# Sparse polynomial arithmetic 

Bruno Grenet ${ }^{1}$<br>LIRMM - Université de Montpellier<br>LJK, Grenoble - February 10., 2022

${ }^{1}$ Based on joint works with P. Giorgi, A. Perret du Cray and D. Roche

## Dense and sparse polynomials

$$
f=\sum_{i=0}^{D} c_{i} x^{i} \quad c_{i} \in R
$$

## Dense representation

- List of all the $c_{i}$ 's
- Arithmetic size: $O(D)$
- Bit size: $O(D \log H)$


## Basic operations

- Addition: $O(D)$ (trivial)
- Multiplication : $\tilde{O}(D)$ via FFT
- Euclidean division, GCD, multipoint evaluation, interpolation, $\ldots \rightarrow \tilde{O}(D)$ via reduction to multiplication

Sparse representation

- List of the pairs $\left(i, c_{i}\right)$ for nonzero $c_{i}$ 's
- Arithmetic size: $O(T)$ (sparsity of $f$ )
- Bit size: $O(T(\log D+\log H))$


## Basic operations

- Addition: $O(T)$ (list merge)
- Multiplication, division, GCD, ...: ?


## Multivariate polynomials

$$
f=\sum_{i=0}^{T} c_{i} x_{1}^{e_{1 i}} x_{2}^{e_{2 i}} \cdots x_{n}^{e_{n i}}
$$

## Sparse representation

- List of the tuples $\left(e_{1 i}, \ldots, e_{n i} ; c_{i}\right)$
- Bit size: $O(T(n \log D+\log H))$ where $D=1+\max _{i, j} e_{j i}$

Kronecker substitution
$-f \mapsto f_{u}(x)=f\left(x, x^{D}, x^{D^{2}}, \ldots, x^{D^{n-1}}\right)=\sum_{i} c_{i} x^{e_{i}+e_{2 i} D+\cdots+e_{n i} D^{n-1}}$

- $f_{u}$ has degree $D^{n} \rightarrow$ same bit size as $f$
- Invertible transformation, compatible with polynomial operations

Work with univariate polynomials - same results for multivariate polynomials

1. Known algorithms and challenges
2. The main tool: sparse interpolation
3. Fast multiplication and exact division algorithms
4. Known algorithms and challenges
5. The main tool: sparse interpolation
6. Fast multiplication and exact division algorithms

## Multiplication of sparse polynomials

$$
\left(\sum_{i=0}^{T-1} c_{i} X^{e_{i}}\right) \times\left(\sum_{j=0}^{T-1} d_{j} x^{f_{j}}\right)=\sum_{i=0}^{T-1} \sum_{j=0}^{T-1} c_{i} d_{j} x^{e_{i}+f_{j}}
$$

Naive algorithm
Compute every $c_{i} d_{j}, 0 \leq i, j<T$

- $O\left(T^{2}\right)$ coefficient multiplications and exponent additions
- Some coefficient additions, sorting, etc.


## Less naive algorithms

- Good data structures
- Parallel implementation for efficiency

Can we do better?

## Sparsity of a product

$$
\begin{array}{r}
\left(x^{14}+2 x^{7}+2\right) \times\left(3 x^{13}+5 x^{8}+3\right)=3 x^{27}+5 x^{22}+6 x^{20}+10 x^{15}+3 x^{14}+6 x^{13}+10 x^{8}+6 x^{7}+6 \\
\rightarrow 9 \text { nonzero terms }
\end{array}
$$

$$
\left(x^{14}+2 x^{7}+2\right) \times\left(x^{14}-2 x^{7}+2\right)=x^{28}+4
$$

$\rightarrow 2$ nonzero terms

- $f_{\#}$ : sparsity (or number of nonzero terms) of a polynomial $f$

$$
1 \leq(f g)_{\#} \leq f_{\#} g_{\#}
$$

## Difficulty

- Can we predict the output sparsity?
- Need of output-sensitive algorithms


## Structural sparsity: a partial solution

$$
\begin{aligned}
\left(x^{14}+2 x^{7}+2 x^{0}\right) \times\left(x^{14}+-2 x^{7}+2 x^{0}\right)=x^{28}+0 x^{21}+0 x^{14} & +0 x^{7}+4 x^{0} \\
& \rightarrow \text { Structural sparsity } 5
\end{aligned}
$$

## Theorem

[Arnold-Roche (2015)]
There is a randomized algorithm to compute the product of two sparse polynomials $f$, $g \in \mathbb{Z}[x]$ of degree $\leq D$ and height $\leq H$, with bit cost quasi-linear in $S \log D+T \log H$ where $T=\max \left(f_{\#}, g_{\#},(f g)_{\#}\right)$ and $S$ is the structural sparsity of the product

