Sparse polynomial arithmetic

Bruno Grenet¹

LIRMM - Université de Montpellier

LJK, Grenoble - February 10., 2022

¹Based on joint works with P. Giorgi, A. Perret du Cray and D. Roche

Dense and sparse polynomials

$$f = \sum_{i=0}^{D} c_i x^i \qquad c_i \in R$$

Dense representation

- List of all the c_i's
- Arithmetic size: O(D)
- Bit size: O(D log H)

Basic operations

- Addition: O(D) (trivial)
- Multiplication : $\tilde{O}(D)$ via FFT
- Euclidean division, GCD, multipoint evaluation, interpolation, $\ldots \rightarrow \tilde{O}(D)$ *via* reduction to multiplication

Sparse representation

- List of the pairs (i, c_i) for **nonzero** c_i 's
- Arithmetic size: O(T) (sparsity of f)
- Bit size: $O(T(\log D + \log H))$

Basic operations

- Addition: O(T) (list merge)
- Multiplication, division, GCD, ...: ?

Multivariate polynomials

$$f = \sum_{i=0}^{T} c_i x_1^{e_{1i}} x_2^{e_{2i}} \cdots x_n^{e_{ni}}$$

Sparse representation

• List of the tuples
$$(e_{1i}, \ldots, e_{ni}; c_i)$$

▶ Bit size: $O(T(n \log D + \log H))$ where $D = 1 + \max_{i,j} e_{ji}$

Kronecker substitution

•
$$f \mapsto f_u(x) = f(x, x^D, x^{D^2}, \dots, x^{D^{n-1}}) = \sum_i c_i x^{e_{1i} + e_{2i}D + \dots + e_{ni}D^{n-1}}$$

- f_u has degree $D^n \rightarrow$ same bit size as f
- Invertible transformation, compatible with polynomial operations

Work with univariate polynomials - same results for multivariate polynomials

1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms

1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms

Multiplication of sparse polynomials

$$\left(\sum_{i=0}^{T-1} c_i x^{e_i}\right) \times \left(\sum_{j=0}^{T-1} d_j x^{f_j}\right) = \sum_{i=0}^{T-1} \sum_{j=0}^{T-1} c_i d_j x^{e_i + f_j}$$

Naive algorithm

Compute every $c_i d_j$, $0 \le i, j < T$

• $O(T^2)$ coefficient multiplications and exponent additions

Some coefficient additions, sorting, etc.

Less naive algorithms

- Good data structures
- Parallel implementation for efficiency

[Johnson (1974), Yan (1998), Monagan-Pearce (2011)]

[Monagan-Pearce (2009)]

Can we do better?

Sparsity of a product

$$(x^{14}+2x^{7}+2) \times (3x^{13}+5x^{8}+3) = 3x^{27}+5x^{22}+6x^{20}+10x^{15}+3x^{14}+6x^{13}+10x^{8}+6x^{7}+6x^{14}+6x^$$

$$(x^{14} + 2x^7 + 2) \times (x^{14} - 2x^7 + 2) = x^{28} + 4$$

ightarrow 2 nonzero terms

• $f_{\#}$: *sparsity* (or number of nonzero terms) of a polynomial f

$$1 \leq (fg)_{\#} \leq f_{\#}g_{\#}$$

Difficulty

- Can we predict the output sparsity?
- Need of output-sensitive algorithms

Structural sparsity: a partial solution

$$(x^{14} + 2x^7 + 2x^0) \times (x^{14} + -2x^7 + 2x^0) = x^{28} + 0x^{21} + 0x^{14} + 0x^7 + 4x^0$$

$$\rightarrow Structural sparsity 5$$

Theorem

[Arnold-Roche (2015)]

There is a randomized algorithm to compute the product of two sparse polynomials f, $g \in \mathbb{Z}[x]$ of degree $\leq D$ and height $\leq H$, with bit cost quasi-linear in $S \log D + T \log H$ where $T = \max(f_{\#}, g_{\#}, (fg)_{\#})$ and S is the structural sparsity of the product

Structural sparsity: a partial solution

$$(x^{14} + 2x^7 + 2x^0) \times (x^{14} + -2x^7 + 2x^0) = x^{28} + 0x^{21} + 0x^{14} + 0x^7 + 4x^0$$

$$\rightarrow Structural sparsity 5$$

Theorem

[Arnold-Roche (2015)]

There is a randomized algorithm to compute the product of two sparse polynomials f, $g \in \mathbb{Z}[x]$ of degree $\leq D$ and height $\leq H$, with bit cost quasi-linear in $S \log D + T \log H$ where $T = \max(f_{\#}, g_{\#}, (fg)_{\#})$ and S is the structural sparsity of the product

