Complexity of the resultant

Bruno Grenet

joint work with Pascal Koiran \& Natacha Portier
LIX - École Polytechnique

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

PolSys (K)
Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $a \in \overline{\mathbb{K}}^{n}$ s.t. $f(\boldsymbol{a})=0$?

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

PolSys (K)
Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $a \in \overline{\mathbb{K}}^{n}$ s.t. $f(\boldsymbol{a})=0$?

HomPoıSrs(\mathbb{K})

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $\boldsymbol{a} \in \overline{\mathbb{K}}^{\mathrm{n}+1}$ s.t. $\mathrm{f}(\mathbf{a})=0$?

Glimpse of Elimination Theory

$$
f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], \quad f_{i}=\sum_{|\alpha|_{1} \leqslant d_{i}} \gamma_{i, \alpha} X^{\alpha}
$$

For which $\gamma_{i, \alpha}$ is there a root?

Glimpse of Elimination Theory

$$
f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right], \quad f_{i}=\sum_{|\alpha|_{1} \leqslant d_{i}} \gamma_{i, \alpha} X^{\alpha}
$$

For which $\gamma_{i, \alpha}$ is there a root?
There exist $R_{1}, \ldots, R_{h} \in \mathbb{K}[\gamma]$ s.t.

$$
\left\{\begin{array}{c}
R_{1}(\boldsymbol{\gamma})=0 \\
\vdots \\
R_{h}(\gamma)=0
\end{array} \Longrightarrow \exists \mathbf{a},\left\{\begin{array}{c}
f_{1}(\boldsymbol{a})=0 \\
\vdots \\
f_{s}(\boldsymbol{a})=
\end{array}\right.\right.
$$

Two Univariate Polynomials

- $P=\sum_{i=0}^{m} p_{i} x^{i}$

$$
Q=\sum_{j=0}^{n} q_{j} x^{j}
$$

Two Univariate Polynomials

- $P=\sum_{i=0}^{m} p_{i} x^{i} \quad, Q=\sum_{j=0}^{n} q_{j} x^{j}$

$$
R=\operatorname{det}\left(\begin{array}{ccccccc}
p_{m} & \ldots & \ldots \ldots \ldots & p_{0} & & \\
& \ddots & & & & \ddots & \\
& & p_{m} & \ldots \ldots \ldots \ldots . & p_{0} \\
q_{n} & \ldots & \ldots & q_{0} & & & \\
& \ddots & & & \ddots & & \\
& & q_{n} & \ldots \ldots \ldots & q_{0}
\end{array}\right)
$$

Two Univariate Polynomials

- $P=\sum_{i=0}^{m} p_{i} x^{i} \quad, Q=\sum_{j=0}^{n} q_{j} x^{j}$

$$
R=\operatorname{det}\left(\begin{array}{ccccccc}
p_{m} & \ldots & \ldots \ldots \ldots & p_{0} & & \\
& \ddots & & & & \ddots & \\
& & p_{m} & \ldots \ldots \ldots \ldots \ldots & p_{0} \\
q_{n} & \ldots & \ldots & q_{0} & & & \\
& \ddots & & & \ddots & & \\
& & q_{n} & \ldots \ldots \ldots & q_{0}
\end{array}\right)
$$

\rightsquigarrow Sylvester Matrix

Two Bivariate Polynomials

$\Delta P=\sum_{i=0}^{m} p_{i} X^{i} Y^{m-i}, Q=\sum_{j=0}^{n} q_{j} X^{j} Y^{n-j}:$

$$
R=\operatorname{det}\left(\begin{array}{ccccccc}
p_{m} & \ldots & \ldots \ldots \ldots & p_{0} & & \\
& \ddots & & & & \ddots & \\
& & p_{m} & \ldots \ldots \ldots \ldots \ldots & p_{0} \\
q_{n} & \ldots & \ldots & q_{0} & & & \\
& \ddots & & & \ddots & & \\
& & q_{n} & \ldots \ldots \ldots & q_{0}
\end{array}\right)
$$

\rightsquigarrow Sylvester Matrix

- Non trivial root?

