Oblivious Ciphertext Compression via Linear Codes

Bruno Grenet

Joint work with P. Giorgi and M. Simkin

Séminaire CAS³C³ 23 octobre 2025

Representations of vectors with few non-zero entries

Dense representation

$$\mathbf{v} = (0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0) \in \mathbb{F}_{37}^{31}$$

Compact representations

$$sparse(\mathbf{v}) = \{(2,1), (9,4), (10,6), (16,7), (20,8), (25,3), (26,1)\}$$

$$(\mathbf{v}(2^i))_{0 \le i < 14} = (30, 2, 5, 23, 15, 35, 23, 16, 2, 2, 28, 30, 2, 16)$$

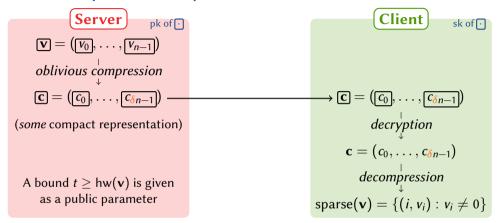
. . .

Hamming weight

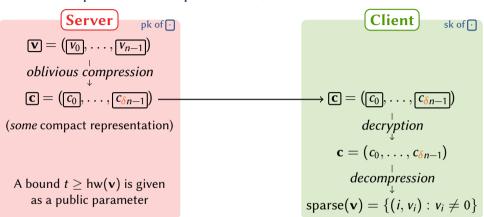
▶
$$hw(\mathbf{v}) = \#\{i : v_i \neq 0\}$$

$$hw(\mathbf{v}) = 7$$

Oblivious compression of ciphertexts [Choi et al.'21,Liu-Tromer'22,Fleischhacker-Larsen-Simkin'23]



Oblivious compression of ciphertexts [Choi et al.'21,Liu-Tromer'22,Fleischhacker-Larsen-Simkin'23]



Goals

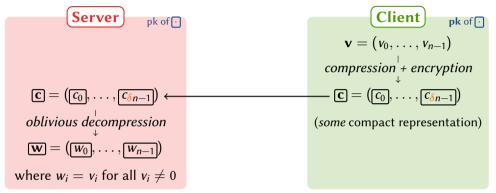
- $ightharpoonup \delta < 1$ as small as possible
- Efficiency for oblivious compression and for decompression
- ▶ With known support: Client knows $\{i : v_i \neq 0\}$

depends on t

[Bienstock et al'24]

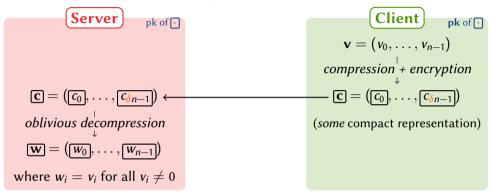
Oblivious decompression of ciphertexts

[Angel et al.'18,Bienstock et al.'24]



Oblivious decompression of ciphertexts

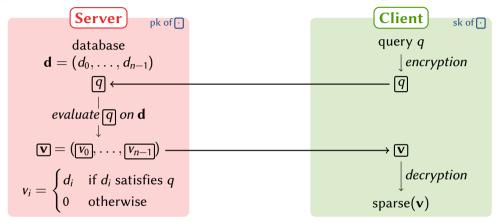
[Angel et al.'18,Bienstock et al.'24]



Goals

- $ightharpoonup \delta$ as small as possible
- Efficiency for compression and oblivious decompression
- Remark: no condition on w_i if $v_i = 0$

Applications: Secure Search [Choi et al.'18] / Obl. Message Retrieval [Liu-Tromer'22]

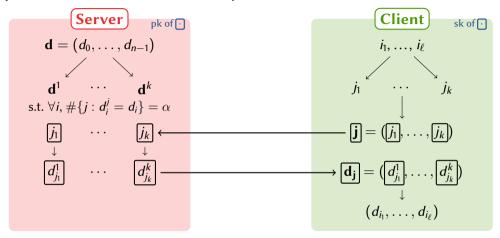


Using oblivious compression:

- ► Reduced (last) communication
- Reduced work for the client

better than full database!

