Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach

Bruno Grenet LIX — École Polytechnique

Groupe de travail MC2 Lyon, 18 juin 2014

Factorization of a polynomial f

Factorization of a polynomial f

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.

Factorization of a polynomial f

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

 $X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.

Complexity: polynomial in deg(f)

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

= (X + Y - 1) × (X¹⁰¹Y¹⁰¹ - 1)

Factorization of a polynomial f

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

= (X + Y - 1) × (X¹⁰¹Y¹⁰¹ - 1)
= (X + Y - 1) × (XY - 1) × (1 + XY + \dots + X^{100}Y^{100})

Goal

Definition

$$f(X_1, \dots, X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

• size(f) \approx k \left(max_j(size(c_j)) + n log(deg f) \right)

Definition

$$f(X_1, \dots, X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

• size(f) \approx k \left(max_j(size(c_j)) + n log(deg f) \right)

Compute the degree-d factors of f in time $\mathsf{poly}(\mathsf{size}(f),d)$

Definition

$$f(X_1, \dots, X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

• size(f) \approx k \left(max_j(size(c_j)) + n log(deg f) \right)

Compute the degree-d factors of f in time $\mathsf{poly}(\mathsf{size}(f),d)$

Let $f \in \mathbb{R}[X]$ with k nonzero terms. Then $\#Z_{\mathbb{R}}(f) \leqslant 2k-1$.

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in Q(\alpha)[X]$; [H. Lenstra'99]
- low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, \ldots, X_n]$.

[Kaltofen-Koiran'06]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in Q(\alpha)[X]$; [H. Lenstra'99]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

- Only available for number fields
- Based on number-theoretic results ~> theoretical algorithms

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in Q(\alpha)[X]$; [H. Lenstra'99]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

- Only available for number fields
- Based on number-theoretic results ~> theoretical algorithms

Generalization to other fields? More practical algorithms?

Main result

Let \mathbb{K} be any field of characteristic 0.

```
Theorem (G.'14)
```

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \dots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

Main result

Let \mathbb{K} be any field of characteristic 0.

```
Theorem (G.'14)
```

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \dots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Main result

Let \mathbb{K} be any field of characteristic 0.

```
Theorem (G.'14)
```

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \dots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

- Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]
- ▷ New algorithm for $\mathbb{K} = \mathbb{Q}(\alpha)$; some factors for $\mathbb{K} = \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\text{val}\left(\sum_{j=1}^{\ell}c_{j}X^{\alpha_{j}}(uX+\nu)^{\beta_{j}}\right)\leqslant\alpha_{1}+\binom{\ell}{2}\text{ if }f\neq0\text{ and }u\nu\neq0.$$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\text{val}\left(\sum_{j=1}^{\ell}c_{j}X^{\alpha_{j}}(uX+\nu)^{\beta_{j}}\right)\leqslant\alpha_{1}+\binom{\ell}{2}\text{ if }f\neq0\text{ and }u\nu\neq0.$$

Gap Theorem

Let $f = f_1 + f_2 \in \mathbb{K}[X, Y]$. If $\operatorname{val}_X(f_2) > \operatorname{val}_X(f_1) + \binom{\#f_1}{2}$, then for all $uv \neq 0$, (Y - uX - v) divides f iff it divides both f_1 and f_2 .

$$\begin{split} \mathsf{f} &= X^{31} \mathsf{Y}^6 - 2\,X^{30} \mathsf{Y}^7 + X^{29} \mathsf{Y}^8 - X^{29} \mathsf{Y}^6 + X^{18} \mathsf{Y}^{13} \\ &- X^{16} \mathsf{Y}^{15} + X^{17} \mathsf{Y}^{13} + X^{16} \mathsf{Y}^{14} + X^{10} \mathsf{Y}^2 - X^9 \mathsf{Y}^3 \\ &+ X^9 \mathsf{Y}^2 - X^5 \mathsf{Y}^6 + X^3 \mathsf{Y}^8 - 2\,X^3 \mathsf{Y}^7 + X^3 \mathsf{Y}^6 \end{split}$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

