Sparse polynomial arithmetic

Bruno Grenet!

LIRMM - Université de Montpellier

LJK, Grenoble — February 10., 2022

'Based on joint works with P. Giorgi, A. Perret du Cray and D. Roche

Dense and sparse polynomials

D
f= Z cx' ¢ €R
i=0
Dense representation Sparse representation
> List of all the ¢;’s > List of the pairs (i, ¢;) for nonzero ¢;’s
> Arithmetic size: O(D) > Arithmetic size: O(T) (sparsity of f)
> Bit size: O(Dlog H) > Bit size: O(T(log D + log H))

Basic operations Basic operations

> Addition: O(D) (trivial) > Addition: O(T) (list merge)

> Multiplication : O(D) via FFT

» Euclidean division, ccp, multipoint
evaluation, interpolation, ... — O(D)
via reduction to multiplication

> Multiplication, division, ccp, ...: ?

Multivariate polynomials

€ e
f E C,X1 11X221 .. rfinl

Sparse representation

> List of the tuples (e, . . ., eni; ¢;)
» Bit size: O(T(nlog D + log H)) where D = 14 max; j eji

Kronecker substitution
> f e fulx) = FOxP XL xPT) = 3, gxentenDE e
» f, has degree D" — same b|t size as f
> Invertible transformation, compatible with polynomial operations

[Work with univariate polynomials — same results for multivariate polynomials

1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms

1. Known algorithms and challenges

Multiplication of sparse polynomials

T—1 T—1 T—1T—1
Y ax | (| =3 e
j=0

i=0 i=0 j=0

Naive algorithm

Compute every ¢;d;, 0 < i,j < T
» O(T?) coefficient multiplications and exponent additions
> Some coefficient additions, sorting, etc.

Less naive algorithms
» Good data structures [Johnson (1974), Yan (1998), Monagan-Pearce (2011)]
> Parallel implementation for efficiency [Monagan-Pearce (2009)]

[Can we do better?

Sparsity of a product
(x"+2x"4+2)x (3x®+5x843) = 3x¥ +5x24+6 x+10 xP+3 x"+6 xB+10 x* +6 x" +6
— 9 nonzero terms
(X" +2x"+2) x (x"™ —2x"+2)=x® + 4
— 2 nonzero terms

» fu: sparsity (or number of nonzero terms) of a polynomial f

1< (f8)# < fu8s

Difficulty

P> Can we predict the output sparsity?
> Need of output-sensitive algorithms

Structural sparsity: a partial solution

X+ O (M X+ X)) =B K x4 X0
— Structural sparsity 5
Theorem [Arnold-Roche (2015)]
There is a randomized algorithm to compute the product of two sparse polynomials f,
8 p p p poly
& € Z|x] of degree < D and height < H, with bit cost quasi-linear in Slog D + T log H

where T = max(fy, g4, (fg)#) and S is the structural sparsity of the product

Structural sparsity: a partial solution

(XM—I— X7—|— XO) % (X14—|— X7+ XO) :X28+ X21+ X14_|_ X7+ XO

— Structural sparsity 5

Theorem [Arnold-Roche (2015)]

There is a randomized algorithm to compute the product of two sparse polynomials f,
& € Z|x] of degree < D and height < H, with bit cost quasi-linear in Slog D + T log H
where T = max(fy, g4, (fg)#) and S is the structural sparsity of the product

Limitation

T—1 T-1
<Z Xi> % (Z T XTi) —x" _q has structural sparsity T2 41
i=0 i=0

Division of sparse polynomials

[Compute g and r such that f :.-.—i—.with degr < degg
—> sparse output

— dense output

— large coefficients

» Qutput size even more variable than in the case of multiplication!