Application: Batch-PIR from any PIR [Angel et al.'18, Bienstock et al.'24]



Reduce communications

- ► Using oblivious decompression: compress [j]
- ightharpoonup Using oblivious compression with known support: compress d_j

Linear codes

Definitions

- ▶ Linear [n, k, d] code C over \mathbb{F}_q : linear subspace of dimension k of \mathbb{F}_q^n
 - ▶ $d \le n k + 1$: distance of $C = \min_{\mathbf{c} \in C \setminus \{\mathbf{0}\}} \mathsf{hw}(\mathbf{c})$
- Generator and parity-check matrices:

$$m{\mathcal{C}} \in \mathbb{F}_q^{k imes n} ext{ such that } \mathcal{C} = \{ m{m} \cdot G : m{m} \in \mathbb{F}_q^k \}$$

$$H \in \mathbb{F}_q^{(n-k)\times n} \text{ such that } \mathcal{C} = \{\mathbf{c} \in \mathbb{F}_q^n : H \cdot \mathbf{c} = \mathbf{0}\}$$

$$\mathcal{C} = \ker(H)$$

Dual code

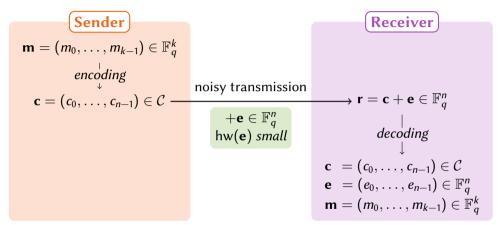
Dual code C^{\perp} of C: linear $[n, n-k, d^{\perp}]$ code defined either by

 $\mathcal{C}^{\perp} = \operatorname{rowsp}(H)$ $\mathcal{C}^{\perp} = \ker(G)$

H is a generator matrix

G is a parity-check matrix

Classical use of linear codes



- ▶ Decoding from errors: $\mathbf{r} \mapsto \text{either } \mathbf{c}, \mathbf{m} \text{ or } \mathbf{e}$
- ▶ Decoding from erasures: \mathbf{r} and $\{i : e_i \neq 0\} \mapsto \mathbf{c}$, \mathbf{m} or \mathbf{e}

 $\mathsf{hw}(\mathbf{e}) < \frac{d}{2}$ $\mathsf{hw}(\mathbf{e}) < d$

Syndrome and decoding

Syndrome

Let $\mathbf{r} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in \mathcal{C}$ and $hw(\mathbf{e}) < \frac{d}{2}$.

- ▶ The syndrome of **r** is $\mathbf{s} = H \cdot \mathbf{r}$ where H is a parity-check matrix of \mathcal{C}
- ► The syndrome does not depend on **c**: $\mathbf{s} = H \cdot \mathbf{e}$

Syndrome Decoding Problem

Parameter: a parity-check matrix $H \in \mathbb{F}_q^{(n-k)\times n}$ of a linear [n, k, d] code

Input: a syndrome $\mathbf{s} = H \cdot \mathbf{e}$ where $hw(\mathbf{e}) < \frac{d}{2}$

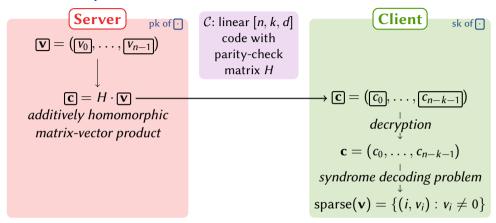
Output: the *error vector* $\mathbf{e} \in \mathbb{F}_q^n$

Remarks

- ▶ Variant: Erasure-SDP \rightarrow { $i: e_i \neq 0$ } also given as input
- ▶ Input and output sizes: O(n-k)

using sparse(e)