<u>Examp</u>le

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2X^3Y^7 + X^3Y^6 \end{split}$$

$$\begin{split} \mathsf{f} &= X^{31} Y^6 - 2 \, X^{30} Y^7 + X^{29} Y^8 - X^{29} Y^6 + X^{18} Y^{13} \\ &- X^{16} Y^{15} + X^{17} Y^{13} + X^{16} Y^{14} + X^{10} Y^2 - X^9 Y^3 \\ &+ X^9 Y^2 - X^5 Y^6 + X^3 Y^8 - 2 \, X^3 Y^7 + X^3 Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (-X^2 + Y^2 - 2Y + 1)$$

$$\begin{split} \mathsf{f} &= X^{31} Y^6 - 2 \, X^{30} Y^7 + X^{29} Y^8 - X^{29} Y^6 + X^{18} Y^{13} \\ &- X^{16} Y^{15} + X^{17} Y^{13} + X^{16} Y^{14} + X^{10} Y^2 - X^9 Y^3 \\ &+ X^9 Y^2 - X^5 Y^6 + X^3 Y^8 - 2 \, X^3 Y^7 + X^3 Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

 \implies linear factors of f: (X - Y + 1, 1)

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_{1} = X^{3}Y^{6}(X - Y + 1)(1 - X - Y)$$

$$f_{2} = X^{9}Y^{2}(X - Y + 1)$$

$$f_{3} = X^{16}Y^{13}(X + Y)(X - Y + 1)$$

$$f_{4} = X^{29}Y^{6}(X + Y - 1)(X - Y + 1)$$

 \implies linear factors of f: (X - Y + 1, 1), (X, 3), (Y, 2)

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Find linear factors of
$$f(X,Y) = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

8 / 23

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

8/23

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation for low-degree factors

g(X,Y) divides $f(X,Y) \iff f(X,\phi(X)) \equiv 0$
g(X,Y) divides $f(X,Y) \iff f(X,\phi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

▷
$$g_0 \in \mathbb{K}[X]$$

▶
$$\phi_1, ..., \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$$
 are Puiseux series:

$$\varphi(X) = \sum_{t \geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0.$$

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

▷
$$g_0 \in \mathbb{K}[X]$$

▶
$$\phi_1, ..., \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$$
 are Puiseux series:

$$\varphi(X) = \sum_{t \geqslant t_0} a_t X^{t/n} \text{ with } a_t \in \overline{\mathbb{K}} \text{, } a_{t_0} \neq 0.$$

 $\begin{array}{l} \mbox{If g is irreducible, g divides f \iff \existsi$, $f(X, \varphi_i) = 0$ \\ \Leftrightarrow \foralli$, $f(X, \varphi_i) = 0$ \\ \end{array}$

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X))$$

▷
$$g_0 \in \mathbb{K}[X]$$

▷ $\phi_1, ..., \phi_d \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t \geqslant t_0} \mathfrak{a}_t X^{t/n} \text{ with } \mathfrak{a}_t \in \overline{\mathbb{K}} \text{, } \mathfrak{a}_{t_0} \neq 0.$$

- $\begin{array}{l} \mbox{If g is irreducible, g divides f \iff \existsi$, $f(X, \varphi_i) = 0$ \\ \iff \foralli$, $f(X, \varphi_i) = 0$ \\ \end{array}$
- ► Valuation: $val(\phi) = t_0/n$.