9/32

Division algorithms

Classical Euclidean Algorithm

> Uses O(g4qy) ring operations
» But many exponent comparisons — dominates the cost!
> O(fy + qu8%) using sorted lists
> O(fy + qu8# log(fy + qu84)) using heap or geobucket
> Space — heap size
> 1+ qy
> O(g#)

Best known algorithm
> Heap of size min(gy, g)
» Complexity O(fx + qug4 log min(qx, g4))

[Johnson (1974), Yan (1998)]

[Johnson (1974)]
[Monagan-Pearce (2007)]

[Monagan-Pearce (2011)]

Output-sensitive but non-linear algorithm

Gcep of sparse polynomials

ng(Xab o 17Xab — x4 _ Xb +1) — Xa+b—1 _|_Xa+b—2 L X Xb—1 o Xb—2 .
[Schinzel (2002)]

Hardness results

> Testing if two sparse polynomials over Z, are coprime is coNP-hard [Plaisted (1984)]
> Generalization over Iy

[von zur Gathen-Karpinski-Shparlinski (1996), Karpinski-Shparlinski (1999), Kaltofen-Koiran (2005)]

Upper bounds
Let f, g € Z[x] with a fixed sparsity and height:
> If f or g is cyclotomic-free, gcd(f, g) in complexity O(log D)
[Filaseta-Granville-Schinzel (2008)]
» Compute a polynomial with the same roots as gcd(f, g) in Q in complexity O(log D)
(in particular : coprimality test) [Amoroso-Leroux-Sombra (2015)]

[Are there output-sensitive algorithms that computes ccp and the Bézout coefficients?

Challenges for sparse polynomial operations

Output sensitivity

» Qutput size is usually not determined by input size
> Algorithms must be output sensitive
» Depending on operations, output size may be very variable

Known complexities

P> Multiplication and division: output-sensitive quadratic algorithms
» Gcp: exponential time in the general case

[Today: Output-sensitive quasi-linear algorithms for multiplication and exact division]

> lIgnored: Divisibility testing

2. The main tool: sparse interpolation

Definition of the problem

Input: A sparse polynomial f € R[x] in an implicit representation
Bounds on D, H and/or T
Output: The sparse representation of f

Implicit representations

> Straight-line program (SLP), a.k.a arithmetic circuit
> Blackbox — evaluation program for f on elements of R

> Extended blackbox — evaluate f outside R
» Modular blackbox: if R = Z, evaluate f(6) mod m for any m € Z
» Remainder blackbox: evaluate on § € R[x]/(g) for any g € R[x]

Remark
» Given an SLP, one can compute explicitely f
> Infeasible because of intermediate expression swell

Many variants of the problem

Ring of coefficients

> 7 or Q: size growth — modular techniques
> Large finite fields

> Finite fields of large characteristic

> Small finite fields

Input representation

> Blackboxes: count the number of queries + extra arithmetic / bit operations

> SLP: count the cost of each query
> arithmetic cost: number L of instructions
> bit cost: O(Llog H) where H bounds the height of the constants

Randomization
» Deterministic
» Monte Carlo randomization
> Las Vegas randomization

Blackbox algorithm using geometric progressions

. f() 1T - 1 Co
- f(w) we e o ¢
f= Z x4 — . =
i=0 (wn) whe ... wn.€t71 CT1

Property

> The sequence (f(w’));>o is linearly recurrent, of minimal polynomial [],(x — w%)

A]gorithm [Prony (1795), Ben-Or-Tiwari (1988), ...]

. Evaluate f at 1, w, ..., w?™!

1

2. Compute the minimal polynomial of (f(w’)); using Berlekamp-Massey algorithm
3. Compute its roots and obtain the exponents e, ..., er_4

4. Solve a transposed Vandermonde system to get the coefficients ¢, ..., c7—1

SLP algorithm using cyclic extensions

Compute explicitely f mod xP —1=)", ¢;x" mod p for some prime p [Garg-Schost (2009)]

Loss of information
> Exponents known only modulo p
» Possible collisions between monomials

Reconstruction of full exponents

» Use several p;’s and (polynomial) Chinese remaindering, diversification, ...
[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]
> Encode exponents into coefficients d la Paillier or using derivatives
[Arnold-Roche (2015), Huang (2019)]

Deal with collisions
> Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
> Accept collisions and reconstruct f iteratively
[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Summary of main algorithms

Blackbox algorithms, using geometric progressions

» Require O(T) queries to the blackbox
» Arithmetic complexity : poly(T, D)
» Remark: over Z, f(w’) has bit size Q(D)

SLP algorithms, using cyclic extensions
» Over Z and [, bit cost poly(T,log D, log H)
> Best known complexity: O(T log D log q) over F, if ¢ = Q(DT)

New algorithm

[Huang (2019)]