Oblivious compression based on linear codes



Coding-theoretic interpretation

- $\mathbf{v} = error\ vector$
- ightharpoonup c = syndrome
- ▶ If the client knows $\{i: v_i \neq 0\}$, SDP \leadsto Erasure-SDP

Analysis of the oblivious compression scheme

Requirements

- lacktriangle Additively homomorphic encryption scheme lacktriangle, with message space \mathbb{F}_q
- ▶ Linear [n, k, d] code C over \mathbb{F}_q , with
 - ightharpoonup d > 2t
 - ightharpoonup d > t in the *know support* variant

 $hw(\mathbf{v}) < \frac{d}{2}$ $hw(\mathbf{v}) < d$

- Efficiency:
 - Fast syndrome computation
 - Fast (Erasure) Syndrome Decoding Problem

Theorem

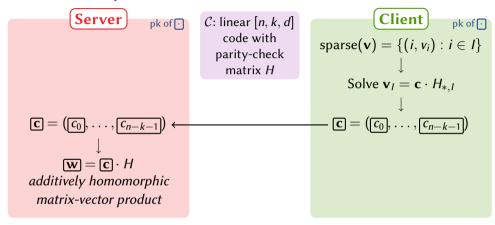
If $\mathcal C$ is a linear [n,k,d] code over $\mathbb F_q$ with d>2t (resp. d>t), the construction is an oblivious compression scheme (resp. with known support) with compression rate $\frac{n-k}{n}$.

Remarks

- ► Since $d \le n k + 1$, compression rate is $\ge 2t/n$ (resp. $\ge t/n$)
- ▶ If d = n k + 1, optimal compression rate 2t/n (resp. t/n)

MDS code

Oblivious decompression based on linear codes



Coding-theoretic interpretation

 $H = \text{generator matrix of the dual code } \mathcal{C}^{\perp}$

- $\mathbf{v} = \text{vector with erasures}$
- ightharpoonup c = message
- $\mathbf{w} = \text{codeword}$

Analysis of the oblivious decompression scheme

Requirements

- lacktriangle Additively homomorphic encryption scheme lacktriangle, with message space \mathbb{F}_q
- ▶ Linear [n, k, d] code C over \mathbb{F}_q , with d > t
- ▶ Efficiency: for the dual code C^{\perp} ,
 - Fast encoding
 - ► Fast decoding from erasures

 $message \rightarrow codeword$

Theorem

If C is a linear [n, k, d] code over \mathbb{F}_q with d > t, the construction is an oblivious decompression scheme with compression rate $\frac{n-k}{n}$.

Remarks

- ▶ Since $d \le n k + 1$, compression rate is $\ge t/n$
- ▶ If d = n k + 1, optimal compression rate t/n

MDS code

Generalized Reed-Solomon Codes

Definition:
$$[n, k, d]$$
 generalized Reed-Solomon code
$$\mathcal{C} = \left\{ (\lambda_0 \cdot f(\alpha_0), \dots, \lambda_{n-1} \cdot f(\alpha_{n-1})) : f \in \mathbb{F}_q[x]_{< k} \right\}$$
 \bullet code locators: $\alpha_0, \dots, \alpha_{n-1} \in \mathbb{F}_q$

- \triangleright column multipliers:: $\lambda_0, \ldots, \lambda_{n-1} \in \mathbb{F}_q^{\times}$

(classical RS codes: $\lambda_0 = \cdots = \lambda_{n-1} = 1$ and $\alpha_i = \gamma^i$ for some γ of order n)