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \phi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leq \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \phi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leq \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \phi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leq \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

► Wronskian: $wr(\psi_1, ..., \psi_\ell) = det\left(\psi_j^{(i)}\right) = \frac{1}{c_1} wr(f_1, \psi_2, ..., \psi_\ell)$

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \phi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leq \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

- ► Wronskian: wr($\psi_1, \ldots, \psi_\ell$) = det $\left(\psi_j^{(i)}\right) = \frac{1}{c_1} \operatorname{wr}(f_1, \psi_2, \ldots, \psi_\ell)$
- ► $val(wr(f_1, \psi_2, ..., \psi_\ell)) \ge val(f_1) + \sum_{j>1} val(\psi_j)$

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν . If the family $(X^{\alpha_j} \phi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leqslant \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Proof idea. Let $\psi_j = X^{\alpha_j} \varphi^{\beta_j}$ for all j.

- Wronskian: $wr(\psi_1, \ldots, \psi_\ell) = det\left(\psi_j^{(i)}\right) = \frac{1}{c_1} wr(f_1, \psi_2, \ldots, \psi_\ell)$
- $\vdash \mathsf{val}(\mathsf{wr}(f_1, \psi_2, \dots, \psi_\ell)) \geqslant \mathsf{val}(f_1) + \sum_{j > 1} \mathsf{val}(\psi_j)$
- $\vdash \mathsf{val}(\mathsf{wr}(\psi_1,\ldots,\psi_\ell) \leqslant \sum_j \mathsf{val}(\psi_j) + (2d(4d+1)-\nu)\binom{\ell}{2}$

Gap Theorem

then g divides f iff it divides both f_1 and f_2 .

Gap Theorem

then g divides f iff it divides both f_1 and f_2 .

Gap Theorem

then g divides f iff it divides both f_1 and f_2 .

- **Depends on** v.
- **Does not bound** α_j nor β_j

Combining two valuations

Proposition

Let
$$f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $v_1 \neq v_2$ such that for all j

$$\begin{cases} \alpha_j + \nu_1 \beta_j \leqslant \alpha_1 + \nu_1 \beta_1 + (2d(4d+1) - \nu_1)\binom{\ell}{2} \\ \alpha_j + \nu_2 \beta_j \leqslant \alpha_2 + \nu_2 \beta_2 + (2d(4d+1) - \nu_2)\binom{\ell}{2}. \end{cases}$$

$$\text{Then for all } p,q, |\alpha_p-\alpha_q|\leqslant \mathbb{O}(\ell^2d^4) \text{ and } |\beta_p-\beta_q|\leqslant \mathbb{O}(\ell^2d^4).$$

Combining two valuations

Proposition

Let
$$f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $v_1 \neq v_2$ such that for all j

$$\begin{cases} \alpha_j + \nu_1 \beta_j \leqslant \alpha_1 + \nu_1 \beta_1 + (2d(4d+1) - \nu_1)\binom{\ell}{2} \\ \alpha_j + \nu_2 \beta_j \leqslant \alpha_2 + \nu_2 \beta_2 + (2d(4d+1) - \nu_2)\binom{\ell}{2}. \end{cases}$$

$$\text{Then for all } p,q, |\alpha_p-\alpha_q|\leqslant \mathbb{O}(\ell^2d^4) \text{ and } |\beta_p-\beta_q|\leqslant \mathbb{O}(\ell^2d^4).$$

Degree-d factors of f having two roots of valuation v_1 and v_2 :

- Write $f = f_1 + \cdots + f_s$, using v_1 and then v_2 ;
- ▷ Write $f_t = X^{\alpha}Y^{b}f_t^{\circ}$ with $deg(f_t^{\circ}) \leq O(\ell^2 d^4)$;
- $\succ \text{ Factor gcd}(f_1^\circ, \ldots, f_s^\circ).$

Combining two valuations

Proposition

Let
$$f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $v_1 \neq v_2$ such that for all j

$$\begin{cases} \alpha_j + \nu_1 \beta_j \leqslant \alpha_1 + \nu_1 \beta_1 + (2d(4d+1) - \nu_1)\binom{\ell}{2} \\ \alpha_j + \nu_2 \beta_j \leqslant \alpha_2 + \nu_2 \beta_2 + (2d(4d+1) - \nu_2)\binom{\ell}{2}. \end{cases}$$

$$\text{Then for all } p,q, |\alpha_p-\alpha_q|\leqslant \mathbb{O}(\ell^2d^4) \text{ and } |\beta_p-\beta_q|\leqslant \mathbb{O}(\ell^2d^4).$$

