute the Newton polygon $N_{i, j}$ of $f \in R\left[X_{i}, X_{j}\right]$ where $R=\mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]$;
- Weighted homogeneous factors \rightsquigarrow unidimensional factors
- Every $N_{i, j}$ is unidimensional (or 0-dimensional)
- Univariate lacunary factorization
> Non-homogeneous factors \rightsquigarrow multidimensional factors

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- For all $i<j$, compute the Newton polygon $N_{i, j}$ of $f \in R\left[X_{i}, X_{j}\right]$ where $R=\mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]$;
- Weighted homogeneous factors \rightsquigarrow unidimensional factors
- Every $N_{i, j}$ is unidimensional (or 0-dimensional)
- Univariate lacunary factorization
- Non-homogeneous factors \rightsquigarrow multidimensional factors
- At least one $N_{i, j}$ is multidimensional
- Multivariate low-degree factorization

Multidimensional factors

- Consider f as before, and let g be a multidimensional factor of f :
- If " $X_{i} \notin \mathrm{~g}$ ", g divides each coefficient of $\mathrm{f} \in \mathbb{K}\left[\mathbf{X} \backslash \mathrm{X}_{\mathrm{i}}\right]\left[\mathrm{X}_{\mathrm{i}}\right]$;
- Else $\mathrm{N}_{\mathrm{i}, \mathrm{j}}(\mathrm{g})$ is multidimensional for some j .

Multidimensional factors

- Consider f as before, and let g be a multidimensional factor of f :
- If " $X_{i} \notin \mathrm{~g}$ ", g divides each coefficient of $\mathrm{f} \in \mathbb{K}\left[\mathbf{X} \backslash X_{i}\right]\left[X_{i}\right]$;
- Else $\mathrm{N}_{\mathrm{i}, \mathrm{j}}(\mathrm{g})$ is multidimensional for some j .

1. Let $\mathcal{H}=\{\mathrm{f}\}$;
2. For each variable X_{i} and each $h \in \mathcal{H}$:
2.1 Partition $h=\sum_{d} h_{i}\left(X \backslash X_{i}\right) X_{i}^{d}$;
2.2 For each X_{j} such that $N_{i, j}(h)$ is multidimensional, partition h with respect to each pair of non-parallel edges in $\mathrm{N}_{\mathrm{i}, \mathrm{j}}(\mathrm{h})$;
2.3 Merge those $\mathcal{O}\left(n k^{2}\right)$ partitions to get \mathcal{H}_{h};
2.4 Replace h by the elements of \mathcal{H}_{h} in \mathcal{H}.
3. Return the degree-d factors of $\operatorname{gcd}\left(\mathcal{H}^{\circ}\right)$.

Implementation - I/2

```
Mmx] use "lacunaryx";
    X == coordinate('x); x == mvpolynomial(1:>Integer, X);
    Y == coordinate('y); y == mvpolynomial(1:>Integer, Y);
```