## Structural sparsity: a partial solution

$$
\begin{aligned}
&\left(x^{14}+2 x^{7}+2 x^{0}\right) \times\left(x^{14}+-2 x^{7}+2 x^{0}\right)=x^{28}+0 x^{21}+0 x^{14}+0 x^{7}+4 x^{0} \\
& \rightarrow \text { Structural sparsity } 5
\end{aligned}
$$

## Theorem

[Arnold-Roche (2015)]
There is a randomized algorithm to compute the product of two sparse polynomials $f$, $g \in \mathbb{Z}[x]$ of degree $\leq D$ and height $\leq H$, with bit cost quasi-linear in $S \log D+T \log H$ where $T=\max \left(f_{\#}, g_{\#},(f g)_{\#}\right)$ and $S$ is the structural sparsity of the product

Limitation

$$
\left(\sum_{i=0}^{T-1} x^{i}\right) \times\left(\sum_{i=0}^{T-1} x^{T i+1}-x^{T i}\right)=X^{T^{2}}-1 \text { has structural sparsity } T^{2}+1
$$

## Division of sparse polynomials

Compute $q$ and $r$ such that $f=g \cdot q+r$ with $\operatorname{deg} r<\operatorname{deg} g$

$$
x^{2 n+1}-x^{2 n}=\left(x^{n+1}-x^{n}+1\right) \times x^{n}-x^{n}
$$

$\rightarrow$ sparse output

$$
x^{2 n+1}+x^{2 n}=\left(x^{n+1}-x^{n}+1\right) \times\left(x^{n}+2 x^{n-1}+\cdots+2\right)+x^{n}-2 x^{n-1}-\cdots-2
$$

$$
\rightarrow \text { dense output }
$$

$$
\begin{aligned}
x^{2 n+1}-x^{2 n}=\left(x^{n+1}-2 x^{n}+1\right) \times\left(x^{n}+x^{n-1}+\right. & \left.2 x^{n-2}+\cdots+2^{n-1}\right) \\
& +\left(2^{n}-3\right) x^{n}-x^{n-1}-2 x^{n-2}-\cdots-2^{n-1} \\
& \rightarrow \text { large coefficients }
\end{aligned}
$$

- Output size even more variable than in the case of multiplication!


## Division algorithms

## Classical Euclidean Algorithm

- Uses $O\left(g_{\#} q_{\#}\right)$ ring operations
- But many exponent comparisons $\rightarrow$ dominates the cost!
- $O\left(f_{\#}+q_{\#} g_{\#}^{2}\right)$ using sorted lists
$-O\left(f_{\#}+q_{\#} g_{\#} \log \left(f_{\#}+q_{\#} g_{\#}\right)\right)$ using heap or geobucket [Johnson (1974), Yan (1998)]
- Space $\rightarrow$ heap size
- $1+q_{\#}$
- $O\left(g_{\#}\right)$

Best known algorithm

- Heap of size $\min \left(g_{\#}, q_{\#}\right)$
- Complexity $O\left(f_{\#}+q_{\#} g_{\#} \log \min \left(q_{\#}, g_{\#}\right)\right)$

Output-sensitive but non-linear algorithm

## GcD of sparse polynomials

$\operatorname{gcd}\left(x^{a b}-1, x^{a b}-x^{a}-x^{b}+1\right)=x^{a+b-1}+x^{a+b-2}+\cdots+x^{a}-x^{b-1}-x^{b-2}-\cdots-1$
[Schinzel (2002)]

## Hardness results

- Testing if two sparse polynomials over $\mathbb{Z}$ are coprime is coNP-hard
- Generalization over $\mathbb{F}_{q}$
[von zur Gathen-Karpinski-Shparlinski (1996), Karpinski-Shparlinski (1999), Kaltofen-Koiran (2005)]


## Upper bounds

Let $f, g \in \mathbb{Z}[x]$ with a fixed sparsity and height:

- If $f$ or $g$ is cyclotomic-free, $\operatorname{gcd}(f, g)$ in complexity $\tilde{O}(\log D)$
[Filaseta-Granville-Schinzel (2008)]
- Compute a polynomial with the same roots as $\operatorname{gcd}(f, g)$ in $\overline{\mathbb{Q}}$ in complexity $\tilde{O}(\log D)$ (in particular : coprimality test)
[Amoroso-Leroux-Sombra (2015)]
Are there output-sensitive algorithms that computes GCD and the Bézout coefficients?