Limitation

$$\left(\sum_{i=0}^{T-1} x^i\right) imes \left(\sum_{i=0}^{T-1} x^{Ti+1} - x^{Ti}\right) = X^{T^2} - 1$$
 has structural sparsity $T^2 + 1$

Division of sparse polynomials

Compute q and r such that $f = g \cdot q + r$ with deg $r < \deg g$

$$x^{2n+1} - x^{2n} = (x^{n+1} - x^n + 1) \times \frac{x^n}{x^n} - x^n$$

 \rightarrow sparse output

$$x^{2n+1} + x^{2n} = (x^{n+1} - x^n + 1) \times (x^n + 2x^{n-1} + \dots + 2) + x^n - 2x^{n-1} - \dots - 2$$

 $\rightarrow \text{dense output}$

$$x^{2n+1} - x^{2n} = (x^{n+1} - 2x^n + 1) \times (x^n + x^{n-1} + 2x^{n-2} + \dots + 2^{n-1}) + (2^n - 3)x^n - x^{n-1} - 2x^{n-2} - \dots - 2^{n-1}$$

 \rightarrow large coefficients

Output size even more variable than in the case of multiplication!

Division algorithms

Classical Euclidean Algorithm

- ► Uses $O(g_{\#}q_{\#})$ ring operations
- ▶ But many exponent comparisons → dominates the cost!
 - $O(f_{\#} + q_{\#}g_{\#}^2)$ using sorted lists
 - $O(f_{\#} + q_{\#}g_{\#} \log(f_{\#} + q_{\#}g_{\#}))$ using heap or geobucket
- $\blacktriangleright \text{ Space} \rightarrow \text{heap size}$

$$1 + q_{\#}$$

Best known algorithm

- Heap of size $min(g_{\#}, q_{\#})$
- Complexity $O(f_{\#} + q_{\#}g_{\#} \log \min(q_{\#}, g_{\#}))$

Output-sensitive but non-linear algorithm

[Johnson (1974), Yan (1998)]

```
[Johnson (1974)]
[Monagan-Pearce (2007)]
```

[Monagan-Pearce (2011)]

GCD of sparse polynomials

 $gcd(x^{ab} - 1, x^{ab} - x^a - x^b + 1) = x^{a+b-1} + x^{a+b-2} + \dots + x^a - x^{b-1} - x^{b-2} - \dots - 1$ [Schinzel (2002)]

Hardness results

Testing if two sparse polynomials over Z are coprime is coNP-hard [Plaisted (1984)]
 Generalization over F_q

[von zur Gathen-Karpinski-Shparlinski (1996), Karpinski-Shparlinski (1999), Kaltofen-Koiran (2005)]

Upper bounds

Let f, g ∈ Z[x] with a fixed sparsity and height:
If f or g is cyclotomic-free, gcd(f, g) in complexity Õ(log D)

[Filaseta-Granville-Schinzel (2008)]

Compute a polynomial with *the same roots as* gcd(f,g) *in* $\overline{\mathbb{Q}}$ *in* complexity $\widetilde{O}(\log D)$ (in particular : coprimality test) [Amoroso-Leroux-Sombra (2015)]

Are there output-sensitive algorithms that computes GCD and the Bézout coefficients?

Challenges for sparse polynomial operations

Output sensitivity

- Output size is usually not determined by input size
- Algorithms must be output sensitive
- Depending on operations, output size may be very variable

Known complexities

- Multiplication and division: output-sensitive quadratic algorithms
- GCD: exponential time in the general case

Today: Output-sensitive quasi-linear algorithms for multiplication and exact division

Ignored: Divisibility testing

1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms

Definition of the problem

Input: A sparse polynomial $f \in R[x]$ in an implicit representation Bounds on D, H and/or T Output: The sparse representation of f

Implicit representations

- Straight-line program (SLP), *a.k.a* arithmetic circuit
- Blackbox \rightarrow evaluation program for f on elements of R
- ► Extended blackbox → evaluate f outside R
 - ▶ Modular blackbox: if $R = \mathbb{Z}$, evaluate $f(\theta) \mod m$ for any $m \in \mathbb{Z}$
 - Remainder blackbox: evaluate on $\theta \in R[x]/\langle g \rangle$ for any $g \in R[x]$

Remark

- ► Given an SLP, one can compute explicitely *f*
- Infeasible because of intermediate expression swell