Properties

- \triangleright GRS codes are MDS: d = n k + 1
- The dual of a GRS code is a GRS code:

$$G = \begin{bmatrix} \lambda_0 & \dots & \lambda_{n-1} \\ \lambda_0 \alpha_0 & \dots & \lambda_{n-1} \alpha_{n-1} \\ \vdots & & \vdots \\ \lambda_0 \alpha_0^{k-1} & \dots & \lambda_{n-1} \alpha_{n-1}^{k-1} \end{bmatrix}$$

$$G = \begin{bmatrix} \lambda_0 & \dots & \lambda_{n-1} \\ \lambda_0 \alpha_0 & \dots & \lambda_{n-1} \alpha_{n-1} \\ \vdots & & \vdots \\ \lambda_0 \alpha_0^{k-1} & \dots & \lambda_{n-1} \alpha_{n-1}^{k-1} \end{bmatrix} \qquad H = \begin{bmatrix} \mu_0 & \dots & \mu_{n-1} \\ \mu_0 \alpha_0 & \dots & \mu_{n-1} \alpha_{n-1} \\ \vdots & & \vdots \\ \mu_0 \alpha_0^{n-k-1} & \dots & \mu_{n-1} \alpha_{n-1}^{n-k-1} \end{bmatrix}$$

 $\alpha_i \neq \alpha_j$ for $i \neq j$

GRS codes: encoding, syndrome, erasure decoding

Expression in terms of evaluation / interpolation

- ▶ In the dual code C^{\perp} with generator matrix $H \in \mathbb{F}_{\sigma}^{(n-k)\times n}$:
 - Encoding: compute $\mathbf{m} \cdot H = (\mu_0 m(\alpha_0), \dots, \mu_{n-1} m(\alpha_{n-1}))$ multipoint evaluation
 - ightharpoonup Erasure decoding: solve $\mathbf{r}_I = \mathbf{m} \cdot H_{*,I}$

interpolation

- ▶ In the code C with parity-check matrix $H \in \mathbb{F}_a^{(n-k)\times n}$:
 - Syndrome computation: compute $H \cdot \mathbf{r}$

transposed multipoint evaluation ightharpoonup Erasure-SDP: solve $\mathbf{s} = H_{*,I} \cdot \mathbf{e}_I$ *transposed* interpolation

Complexities

- ► Encoding and syndrome: $O(M(n)\log(n-k))$ operations in \mathbb{F}_q
- Erasure decoding and Erasure-SDP: $O(M(n-k)\log(n-k))$ operations in \mathbb{F}_a

Remarks

- If $\alpha_i = \gamma^i$ for 0 < i < n, encoding and syndrome in O(M(n)) operations
- In the general case, $M(n) = O(n \log n \log \log n)$

Syndrome Decoding Problem for GRS Codes

The problem

Input:
$$\mathbf{s} = \begin{bmatrix} \mu_0 & \dots & \mu_{n-1} \\ \mu_0 \alpha_0 & \dots & \mu_{n-1} \alpha_{n-1} \\ \vdots & & \vdots \\ \mu_0 \alpha_0^{n-k-1} & \dots & \mu_{n-1} \alpha_{n-1}^{n-k-1} \end{bmatrix} \cdot \mathbf{e} \text{ where hw}(\mathbf{e}) = t < \frac{d}{2}$$

Output: sparse(e)

Basic idea

- $(s_j)_j$ is linearly recurrent with minimal polynomial $\prod_{i:e_i\neq 0}(x-\alpha_i)$

Algorithm

- 1. Compute the minimal polynomial of **s**
- **2.** Compute its roots $\alpha_{i_0}, ..., \alpha_{i_{t-1}}$
- 3. Compute the set $I = \{i_0, ..., i_{t-1}\}$
- **4.** Solve the Erasure-SDP $\mathbf{s} = H_{*,I} \cdot \mathbf{e}_I$

Berlekamp-Massey alg.: $O(M(t) \log(t))$

Berlekamp-Rabin alg.: $O(M(t) \log(t) \log(q))$

Requires $\alpha_i \mapsto i$

 $O(M(t)\log(t))$

GRS codes for oblivious (de)compression

Oblivious compression scheme

- ▶ Using an [n, n-2t, 2t+1] GRS code with $\alpha_i = i \in \mathbb{F}_q$, we obtain
 - ightharpoonup an optimal compression rate 2t/n
 - bolivious compression in $O(M(n) \log(t))$ add. homomorphic operations
 - ▶ decompression in $O(M(t) \log(t) \log q)$ operations in \mathbb{F}_q