Degree-d factors of f having two roots of valuation v_1 and v_2 :

- Write $f = f_1 + \cdots + f_s$, using v_1 and then v_2 ;
- ▷ Write $f_t = X^{\alpha}Y^{b}f_t^{\circ}$ with $deg(f_t^{\circ}) \leq O(\ell^2 d^4)$;
- $\vdash \mbox{Factor } gcd(f_1^\circ,\ldots,f_s^\circ). \qquad \rightsquigarrow \mbox{low-degree bivariate factorization}$

Newton polygon

$$\begin{split} f &= \, Y^3 + 2\,XY - X^2Y^4 + X^3Y^3 - 2\,X^2Y^2 - 4\,X^3 + 2\,X^4Y^3 - 2\,X^5Y^2 \\ &+ X^3Y^6 + 2\,X^4Y^4 - X^5Y^7 + X^6Y^6 \end{split}$$

Newton polygon

$$\begin{split} \mathsf{f} &= \mathsf{Y}^3 + 2\,\mathsf{X}\mathsf{Y} - \mathsf{X}^2\mathsf{Y}^4 + \mathsf{X}^3\mathsf{Y}^3 - 2\,\mathsf{X}^2\mathsf{Y}^2 - 4\,\mathsf{X}^3 + 2\,\mathsf{X}^4\mathsf{Y}^3 - 2\,\mathsf{X}^5\mathsf{Y}^2 \\ &\quad + \mathsf{X}^3\mathsf{Y}^6 + 2\,\mathsf{X}^4\mathsf{Y}^4 - \mathsf{X}^5\mathsf{Y}^7 + \mathsf{X}^6\mathsf{Y}^6 \\ &= (\mathsf{Y} - 2\,\mathsf{X}^2 + \mathsf{X}^3\mathsf{Y}^4)(\mathsf{Y}^2 + 2\,\mathsf{X} - \mathsf{X}^2\mathsf{Y}^3 + \mathsf{X}^3\mathsf{Y}^2) \end{split}$$

Newton polygon and Puiseux series

Newton-Puiseux Theorem

For each edge in the **lower hull** of slope $-\nu$, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

Newton polygon and Puiseux series

Newton-Puiseux Theorem

For each edge in the **lower hull** of slope $-\nu$, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

Corollary

A polynomial $f \in \mathbb{K}[X, Y]$ has a factor g with a root of valuation ν iff the Newton polygon of f has an edge of slope $-\nu$.

Two kind of factors

Weighted-homogeneity

A polynomial $g = \sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $p\gamma_{j} + q\delta_{j} = \omega$ for all j.

Two kind of factors

Weighted-homogeneity

A polynomial $g = \sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $p\gamma_{j} + q\delta_{j} = \omega$ for all j.

Weighted-homogeneous factors Only one valuation Unidimensional Newton polygons Univariate lacunary factorization Non-homogeneous factors Two distinct valuations Bidimensional Newton polygons Bivariate low-degree factorization

Input: $f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$ and $d \in \mathbb{Z}_+$. Output: The non-homogeneous degree-d factors of f.

Input: $f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$ and $d \in \mathbb{Z}_+$. Output: The non-homogeneous degree-d factors of f. 1. Compute the Newton polygon N_f of f;

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The non-homogeneous degree-d factors of f.

- I. Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes $-v_1$, $-v_2$:
 - 2.1 Write $f = X^{\alpha_1}Y^{b_1}f_1 + \dots + X^{\alpha_s}Y^{b_s}f_s$ using the Gap Theorem with ν_1 and ν_2 , s.t. $\sum_t deg(f_t) \leq O(k^2d^4)$;

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The non-homogeneous degree-d factors of f.

- Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes $-v_1$, $-v_2$:
 - 2.1 Write $f = X^{a_1}Y^{b_1}f_1 + \dots + X^{a_s}Y^{b_s}f_s$ using the Gap Theorem with v_1 and v_2 , s.t. $\sum_t \text{deg}(f_t) \leq O(k^2d^4)$; 2.2 Compute the degree-d factors of $\text{qcd}(f_1, \dots, f_s)$;

~> low-degree bivariate factorization

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The non-homogeneous degree-d factors of f.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of non-parallel edges of slopes $-v_1$, $-v_2$:
 - 2.1 Write $f = X^{a_1}Y^{b_1}f_1 + \dots + X^{a_s}Y^{b_s}f_s$ using the Gap Theorem with v_1 and v_2 , s.t. $\sum_t \text{deg}(f_t) \leq O(k^2d^4)$; 2.2 Compute the degree-d factors of $gcd(f_1, \dots, f_s)$; \rightsquigarrow low-degree bivariate factorization
- 3. Return the union of the sets of factors, with multiplicity.

Input: $f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$ and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

Input: $f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$ and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

1. Compute the Newton polygon N_f of f;

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of parallel edges, of slope -q/p:
 - 2.1 Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-homogeneous polynomials;

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

- I. Compute the Newton polygon N_f of f;
- 2. For each pair of parallel edges, of slope -q/p:
 - 2.1 Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-homogeneous polynomials;
 - 2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_t(X^{\frac{1}{q}}, 1)$'s; \rightsquigarrow univariate lacunary factorization

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

- . Compute the Newton polygon N_f of f;
- 2. For each pair of parallel edges, of slope -q/p:
 - 2.1 Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-homogeneous polynomials;
 - 2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_t(X^{\frac{1}{q}}, 1)$'s; \rightsquigarrow univariate lacunary factorization

2.3 Compute $Y^{p \text{ deg}(g)}g(X^q/Y^p)$ for each common factor g.

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$.

Output: The weighted-homogeneous degree-d factors of f.

- 1. Compute the Newton polygon N_f of f;
- 2. For each pair of parallel edges, of slope -q/p:
 - 2.1 Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-homogeneous polynomials;
 - 2.2 Compute the degree- $\frac{d}{q}$ factors of the $f_t(X^{\frac{1}{q}}, 1)$'s; \rightsquigarrow univariate lacunary factorization

2.3 Compute $Y^{p \deg(g)}g(X^q/Y^p)$ for each common factor g.

3. Return the union of the sets of factors, with multiplicity.

Find degree-d factors of
$$f = \sum_{j=1}^k c_j X^{\alpha_j} Y^{\beta_j}$$

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Do not compute the n-dimensional Newton polytope!

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Do not compute the n-dimensional Newton polytope!

For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Do not compute the n-dimensional Newton polytope!

- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors ~> unidimensional factors

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors ~> unidimensional factors
 - Every N_{i,j} is unidimensional (or 0-dimensional)
 - Univariate lacunary factorization

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors ~> unidimensional factors
 - Every N_{i,i} is unidimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors ~> multidimensional factors

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- For all i < j, compute the Newton polygon $N_{i,j}$ of $f \in R[X_i, X_j]$ where $R = \mathbb{K}[X \setminus X_i, X_j]$;
- Weighted homogeneous factors ~> unidimensional factors
 - Every N_{i,i} is unidimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors ~> multidimensional factors
 - At least one N_{i,j} is multidimensional
 - Multivariate low-degree factorization

Multidimensional factors

Consider f as before, and let g be a multidimensional factor of f:

- If " $X_i \notin g$ ", g divides each coefficient of $f \in \mathbb{K}[X \setminus X_i][X_i]$;
- Else $N_{i,j}(g)$ is multidimensional for some j.