Many variants of the problem

Ring of coefficients

- $\blacktriangleright \ \mathbb{Z} \text{ or } \mathbb{Q} \text{: size growth} \to \text{modular techniques}$
- Large finite fields
- ► Finite fields of *large characteristic*
- Small finite fields

Input representation

- Blackboxes: count the number of queries + extra arithmetic / bit operations
- SLP: count the cost of each *query*
 - arithmetic cost: number L of instructions
 - bit cost: $\tilde{O}(L \log H)$ where H bounds the height of the constants

Randomization

- Deterministic
- Monte Carlo randomization
- Las Vegas randomization

Blackbox algorithm using geometric progressions

$$f = \sum_{i=0}^{T-1} c_i x^{e_i} \to \begin{pmatrix} f(1) \\ f(\omega) \\ \vdots \\ f(\omega^n) \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \omega^{e_0} & \cdots & \omega^{e_{t-1}} \\ \vdots & & \vdots \\ \omega^{ne_0} & \cdots & \omega^{ne_{t-1}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{T-1} \end{pmatrix}$$

Property

▶ The sequence $(f(\omega^j))_{j\geq 0}$ is linearly recurrent, of minimal polynomial $\prod_i (x - \omega^{e_i})$

Algorithm

[Prony (1795), Ben-Or–Tiwari (1988), ...]

- **1**. Evaluate f at 1, ω , ..., ω^{2T-1}
- 2. Compute the minimal polynomial of $(f(\omega^j))_j$ using Berlekamp-Massey algorithm
- **3.** Compute its roots and obtain the exponents e_0, \ldots, e_{T-1}
- 4. Solve a transposed Vandermonde system to get the coefficients c_0, \ldots, c_{T-1}

SLP algorithm using cyclic extensions

Compute explicitly $f \mod x^p - 1 = \sum_i c_i x^{e_i \mod p}$ for some prime p [Garg-Schost (2009)]

Loss of information

- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

▶ Use several *p_j*'s and (polynomial) Chinese remaindering, *diversification*, ...

[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]

Encode exponents into coefficients *à la* Paillier or using derivatives

[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

Accept collisions and reconstruct f iteratively

[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Summary of main algorithms

Blackbox algorithms, using geometric progressions

- Require O(T) queries to the blackbox
- Arithmetic complexity : poly(T, D)
- Remark: over \mathbb{Z} , $f(\omega^j)$ has bit size $\Omega(D)$

SLP algorithms, using cyclic extensions

- Over \mathbb{Z} and \mathbb{F}_q , bit cost poly(T, log D, log H)
- ▶ Best known complexity: $ilde{O}(T \log D \log q)$ over \mathbb{F}_q if $q = ilde{\Omega}(DT)$

[Huang (2019)]

New algorithm

Input: A modular blackbox for $f \in \mathbb{Z}[x]$, bounds on T, D and HComplexity: $\tilde{O}(T(\log D + \log H))$ General idea: Combine both techniques First ingredient: compute exponents of $f \mod x^p - 1$

Choice of *p*

- Prime such that $(f \mod x^p 1)_{\#} \ge \frac{5}{6} f_{\#}$ w.h.p.
- Random choice of $p = O(T \log D)$

Evaluations in a small field \mathbb{F}_{q}

- ▶ If ω is a *p*-PRU in \mathbb{F}_q , $f(\omega^j) = (f \mod x^p 1)(\omega^j)$
- \blacktriangleright Small *q* for efficiency reasons
- Coefficients should remain nonzero modulo $q \rightarrow q = \text{poly}(T \log H)$

Algorithm

- Effective Dirichlet's theorem **1.** Compute a *p*-PRU $\omega \in \mathbb{F}_q$
- 2. Evaluate f at 1, ω , ..., ω^{2T-1}
- 3. Compute the minimal polynomial of $(f(\omega^j))_i$
- 4. Compute its roots and get the exponents by Bluestein's transform

2T queries $\tilde{O}(T \log q)$ $\tilde{O}(p \log q)$

Second ingredient: compute $f \mod x^p - 1$

Evaluations in a larger ring

- ▶ \mathbb{F}_q is too small \rightarrow coefficients known modulo q
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)
- $ightarrow \operatorname{\mathsf{Ring}} \mathbb{Z}/q^k\mathbb{Z}$ where $q^k > 2H$

Transposed Vandermonde system solving modulo q^k

- Evaluation on a *p*-PRU $\omega_k \in \mathbb{Z}/q^k\mathbb{Z}$
- Invertible matrix $\rightarrow \omega_k$ should be *principal*
- Transposed algorithm of fast (dense) interpolation