Input: A modular blackbox for f € Z[x], bounds on T, D and H
Complexity: O(T(log D + log H))
General idea: Combine both techniques

First ingredient: compute exponents of f mod xP — 1

Choice of p

> Prime such that (f mod x? — 1) > 2f w.h.p.
» Random choice of p = O(T log D)

Evaluations in a small field I,
> Ifwisap-PRU inFy, f(w) = (f mod xP — 1)(w’)
> Small g for efficiency reasons
» Coefficients should remain nonzero modulo g — ¢ = poly(T log H)

Algorithm
1. Compute a p-PRU w € [, Effective Dirichlet’s theorem
2. Evaluate f at1, w, ..., w1 2T queries
3. Compute the minimal polynomial of (f(w’)); O(T log q)
4. Compute its roots and get the exponents by Bluestein’s transform O(plog q)

Second ingredient: compute f mod xP — 1

Evaluations in a larger ring

» [, is too small — coefficients known modulo q

> Use larger ring where coefficients can be represented

> Using large finite field is too costly (primality testing, etc.)
— Ring Z/q*Z where ¢* > 2H

Transposed Vandermonde system solving modulo ¢*

» Evaluation on a p-PRU wy € Z/¢*Z
> Invertible matrix — wy should be principal
> Transposed algorithm of fast (dense) interpolation

Algorithm
1. Compute a p-PRU wy € Z/q*Z from w € I, Newton iteration
2. Evaluate f at 1, wy, ..., w[q T queries

3. Solve a transposed Vandermonde system, build using the exponents O(Tk log q)

Third ingredient: Embed exponents into coefficients

Compute both £(x) and f((1+ ¢*)x) modulo (x? — 1, ¢%)

Paillier-like embedding
> (14 ¢*)% =1+ e;g* mod ¢*
> Image of a monomial ¢;x®% of f:
> in f(x) mod (xP —1,¢*) — ¢;x& mod P
> in f((1+ g¥)x) mod (xP — 1, ¢*) — ¢;(1+ e;qg*)xe mod P

Collisions

P> If ¢;x% is collision-free modulo xP — 1 — reconstruct both ¢; and e;
» Possibly noisy terms from collisions e; = e; mod p

— Compute f* such that (f — f*)x < 3f4 w.h.p.

Complete algorithm

Algorithm

1L ff«0
2. Repeat log T times :

3. Compute p, g, w € Fy, wy € Z/¢*Z
4. Compute exponents of (f — f*) mod (x” — 1, q) First ingredient
5. Compute (f — f*) mod (xP —1, q2k> Second ingredient
6. Compute (f —f*)((1+ qk)X) mod (xP — 1, q2k> Second ingredient
7. Reconstruct collision-free monomials plus some noise Third ingredient
8. Update f*
9. Return f*

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox or an SLP for f € 7Z[x], the algorithm returns the sparse
representation of f with probability > %, and has bit complexity O(T(log D + log H))

3. Fast multiplication and exact division algorithms

How to use sparse interpolation?

Multiplication
» Given f, g € Z[x], compute f X g
» Desired complexity: O(max(fy, 84, (fg)«)(log D + log H))
> f X gis aspecial SLP — use sparse interpolation
P> Caveats:

» No a priori bound on (fg)x
> Cost of sparse polynomial evaluation

Exact division

» Given f, g € Z[x] s.t g| f, compute f/g
> Desired complexity: O(max(fy, g4, (f/g)4)(log D + log H))
> Caveats:

» No bound on (f/g)4, noron ||f/g] s
> f/gis aspecial SLP with divisions

Evaluation of sparse polynomials

Given f = 321" ¢;ix¥ and a, compute f(a)

Not polynomial-time over Z
» If a # +1, aP needs D bits to be written

Over a finite field I,
» af: O(log e) operations in [,
» Computation of f(«) :
> O(T log D) operations in [,
> O(T log Dlog q) bit operations not quasi-linear!
» Slight improvement: O(log D + T log D/ loglog D) or O(T log D/ log T) [Yao (1976)]

Avoid bound on T

Standard doubling strategy

» Try to compute f x g or f/g with bound T
» |If the result is incorrect, double T
— Requires a fast equality test for f x g =h

Sparse product verification [Giorgi-G.-Perret du Cray (2019, 2022)]