More generally

-Wlog, homogeneous polynomials, non trivial roots

More generally

- Wlog, homogeneous polynomials, non trivial roots
> $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial

More generally

- Wlog, homogeneous polynomials, non trivial roots
- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester Matrix \rightsquigarrow Macaulay Matrix (exponential size)

More generally

- Wlog, homogeneous polynomials, non trivial roots
- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester Matrix \rightsquigarrow Macaulay Matrix (exponential size)
- s polynomials $\neq \mathrm{n}+1$ variables \rightsquigarrow several polynomials needed

More generally

- Wlog, homogeneous polynomials, non trivial roots
- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester Matrix \rightsquigarrow Macaulay Matrix (exponential size)
- s polynomials $\neq \mathrm{n}+1$ variables \rightsquigarrow several polynomials needed

Resultant(K)

Input: $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(a)=0$?

Macaulay matrices

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Macaulay matrices

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by $\mathcal{M}_{\mathrm{D}}^{\mathrm{n}}$;
- The row indexed by X^{α} represents

$$
\frac{X^{\alpha}}{X_{i}^{d_{i}}} f_{i} \text {, where } i=\min \left\{j: d_{j} \leqslant \alpha_{j}\right\} .
$$

Other Macaulay matrices are defined by reordering the f_{i} 's.

Macaulay matrices

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by $\mathcal{M}_{\mathrm{D}}^{n}$;
- The row indexed by X^{α} represents

$$
\frac{X^{\alpha}}{X_{i}^{d_{i}}} f_{i} \text {, where } i=\min \left\{j: d_{j} \leqslant \alpha_{j}\right\} .
$$

Other Macaulay matrices are defined by reordering the f_{i} 's.

- Resultant : GCD of the determinants of n Macaulay matrices

Canny's upper bound

The resultant is computable in polynomial space.

Canny's upper bound

Theorem

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as $\operatorname{det}(M) / \operatorname{det}(N)$, where M is Macaulay, and N a submatrix of M ;
- An entry of M (resp. N) can be computed in polynomial time;
- The determinant can be computed in logarithmic space.

Large determinants

Theorem
 [G.-Koiran-Portier'10-13]

- Macaulay matrices can be represented by polynomial-size boolean circuits.
- Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Large determinants

Theorem
 [G.-Koiran-Portier'10-13]

- Macaulay matrices can be represented by polynomial-size boolean circuits.
- Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let \mathcal{M} be a PSPACE Turing Machine;
- Let $\mathcal{G}_{\mathcal{M}}^{\times}$its graph of configurations:
- initial configuration c_{i},
- accepting configuration c_{a};
- $\mathcal{G}_{\mathcal{M}}^{x}$ can be represented by a boolean circuit;
- There exists a path $c_{i} \rightsquigarrow c_{a}$ in $\mathcal{G}_{\mathcal{M}}^{x}$ iff $x \in \mathcal{L}(\mathcal{M})$;
- Let $A \simeq$ adjacency matrix of $\mathcal{S}_{\mathcal{M}}^{\times}$:

$$
\operatorname{det}(A) \neq 0 \Longleftrightarrow \exists c_{i} \rightsquigarrow c_{a}
$$

The resultant in Valiant's model of computation

Theorem

In Valiant's algebraic model of computation:

- The resultant belongs to VPSPACE,
- Determinants of succinctly represented matrices is VPSPACE-complete.

Upper bounds for polynomial systems

Upper bounds for polynomial systems

Upper bounds

- PolSrs $\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$
\Longrightarrow HomPolSys $\left(\mathbb{F}_{\mathfrak{p}}\right), \operatorname{Resultant}\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$

Proof. Remove the unwanted zero root:

- New variables Y_{0}, \ldots, Y_{n}
- New polynomial $\sum_{i} X_{i} Y_{i}-1$ to the system.

Upper bounds for polynomial systems

Upper bounds

- PolSrs $\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$
\Longrightarrow HomPolSys $\left(\mathbb{F}_{\mathfrak{p}}\right), \operatorname{Resultant}\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$
- Under GRH, PolSys $(\mathbb{Z}) \in$ AM

Upper bounds for polynomial systems

Upper bounds

- PolSrs $\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$
\Longrightarrow HomPolSys $\left(\mathbb{F}_{\mathfrak{p}}\right), \operatorname{Resultant}\left(\mathbb{F}_{\mathfrak{p}}\right) \in \operatorname{PSPACE}$
- Under GRH, $\operatorname{PolSys}(\mathbb{Z}) \in A M$
$\Longrightarrow \operatorname{HomPolSys}(\mathbb{Z}), \operatorname{Resultant}(\mathbb{Z}) \in \operatorname{AM}$

Proof sketch of Koiran's result

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leqslant x$;
$>$ Let $\mathcal{P}_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Proof sketch of Koiran's result

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leqslant x$;
$>$ Let $\mathcal{P}_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

[Koiran'96]
There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\# \mathcal{P}_{\mathrm{f}}\left(x_{0}\right) \leqslant A$;
- If f has a root in \mathbb{C}, then $\# \mathcal{P}_{f}\left(x_{0}\right) \geqslant 8 A(\log A+3)$.