Algorithm

- 1. Compute a *p*-PRU $\omega_k \in \mathbb{Z}/q^k\mathbb{Z}$ from $\omega \in \mathbb{F}_q$
- 2. Evaluate f at 1, ω_k , ..., ω_k^{T-1}
- 3. Solve a transposed Vandermonde system, build using the exponents

Third ingredient: Embed exponents into coefficients

Compute both f(x) and $f((1 + q^k)x)$ modulo $\langle x^p - 1, q^{2k} \rangle$

Paillier-like embedding

Collisions

- ▶ If $c_i x^{e_i}$ is collision-free modulo $x^p 1 \rightarrow$ reconstruct both c_i and e_i
- Possibly noisy terms from collisions $e_i = e_j \mod p$

$$ightarrow$$
 Compute f^* such that $(f - f^*)_{\#} \leq rac{1}{2} f_{\#}$ w.h.p.

Complete algorithm

Algorithm

- 1. $f^* \leftarrow 0$
- 2. Repeat log *T* times :
- 3. Compute $p, q, \omega \in \mathbb{F}_q, \omega_k \in \mathbb{Z}/q^{2k}\mathbb{Z}$
- 4. Compute exponents of $(f f^*) \mod \langle x^p 1, q \rangle$
- 5. Compute $(f f^*) \mod \langle x^p 1, q^{2k} \rangle$
- 6. Compute $(f f^*)((1 + q^k)x) \mod \langle x^p 1, q^{2k} \rangle$
- 7. Reconstruct collision-free monomials plus some noise
- 8. Update f^*
- 9. Return f^*

Theorem

[Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox or an SLP for $f \in \mathbb{Z}[x]$, the algorithm returns the sparse representation of f with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D + \log H))$

First ingredient Second ingredient Second ingredient Third ingredient 1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms

How to use sparse interpolation?

Multiplication

- Given $f, g \in \mathbb{Z}[x]$, compute $f \times g$
- ► Desired complexity: $\tilde{O}(\max(f_{\#}, g_{\#}, (fg)_{\#})(\log D + \log H))$
- $f \times g$ is a special SLP \rightarrow use sparse interpolation
- Caveats:
 - No a priori bound on $(fg)_{\#}$
 - Cost of sparse polynomial evaluation

Exact division

- Given $f, g \in \mathbb{Z}[x]$ s.t g | f, compute f/g
- Desired complexity: $\tilde{O}(\max(f_{\#}, g_{\#}, (f/g)_{\#})(\log D + \log H))$

Caveats:

- No bound on $(f/g)_{\#}$, nor on $||f/g||_{\infty}$
- f/g is a special SLP with divisions

Evaluation of sparse polynomials

Given
$$f = \sum_{i=0}^{T-1} c_i x^{e_i}$$
 and α , compute $f(\alpha)$

Not polynomial-time over $\ensuremath{\mathbb{Z}}$

▶ If $\alpha \neq \pm 1$, α^D needs *D* bits to be written

Over a finite field \mathbb{F}_q

- $\alpha^e: O(\log e)$ operations in \mathbb{F}_q
- Computation of $f(\alpha)$:
 - $O(T \log D)$ operations in \mathbb{F}_q
 - $\tilde{O}(T \log D \log q)$ bit operations

not quasi-linear!

Slight improvement: $O(\log D + T \log D / \log \log D)$ or $O(T \log D / \log T)$ [Yao (1976)]

Avoid bound on T

Standard doubling strategy

- Try to compute $f \times g$ or f/g with bound T
- ▶ If the result is incorrect, double *T*
- \rightarrow Requires a *fast* equality test for $f \times g = h$

Sparse product verification

[Giorgi-G.-Perret du Cray (2019, 2022)]

- Classical method: evaluate f, g, h at a random point \rightarrow too costly
- ▶ Main idea: evaluate $(f \times g) \mod x^p 1$ at a random point, for a random p
 - Sparse and structured vector-matrix-vector product
- Bit complexity $\tilde{O}(T(\log D + \log H))$

Overview of multiplication algorithm

Two-level algorithm

- 1. Reduce f, g and their derivatives f', g' modulo $x^p 1$
- 2. Use sparse interpolation and verification to compute:
 - ($f \mod x^p 1$) × ($g \mod x^p 1$)
 - ($f' \mod x^p 1$) × ($g \mod x^p 1$) and ($f \mod x^p 1$) × ($g' \mod x^p 1$)
- 3. Deduce (fg) mod $x^p 1$ and (fg)' mod $x^p 1$ and reconstruct fg