Multidimensional factors

Consider f as before, and let g be a multidimensional factor of f:

- If " $X_i \notin g$ ", g divides each coefficient of $f \in \mathbb{K}[X \setminus X_i][X_i]$;
- $\circ~$ Else $N_{\mathfrak{i},\mathfrak{j}}(g)$ is multidimensional for some $\mathfrak{j}.$
- 1. Let $\mathcal{H} = \{f\};$
- 2. For each variable X_i and each $h\in \mathfrak{H}:$
 - 2.1 Partition $h = \sum_{d} h_i(X \setminus X_i) X_i^d$;
 - 2.2 For each X_j such that $N_{i,j}(h)$ is multidimensional, partition h with respect to each pair of non-parallel edges in $N_{i,j}(h)$;
 - 2.3 *Merge* those $O(nk^2)$ partitions to get \mathcal{H}_h ;
 - 2.4 Replace h by the elements of \mathcal{H}_h in \mathcal{H} .
- 3. Return the degree-d factors of $gcd(\mathcal{H}^\circ)$.

Implementation - 1/2

```
Mmx] use "lacunaryx";
     X == coordinate('x); x == mvpolynomial(1:>Integer, X);
     Y == coordinate('y); y == mvpolynomial(1:>Integer, Y);
Mmx] c () :Integer == (-1)^(random() rem 2)*(random() rem 10);
     lin () : MVPolynomial(Integer) == c()*x + c()*y + c();
     quad () : MVPolynomial(Integer) == c()*x^2+c()*x*y+c()*y^2+c()*x+c()*y+c();
     randpol (): MVPolynomial(Integer) == {
       p: MVPolynomial(Integer) := mvpolynomial(1:>Integer);
       q: MVPolynomial(Integer) := mvpolynomial(0:>Integer);
       for i:Int in 1 to 10 do {
         l == lin(); e == 1+random() rem 3; p*=1^e;
         mmout << "(" << l << ")^" << e << " ; ";}</pre>
       for i:Int in 1 to 30 do q+= c()*x^random()*y^random() * quad();
       ;{;p*q
     d (p: MVPolynomial(Integer)) == if deg(p) < 0 then deg(p)+2^{32} else deg(p);
     test () : Void == { p == randpol(); mmout << lf << "Polynomial of degree</pre>
     " << d(p) << " with " << #(p) << " nonzero monomials." << lf << "Linear
     factors: " << linear_factors (p) << lf;};</pre>
```

26 msec

Implementation - 2/2

 $\begin{array}{l} (2y-6x+3)^{-3} ; (7y+4x)^{-3} ; (-y-6x+1)^{-3} ; (7x+1)^{-3} ; (y+7x+6)^{-2} ; \\ \text{Polynomial of degree } 3310508792 \text{ with } 10976 \text{ nonzero monomials.} \\ \text{Linear factors: } [[x,41780031], [7x+1,3], [y,436756], [y-1,1], [7y+4x,3], [y+6x-6,2], [y+7x+6,2], [y+4x-3,2], [-2y+6x-3,3], [y+6x-1,3], [y+x+4,3], [5y+3x+2,3]] \\ \end{array}$

22 / :

Bruno Grenet – Computing low-degree factors of lacunary polynomial

23 / 23

Reduction to {univariate lacunary polynomials low-degree multivariate polynomials

Reduction to low-degree multivariate polynomials

- "Field-independent"
- Simpler and more general than previous algorithms

Reduction to {univariate lacunary polynomials low-degree multivariate polynomials

- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress

Reduction to {univariate lacunary polynomials low-degree multivariate polynomials

- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: arithmetic circuits

Reduction to { univariate lacunary polynomials low-degree multivariate polynomials

- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: arithmetic circuits
 - Degree-d factors in **positive characteristic**?
 - Small positive characteristic?

Reduction to {univariate lacunary polynomials low-degree multivariate polynomials

- "Field-independent"
- Simpler and more general than previous algorithms
- Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: arithmetic circuits
 - Degree-d factors in **positive characteristic**?
 - Small positive characteristic?

Thank you!

arXiv:1401.4720