Proof sketch of Koiran's result

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leqslant x$;

Let $\mathcal{P}_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\# \mathcal{P}_{\mathrm{f}}\left(\mathrm{x}_{0}\right) \leqslant \mathcal{A}$;
- If f has a root in \mathbb{C}, then $\# \mathcal{P}_{\mathrm{f}}\left(x_{0}\right) \geqslant 8 A(\log A+3)$.

Algorithm.

1. Compute A, x_{0};
2. Take a random hash function $h: \mathcal{P}\left(x_{0}\right) \rightarrow\{0,1\}^{2+\lceil\log A\rceil}$;
3. Check whether there exist $x, y \in \mathcal{P}_{f}\left(x_{0}\right)$ s.t. $h(x)=h(y)$;

Proof sketch of Koiran's result

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leqslant x$;

Let $\mathcal{P}_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

[Koiran'96]
There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\# \mathcal{P}_{\mathrm{f}}\left(\mathrm{x}_{0}\right) \leqslant \mathcal{A}$;
- If f has a root in \mathbb{C}, then $\# \mathcal{P}_{f}\left(x_{0}\right) \geqslant 8 A(\log A+3)$.

Algorithm.

1. Compute A, x_{0};
2. Take a random hash function $h: \mathcal{P}\left(x_{0}\right) \rightarrow\{0,1\}^{2+\lceil\log A\rceil}$;
3. Check whether there exist $x, y \in \mathcal{P}_{f}\left(x_{0}\right)$ s.t. $h(x)=h(y)$; $\leftarrow N P$

Proof sketch of Koiran's result

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
- Let $\mathcal{P}(x)$ be the set of prime numbers $\leqslant x$;

Let $\mathcal{P}_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

[Koiran'96]
There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\# \mathcal{P}_{\mathrm{f}}\left(\mathrm{x}_{0}\right) \leqslant \mathcal{A}$;
- If f has a root in \mathbb{C}, then $\# \mathcal{P}_{f}\left(x_{0}\right) \geqslant 8 A(\log A+3)$.

Algorithm.

1. Compute A, x_{0};
2. Take a random hash function $h: \mathcal{P}\left(x_{0}\right) \rightarrow\{0,1\}^{2+\lceil\log A\rceil}$;
3. Check whether there exist $x, y \in \mathcal{P}_{f}\left(x_{0}\right)$ s.t. $h(x)=h(y)$; $\leftarrow N P$

- proba. 1 if f has a root in \mathbb{C};
- proba. $\leqslant 1 / 4$ if f has no root in \mathbb{C}.

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$
Proposition
[Folklore]
For $p=0$ or prime, $\operatorname{PoLSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPoLSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

For $p=0$ or prime, $\operatorname{PoLSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

For $p=0$ or prime, $\operatorname{PoLSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Boolsys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
- $u_{i}=\neg u_{j}$
- $u_{i}=u_{j} \vee u_{k}$

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Boolsys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
- $u_{i}=\neg u_{j}$
- $u_{i}=u_{j} \vee u_{k}$

HomPolSys

- Variables (over \mathbb{F}_{p}) X_{0} and X_{1}, \ldots, X_{n}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Boolsys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
- $u_{i}=\neg \mathfrak{u}_{j}$
- $u_{i}=u_{j} \vee u_{k}$

HomPolSys

- Variables (over $\mathbb{F}_{\mathfrak{p}}$) X_{0} and X_{1}, \ldots, X_{n}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Boolsys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
- $\boldsymbol{u}_{i}=\neg \mathfrak{u}_{\mathrm{j}}$
- $u_{i}=u_{j} \vee u_{k}$

HomPolSys

- Variables (over $\mathbb{F}_{\mathfrak{p}}$) X_{0} and X_{1}, \ldots, X_{n}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$