Choice of *p* and complexity

- ▶ We want no collision w.h.p. $\rightarrow p = O(f_{\#}^2 g_{\#}^2 \log D)$ $(fg)_{\#} \leq f_{\#} g_{\#}$
- Reduction and reconstruction : $\tilde{O}(T(\log D + \log H))$ $T = \max(f_{\#}, g_{\#}, (fg)_{\#})$
- Sparse interpolation of polynomials of degree $O(p) \rightarrow \text{poly}(\log D)$ is good enough

Theorem

[Giorgi-G.-Perret du Cray (2019)]

Randomized algorithm of complexity $\tilde{O}(T(\log D + \log H))$ for sparse polynomial product over \mathbb{Z} or \mathbb{F}_q of large characteristic

New difficulties for an exact division algorithm

Evaluation

▶ To compute $(f/g) \mod x^p - 1$, g must be coprime with $x^p - 1$

- ▶ To work modulo some q, they must remain coprime in $\mathbb{F}_q[x]$
- ightarrow Additional conditions on p and q

No two-level approach

- Two-level algorithm for $f \times g$:
 - Compute $(f \mod x^p 1) \times (g \mod x^p 1)$
 - Reduce the result to get $(fg) \mod x^p 1$
- ▶ There is no reason for $(g \mod x^p 1)$ to divide $(f \mod x^p 1)$

 \rightarrow Requires a truly efficient sparse interpolation algorithm

Bounds on *T* and *H*

- $(f/g)_{\#}$ can be as large as D
- Height of f/g can be as large as $H^{O((f/g)_{\#})}$
- Both bounds must be discovered at the same time
- \rightarrow Modular product verification algorithm

[Giorgi-G.-Perret du Cray (2022)]

Exact division algorithm

Algorithm

- **1.** $h \leftarrow 0$; $T \leftarrow g_{\#}$; $H \leftarrow$ height of g
- **2.** While $T \ge 1$:
- 3. Compute $h_p \leftarrow (f/g h) \mod \langle x^p 1, q^{2k} \rangle$ using sparse interpolation

4. If
$$f = g \times (h + h_p) \mod x^p - 1$$

- 5. Compute new terms of h from h_p
- $6. T \leftarrow T/2$
- 7. Else: $H \leftarrow H^2$
- 8. If $f = g \times h$: return h
- 9. Else: restart, with T twice as large

Theorem

sparse verification alg..

modular verification alg.

[Giorgi-G.-Perret du Cray-Roche (2022)]

Given $f, g \in \mathbb{Z}[x]$ such that g | f, the algorithm returns f/g with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D + \log H))$

Conclusion

Overlooked in this presentation

Divisibility testing

- ► Given *f* and *g*, does *g* divides *f*?
- Easy if $\deg(g)$ or $\deg(f) \deg(g)$ is small
- New polynomial-time algorithm in some special cases [Giorgi-G.-Perret du Cray (2021)]
- \rightarrow Problem not known to be polynomial in general

Sparse interpolation without sparsity bound

- Early termination techniques
- Quasi-linear running time?

 - D5-like approach to avoid primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]
- \blacktriangleright Non suitable for multiplication and exact division \rightarrow too costly

[Kaltofen-Lee (2003)]

Conclusion and open questions

Multiplication and exact division

- Multiplication of sparse polynomials
 - First quasi-linear algorithm over \mathbb{Z} or \mathbb{F}_q with large characteristic
- Exact division of sparse polynomials
 - \blacktriangleright First quasi-linear algorithm over $\mathbb Z$
 - First "quasi-linear in T" algorithm over \mathbb{F}_q with large characteristic

Sparse interpolation

 \blacktriangleright First quasi-linear algorithm over $\mathbb Z$

Open questions

- Quasi-linear algorithms over \mathbb{F}_q with small characteristic many cancellations
- Division with remainder, remainder only
- GCD with Bézout coefficients

Conclusion and open questions

Multiplication and exact division

- Multiplication of sparse polynomials
 - First quasi-linear algorithm over \mathbb{Z} or \mathbb{F}_q with large characteristic
- Exact division of sparse polynomials
 - \blacktriangleright First quasi-linear algorithm over $\mathbb Z$
 - First "quasi-linear in T" algorithm over \mathbb{F}_q with large characteristic

Sparse interpolation

 \blacktriangleright First quasi-linear algorithm over $\mathbb Z$

Open questions

- Quasi-linear algorithms over \mathbb{F}_q with small characteristic
- many cancellations

- Division with remainder, remainder only
- GCD with Bézout coefficients

Thank you!