Oblivious compression scheme with known support

- ▶ Using an [n, n-t, t+1] GRS code with $\alpha_i = \gamma^i \in \mathbb{F}_q$, we obtain
 - ightharpoonup an optimal compression rate t/n
 - \triangleright oblivious compression in O(M(n)) add. homomorphic operations
 - ▶ decompression in $O(M(t) \log(t))$ operations

Oblivious decompression scheme

- ▶ Using an [n, n-t, t+1] GRS code with $\alpha_i = \gamma^i \in \mathbb{F}_q$, we obtain
 - ightharpoonup an optimal compression rate t/n
 - \triangleright compression in $O(M(t) \log(t))$ operations
 - \triangleright oblivious decompression in O(M(n)) add. homomorphic operations

Complexities for special finite fields

Binary field \mathbb{F}_{2^ℓ}

Use of the LCH basis of $\mathbb{F}_2[x]_{<2^\ell}$: alternative to monomial basis with fast algorithms

- ► Server: $O(n \log t)$ add. homomorphic operations
- ► Client: $O(t \log^2 t) / O(t \log^2 t\ell)$ operations in \mathbb{F}_{2^ℓ}

Prime finite field \mathbb{F}_q with $q \equiv 1 \mod 2^\ell$

 \mathbb{F}_q has a 2^ℓ th primitive root of unity: *FFT-friendly finite field*

- Server: $O(n \log t) / O(n \log^2 t)$ add. homomorphic operations
- ► Client: $O(t \log^2 t) / O(t \log^2 t \log q)$ operations in \mathbb{F}_q

Comparisons of oblivious compression schemes

compressed size	obl. comp.	decomp.	perfect	\mathbb{F}_q	
$O(t(\log^2 t + \log \kappa))$	O(nt)	$O(t^3)$	no	$q>2^{\kappa}$	[Liu-Tromer'22]
$O(\kappa t/\log t)$	$O(n\kappa/\log t)$	$O(t\kappa/\log t)$	no	$q>2^{\kappa}$	[FLS'23]
2 <i>t</i>	$O(n \log n)$	$O(t\sqrt{n})$	yes	q > n	[FLS'23]
$O(t+\kappa\log\kappa)$	$O(n\kappa)$	$O(t\kappa)$	no	$q>2^{\kappa}$	[FLOS'24]
2 <i>t</i>	$O(n\log^2 t)$	$O(t\log^2 t\log q)$	yes	q > n	This work
2 <i>t</i>	$O(n \log t)$	$O(t\log^2 t\ell)$	yes	$q=2^\ell$	This work

 $^{ightharpoonup \kappa = \text{failure probability}, \kappa > \log n}$

Conclusion

A new framework

- ► Oblivious compression ↔ Syndrome Decoding Problem
- ightharpoonup Oblivious compression with known support \leftrightarrow Erasure Syndrome Decoding Problem
- ightharpoonup Oblivious decompression \leftrightarrow Erasure Decoding + Encoding

Results

- Optimal compression rates with MDS codes
- Deterministic and perfectly correct schemes
- Very good asymptotic complexities

in particular over \mathbb{F}_{2^ℓ}

Open questions

- ▶ Behavior in practice, in particular within complete protocols
- ▶ Use of other codes?

Conclusion

A new framework

- ► Oblivious compression ↔ Syndrome Decoding Problem
- ightharpoonup Oblivious compression with known support \leftrightarrow Erasure Syndrome Decoding Problem
- ▶ Oblivious decompression ↔ Erasure Decoding + Encoding

Results

- Optimal compression rates with MDS codes
- Deterministic and perfectly correct schemes
- Very good asymptotic complexities

in particular over \mathbb{F}_{2^ℓ}

Open questions

- Behavior in practice, in particular within complete protocols
- Use of other codes?

Thank you!