Lower bounds for non-square systems

Notation: $\mathbb{F}_{0}=\mathbb{Q}$

Proposition

[Folklore]
For $p=0$ or prime, $\operatorname{PolSys}\left(\mathbb{F}_{p}\right)$ \& $\operatorname{HomPolSys}\left(\mathbb{F}_{p}\right)$ are NP-hard.
Proof. Case HomPolSrs $\left(\mathbb{F}_{p}\right)$, with $p \neq 2$:

Boolsys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
- $\boldsymbol{u}_{i}=\neg \mathfrak{u}_{\mathrm{j}}$
- $u_{i}=u_{j} \vee u_{k}$

HомPolSys

- Variables (over $\mathbb{F}_{\mathfrak{p}}$) X_{0} and X_{1}, \ldots, X_{n}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Lower bound for the resultant in char. 0

Proposition
[Heintz-Morgenstern'93]
Resultant(\mathbb{Z}) is NP-hard.

Lower bound for the resultant in char. 0

Proposition

Resultant(Z) is NP-hard.

Proof. Partition: $S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}, \exists$? $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$

Lower bound for the resultant in char. 0

Proposition

Resultant(Z) is NP-hard.

Proof. Partition: $S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}, \exists$? $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$

$$
\rightsquigarrow\left\{\begin{array}{rll}
X_{1}^{2}-X_{0}^{2} & = & 0 \\
& \vdots & \\
X_{n}^{2}-X_{0}^{2} & =0 \\
u_{1} X_{1}+\cdots+u_{n} X_{n} & = & 0
\end{array}\right.
$$

Lower bound for the resultant in char. 0

Proposition

Resultant(\mathbb{Z}) is NP-hard.

Proof. Partition: $S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}, \exists$? $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$

$$
\rightsquigarrow\left\{\begin{array}{rll}
X_{1}^{2}-X_{0}^{2} & = & 0 \\
& \vdots & \\
X_{n}^{2}-X_{0}^{2} & =0 \\
u_{1} X_{1}+\cdots+u_{n} X_{n} & = & 0
\end{array}\right.
$$

	PolSys	HomPolSys	Resultant
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_{p}	NP-hard	NP-hard	Open

Hardness in positive characteristics

- $\operatorname{HomPolSrs}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard: \# homogeneous polynomials \geqslant \# variables

HomPolSys

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- $\operatorname{HomPolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPolSys

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- $\operatorname{HomPolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPolSys

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Idea of the reduction

- For f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n
$$

Idea of the reduction

- For f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n
$$

$\forall \mathbf{a} \in{\overline{\mathbb{F}_{\mathfrak{p}}}}^{\mathrm{n}+1}\left(\forall \mathrm{j}, \mathrm{f}_{\mathrm{j}}(\mathbf{a})=0 \quad \Longrightarrow \quad \forall \mathrm{i}, \mathrm{g}_{\mathrm{i}}(\mathbf{a})=0\right)$

Idea of the reduction

- For f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n
$$

$\forall \mathbf{a} \in{\overline{\mathbb{F}_{\mathfrak{p}}}}^{\mathrm{n}+1}\left(\forall j, \mathrm{f}_{\mathrm{j}}(\mathbf{a})=0 \underset{\text { if } \alpha_{\mathrm{ij}} \text { algebraically independent }}{\Longleftrightarrow} \forall \mathrm{i}, \mathrm{g}_{\mathrm{i}}(\mathbf{a})=0\right)$

Idea of the reduction

- For f_{1}, \ldots, f_{s} homogeneous of degree 2 ,

$$
g_{i}:=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n
$$

$\forall \mathbf{a} \in{\overline{\mathbb{F}_{\mathfrak{p}}}}^{\mathrm{n}+1}\left(\forall j, \mathrm{f}_{\mathrm{j}}(\mathbf{a})=0 \underset{\text { if } \alpha_{\mathrm{ij}} \text { algebraically independent }}{\Longleftrightarrow} \forall \mathrm{i}, \mathrm{g}_{\mathrm{i}}(\mathbf{a})=0\right)$

- Replace algebraic independence by random choice

Two useful results

Effective Bertini Theorem

Let f_{1}, \ldots, f_{s} and g_{0}, \ldots, g_{n} be as on previous slide. Then there exists a polynomial F of degree at most 3^{n+1} s.t.

$$
\mathrm{F}(\boldsymbol{\alpha}) \neq 0 \Longrightarrow \forall \mathbf{a}\left(\forall \mathrm{i}, \mathrm{f}_{\mathfrak{i}}(\mathbf{a})=0 \Longleftrightarrow \forall \mathfrak{j}, \mathrm{~g}_{\mathfrak{j}}(\mathbf{a})=0\right)
$$