> Classical method: evaluate f, g, h at a random point — too costly
> Main idea: evaluate (f x g) mod xP — 1at a random point, for a random p
> Sparse and structured vector-matrix-vector product

» Bit complexity O(T(log D + log H))

Overview of multiplication algorithm

Two-level algorithm

1. Reduce f, g and their derivatives f’, g modulo x” — 1
2. Use sparse interpolation and verification to compute:

» (f mod x” — 1) x (g mod x —1)

» (f' mod x? — 1) x (g mod x? — 1) and (f mod x? —1) x (g’ mod xP — 1)
3. Deduce (fg) mod xP — 1and (fg)’ mod x” — 1and reconstruct fg

Choice of p and complexity

» We want no collision w.h.p. — p = O(f;i‘gf;é log D) (f8)# < fu8#
» Reduction and reconstruction : O(T(log D + log H)) T = max(fu, gu, (f8)#)
> Sparse interpolation of polynomials of degree O(p) — poly(log D) is good enough

Theorem [Giorgi-G.-Perret du Cray (2019)]

Randomized algorithm of complexity O(T(log D + log H)) for sparse polynomial product
over 7 or I, of large characteristic

New difficulties for an exact division algorithm

Evaluation
» To compute (f/g) mod xP — 1, g must be coprime with xP — 1
» To work modulo some g, they must remain coprime in Fy[x]
— Additional conditions on p and g

No two-level approach
> Two-level algorithm for f x g:
» Compute (f mod x? — 1) x (g mod x” — 1)
> Reduce the result to get (fg) mod x” — 1
» There is no reason for (g mod x” — 1) to divide (f mod xP — 1)
— Requires a truly efficient sparse interpolation algorithm

Bounds on T and H
» (f/8)# can be as large as D
> Height of f/g can be as large as HO(U/8)#)
» Both bounds must be discovered at the same time
— Modular product verification algorithm [Giorgi-G.-Perret du Cray (2022)]

Exact division algorithm

Algorithm
1. h<=0; T < gu; H < height of g
2. While T > 1:
3. Compute h, < (f/g — h) mod (xP — 1, ¢*) using sparse interpolation
4. Iff=gx(h+h,) mod xP —1: modular verification alg.
5. Compute new terms of h from h,
6 T« T/2
7. Else: H < H?
8. If f = g X h:return h sparse verification alg..

9. Else: restart, with T twice as large

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]
Given f, g € Z|x] such that g | f, the algorithm returns f /g with probability > %, and has bit
complexity O(T(log D + log H))

Conclusion

Overlooked in this presentation
Divisibility testing
> Given f and g, does g divides f?
> Easy if deg(g) or deg(f) — deg(g) is small

> New polynomial-time algorithm in some special cases [Giorgi-G.-Perret du Cray (2021)]
— Problem not known to be polynomial in general

Sparse interpolation without sparsity bound

> Early termination techniques [Kaltofen-Lee (2003)]
» Quasi-linear running time?

> Classical method — requires a large prime number

> D5-like approach to avoid primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]
> Non suitable for multiplication and exact division — too costly

Conclusion and open questions

Multiplication and exact division

> Multiplication of sparse polynomials
> First quasi-linear algorithm over Z or If; with large characteristic

> Exact division of sparse polynomials
> First quasi-linear algorithm over Z
> First “quasi-linear in T” algorithm over [, with large characteristic

Sparse interpolation

> First quasi-linear algorithm over Z

Open questions

» Quasi-linear algorithms over [, with small characteristic many cancellations
» Division with remainder, remainder only
» ccp with Bézout coefficients

Conclusion and open questions

Multiplication and exact division
> Multiplication of sparse polynomials
> First quasi-linear algorithm over Z or If; with large characteristic

> Exact division of sparse polynomials
> First quasi-linear algorithm over Z
> First “quasi-linear in T” algorithm over [, with large characteristic

Sparse interpolation

> First quasi-linear algorithm over Z

Open questions
» Quasi-linear algorithms over [, with small characteristic many cancellations
» Division with remainder, remainder only
» ccp with Bézout coefficients

Thank you!

	Known algorithms and challenges
	The main tool: sparse interpolation
	Fast multiplication and exact division algorithms