Mmx] c () :Integer == (-1)-(random() rem 2)*(random() rem 10);

```
Mmx] c () :Integer == (-1)-(random() rem 2)*(random() rem 10);
    lin () : MVPolynomial(Integer) == c()*x + c()*y + c();
    lin () : MVPolynomial(Integer) == c()*x + c()*y + c();
    quad () : MVPolynomial(Integer) == c() *x^2+c()*x*y+c()*y^2+c()*x+c()*y+c();
    quad () : MVPolynomial(Integer) == c() *x^2+c()*x*y+c()*y^2+c()*x+c()*y+c();
    randpol (): MVPolynomial(Integer) == {
    randpol (): MVPolynomial(Integer) == {
    p: MVPolynomial(Integer) := mvpolynomial(1:>Integer);
    p: MVPolynomial(Integer) := mvpolynomial(1:>Integer);
    q: MVPolynomial(Integer) := mvpolynomial(0:>Integer);
    q: MVPolynomial(Integer) := mvpolynomial(0:>Integer);
    for i:Int in 1 to 10 do {
    for i:Int in 1 to 10 do {
        l == lin(); e == 1+random() rem 3; p*=1^e;
        l == lin(); e == 1+random() rem 3; p*=1^e;
        mmout << "(" << l << ")-" << e << " ; ";}
        mmout << "(" << l << ")-" << e << " ; ";}
    for i:Int in 1 to 30 do q+= c()*x^random()*y^random() * quad();
    for i:Int in 1 to 30 do q+= c()*x^random()*y^random() * quad();
    p*q;};
    p*q;};
    d (p: MVPolynomial(Integer)) == if deg(p) < 0 then deg(p)+2~32 else deg(p);
    d (p: MVPolynomial(Integer)) == if deg(p) < 0 then deg(p)+2~32 else deg(p);
    test () : Void == { p == randpol(); mmout << lf << "Polynomial of degree
    test () : Void == { p == randpol(); mmout << lf << "Polynomial of degree
    " << d(p) << " with " << #(p) << " nonzero monomials." << lf << "Linear
    " << d(p) << " with " << #(p) << " nonzero monomials." << lf << "Linear
    factors: " << linear_factors (p) << lf;};
```

 factors: " << linear_factors (p) << lf;};
    ```

\section*{Implementation-2/2}

Mmx test();
\((5 y+7) \wedge 3 ;(3 y+2 x+1) \wedge 1 ;(3 x-4) \wedge 2 ;(-8 y+7 x+9) \wedge 2 ;(4 y-x-6)-3\);
\((4 y+4 x+5)^{\wedge} 1 ;(-4 y+6 x-6)^{\wedge} 1 ;(3 y-2 x-8) \wedge 3 ;(y+7 x+2) \wedge 1 ;(-8 y+\) \(9 x-2)^{\sim} 2\);
Polynomial of degree 3181006535 with 6801 nonzero monomials.
Linear factors: \([[x, 61475114],[3 x-4,2],[y, 76556243],[5 y+7,3],[3 y+2 x+1,1],[y+\) \(7 x+2,1],[4 y+4 x+5,1],[-2 y+3 x-3,1],[-8 y+9 x-2,2],[-8 y+7 x+9,2],[-3 y+\) \(2 x+8,3],[-4 y+x+6,3]]\)

963 msec
Mmx] test();
\((-5 y-3 x-2) \wedge 3 ;(-8 y+8) \wedge 1 ;(2 y+8 x-6)^{\wedge} 2 ;(y+6 x-6) \sim 2 ;(y+x+4) \wedge 3\);
\((2 y-6 x+3) \wedge 3 ;(7 y+4 x) \wedge 3 ;(-y-6 x+1) \wedge 3 ;(7 x+1) \wedge 3 ;(y+7 x+6) \wedge 2\);
Polynomial of degree 3310508792 with 10976 nonzero monomials.
Linear factors: \([[x, 41780031],[7 x+1,3],[y, 436756],[y-1,1],[7 y+4 x, 3],[y+6 x-6,2]\), \([y+7 x+6,2],[y+4 x-3,2],[-2 y+6 x-3,3],[y+6 x-1,3],[y+x+4,3],[5 y+3 x+2,3]]\)
2.385 sec

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)
- "Field-independent"
- Simpler and more general than previous algorithms

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)
- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)
- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
- Lacunary factors in polynomial time?
- More general settings: arithmetic circuits

\section*{Conclusion}
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)
- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
- Lacunary factors in polynomial time?
- More general settings: arithmetic circuits

Degree-d factors in positive characteristic?
- Small positive characteristic?
- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to \(\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.\)
- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
- Lacunary factors in polynomial time?
- More general settings: arithmetic circuits

Degree-d factors in positive characteristic?
- Small positive characteristic?

> Thank you! arXiv:1401.4720```