Two useful results

Effective Bertini Theorem

Let f_{1}, \ldots, f_{s} and g_{0}, \ldots, g_{n} be as on previous slide. Then there exists a polynomial F of degree at most 3^{n+1} s.t.

$$
\mathrm{F}(\boldsymbol{\alpha}) \neq 0 \Longrightarrow \forall \mathbf{a}\left(\forall \mathrm{i}, \mathrm{f}_{\mathrm{i}}(\mathbf{a})=0 \Longleftrightarrow \forall \mathfrak{j}, \mathrm{~g}_{\mathfrak{j}}(\mathbf{a})=0\right)
$$

Lemma

[DeMillo-Lipton, Zippel, Schwartz (1978-80)]
Let $F \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be nonzero, of degree d. If A_{0}, \ldots, A_{n} are chosen independently at random in \mathbb{F}_{q}, then

$$
\mathbb{P}\left[F\left(A_{0}, \ldots, A_{n}\right)=0\right] \leqslant \frac{d}{q}
$$

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements; [Shoup'90]

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements; [Shoup'90]
2. Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements; [Shoup'90]
2. Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};
3. Define, for $0 \leqslant i \leqslant n, g_{i}=\sum_{j} \alpha_{i j} f_{j}$.

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements; [Shoup'90]
2. Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};
3. Define, for $0 \leqslant i \leqslant n, g_{i}=\sum_{j} \alpha_{i j} f_{j}$.
> $f_{j}(\mathbf{a})=0 \Longrightarrow g_{i}(\mathbf{a})=0$

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements; [Shoup'90]
2. Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};
3. Define, for $0 \leqslant i \leqslant n, g_{i}=\sum_{j} \alpha_{i j} f_{j}$.
> $\mathrm{f}_{\mathrm{j}}(\mathbf{a})=0 \Longrightarrow \mathrm{~g}_{\mathrm{i}}(\mathbf{a})=0$

- If the f_{j} have no common root,
$\mathbb{P}\left[\right.$ the g_{i} have a common root $]=\mathbb{P}[F(\alpha)=0] \leqslant \frac{1}{3}$

The randomized reduction

1. Build an extension $\mathbb{L} / \mathbb{F}_{\mathfrak{p}}$ with at least 3^{n+2} elements;
2. Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};
3. Define, for $0 \leqslant i \leqslant n, g_{i}=\sum_{j} \alpha_{i j} f_{j}$.

- $\mathrm{f}_{\mathrm{j}}(\mathbf{a})=0 \Longrightarrow \mathrm{~g}_{\mathrm{i}}(\mathbf{a})=0$
- If the f_{j} have no common root,

$$
\mathbb{P}\left[\text { the } g_{i} \text { have a common root }\right]=\mathbb{P}[F(\alpha)=0] \leqslant \frac{1}{3}
$$

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number. $\operatorname{Resultant}\left(\mathbb{F}_{q}\right)$ is NP-hard for degree-2 polynomials for some $q=p^{s}$, under randomized reductions.

Hardness in positive characteristics

- $\operatorname{HomPolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPolSys

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- $\operatorname{HomPolSys}\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPolSys

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and

$$
f_{1}, \ldots, f_{n}
$$

- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{c}
f_{1}(X) \\
\vdots \\
f_{n}(X) \\
\end{array} \quad\right. \text { (unchanged) }
$$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{cr}
f_{1}(X) & \\
\vdots & \text { (unchanged) } \\
f_{n}(X) & \\
f_{n+1}(X) & +\lambda Y_{1}^{2} \\
& \\
&
\end{array}\right.
$$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{crr}
f_{1}(X) & & \\
\vdots & & \text { (unchanged) } \\
f_{n}(X) & & \\
f_{n+1}(X) & & +\lambda Y_{1}^{2} \\
f_{n+2}(X) & -Y_{1}^{2} & +\lambda Y_{2}^{2}
\end{array}\right.
$$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \text { (unchanged) } \\
f_{n}(X) & \\
f_{n+1}(X) & \\
f_{n+2}(X) & -Y_{1}^{2} \\
\vdots & \\
f_{s-1}(X)-\lambda Y_{2}^{2} \\
& \\
Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2}
\end{array}\right)
$$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \\
\text { (unchanged) } \\
f_{n}(X) & \\
f_{n+1}(X) & \\
f_{n+2}(X) & -Y_{1}^{2} \\
\vdots & \\
f_{s-1}(X) & +\lambda Y_{2}^{2} \\
f_{s}(X) & -Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2}
\end{array}\right)
$$

Reduction

- New variables: Y_{1}, \ldots, Y_{s-n-1}

New system

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \\
\text { (unchanged) } \\
f_{n}(X) & \\
f_{n+1}(X) & \\
f_{n+2}(X) & -Y_{1}^{2} \\
\vdots & \\
\\
f_{s-1}(X) & +\lambda Y_{2}^{2} \\
f_{s}(X) & -Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2}
\end{array}\right)
$$

a root of $f \Longrightarrow(a, 0)$ root of g

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \xlongequal{?} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{ccc}
f_{1}(a) & & \\
\quad \vdots & & \\
f_{n}(a) & & \\
f_{n+1}(a) & & +\lambda b_{1}^{2} \\
f_{n+2}(a) & -b_{1}^{2} & +\lambda b_{2}^{2} \\
\vdots & & \\
f_{s-1}(a) & -b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2} \\
f_{s}(a) & -b_{s-n-1}^{2}
\end{array}\right)
$$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{ll}
f_{1}(a) & \\
\vdots \\
& \\
f_{n}(a) & \\
f_{n+1}(a) & +\lambda b_{1}^{2} \\
f_{n+2}(a) & -b_{1}^{2} \\
\vdots \\
& +\lambda b_{2}^{2} \\
f_{s-1}(a)-b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2} \\
f_{s}(a) & -b_{s-n-1}^{2}
\end{array}\right) \quad>b=0
$$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{ll}
f_{1}(a) & \\
\vdots & \\
f_{n}(a) & \\
f_{n+1}(a) & \\
f_{n+2}(\boldsymbol{a}) & -b_{1}^{2} \\
\vdots & \\
& +\lambda b_{1}^{2} \\
f_{s-1}(a) & -b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2} \\
f_{s}(\boldsymbol{a}) & -b_{s-n-1}^{2}
\end{array}\right)
$$

> $\mathbf{a}=0 \Longrightarrow \mathrm{~b}=0$

- $a_{0}=1$ and $a_{i}= \pm 1$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{cl}
f_{1}(\mathbf{a}) & \\
\vdots \\
f_{n}(\mathbf{a})
\end{array}\right) \quad \begin{aligned}
& \text { a }=0 \Longrightarrow \mathbf{b}=0 \\
& \\
& >\epsilon_{i}=f_{n+i}(\mathbf{a})
\end{aligned}
$$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \xlongequal{?} \mathbf{a}$ non trivial root of f

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{s-n} \lambda^{s-n-1}\right)
$$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \boldsymbol{a}$ non trivial root of f

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{s-n} \lambda^{s-n-1}\right)
$$

$$
\operatorname{det}=0 \stackrel{?}{\Longrightarrow} \forall i, \epsilon_{i}=0 \Longrightarrow f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0
$$

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
- In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
> In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
> In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number.

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
> In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number.

- Resultant $\left(\mathbb{F}_{\mathfrak{p}}\right)$ is NP-hard for linear-degree polynomials.

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
> In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number.

- Resultant $\left(\mathbb{F}_{p}\right)$ is NP-hard for linear-degree polynomials.
- Resultant $\left(\mathbb{F}_{q}\right)$ is NP-hard for degree-2 polynomials for some $\mathrm{q}=\mathrm{p}^{\mathrm{s}}$.

Conclusion

- Evaluation of the resultant:

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;
- No known difference between square and non-square systems.

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;
- No known difference between square and non-square systems.
- Some open problems:

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;
- No known difference between square and non-square systems.
- Some open problems:
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;
- No known difference between square and non-square systems.
- Some open problems:
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Improve the PSPACE upper bound in positive characteristics...

Conclusion

- Evaluation of the resultant:
- Computable in polynomial space;
- Evidences for PSPACE-hardness;
- Similar results in Valiant's algebraic model.
- Checking the satisfiability of a polynomial system:
- In characteristic 0 , in AM ("almost NP");
- In positive characteristic, in PSPACE;
- NP-hard in any characteristic;
- No known difference between square and non-square systems.
- Some open problems:
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Improve the PSPACE upper bound in positive characteristics...
- ... or the NP lower bound.