## Challenges for sparse polynomial operations

## Output sensitivity

- Output size is usually not determined by input size
- Algorithms must be output sensitive
- Depending on operations, output size may be very variable

Known complexities

- Multiplication and division: output-sensitive quadratic algorithms
- GCD: exponential time in the general case

Today: Output-sensitive quasi-linear algorithms for multiplication and exact division

- Ignored: Divisibility testing

1. Known algorithms and challenges
2. The main tool: sparse interpolation

## 3. Fast multiplication and exact division algorithms

## Definition of the problem

Input: A sparse polynomial $f \in R[x]$ in an implicit representation Bounds on D, H and/or $T$
Output: The sparse representation of $f$

## Implicit representations

- Straight-line program (SLP), a.k.a arithmetic circuit
- Blackbox $\rightarrow$ evaluation program for $f$ on elements of $R$
- Extended blackbox $\rightarrow$ evaluate $f$ outside $R$
- Modular blackbox: if $R=\mathbb{Z}$, evaluate $f(\theta) \bmod m$ for any $m \in \mathbb{Z}$
- Remainder blackbox: evaluate on $\theta \in R[x] /\langle g\rangle$ for any $g \in R[x]$


## Remark

- Given an SLP, one can compute explicitely $f$
- Infeasible because of intermediate expression swell


## Many variants of the problem

## Ring of coefficients

$-\mathbb{Z}$ or $\mathbb{Q}$ : size growth $\rightarrow$ modular techniques

- Large finite fields
- Finite fields of large characteristic
- Small finite fields

Input representation

- Blackboxes: count the number of queries + extra arithmetic / bit operations
- SLP: count the cost of each query
- arithmetic cost: number $L$ of instructions
- bit cost: $\tilde{O}(L \log H)$ where $H$ bounds the height of the constants


## Randomization

- Deterministic
- Monte Carlo randomization
- Las Vegas randomization


## Blackbox algorithm using geometric progressions

$$
f=\sum_{i=0}^{T-1} c_{i} x^{e_{i}} \rightarrow\left(\begin{array}{c}
f(1) \\
f(\omega) \\
\vdots \\
f\left(\omega^{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\omega^{e_{0}} & \cdots & \omega^{e_{t-1}} \\
\vdots & & \vdots \\
\omega^{n e_{0}} & \cdots & \omega^{n e_{t-1}}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{T-1}
\end{array}\right)
$$

## Property

- The sequence $\left(f\left(\omega^{j}\right)\right)_{j \geq 0}$ is linearly recurrent, of minimal polynomial $\prod_{i}\left(x-\omega^{e_{i}}\right)$


## Algorithm

[Prony (1795), Ben-Or-Tiwari (1988), ...]

1. Evaluate $f$ at $1, \omega, \ldots, \omega^{2 T-1}$
2. Compute the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j}$ using Berlekamp-Massey algorithm
3. Compute its roots and obtain the exponents $e_{0}, \ldots, e_{T-1}$
4. Solve a transposed Vandermonde system to get the coefficients $c_{0}, \ldots, c_{T-1}$

## SLP algorithm using cyclic extensions

Compute explicitely $f \bmod x^{p}-1=\sum_{i} c_{i} x^{e_{i} \bmod p}$ for some prime $p$ [Garg-Schost (2009)]

Loss of information

- Exponents known only modulo $p$
- Possible collisions between monomials


## Reconstruction of full exponents

- Use several $p_{j}$ 's and (polynomial) Chinese remaindering, diversification, ...
[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]
- Encode exponents into coefficients à la Paillier or using derivatives
[Arnold-Roche (2015), Huang (2019)]


## Deal with collisions

- Large enough prime and/or many primes to avoid any collision
- Accept collisions and reconstruct $f$ iteratively


## Summary of main algorithms

Blackbox algorithms, using geometric progressions

- Require $O(T)$ queries to the blackbox
- Arithmetic complexity : $\operatorname{poly}(T, D)$
- Remark: over $\mathbb{Z}, f\left(\omega^{j}\right)$ has bit size $\Omega(D)$

SLP algorithms, using cyclic extensions

- Over $\mathbb{Z}$ and $\mathbb{F}_{q}$, bit cost $\operatorname{poly}(T, \log D, \log H)$
- Best known complexity: $\tilde{O}(T \log D \log q)$ over $\mathbb{F}_{q}$ if $q=\tilde{\Omega}(D T)$


## New algorithm

Input: A modular blackbox for $f \in \mathbb{Z}[x]$, bounds on $T, D$ and $H$
Complexity: $\tilde{O}(T(\log D+\log H))$
General idea: Combine both techniques

First ingredient: compute exponents of $f \bmod x^{p}-1$
Choice of $p$

- Prime such that $\left(f \bmod x^{p}-1\right)_{\#} \geq \frac{5}{6} f_{\#}$ w.h.p.
- Random choice of $p=O(T \log D)$


## Evaluations in a small field $\mathbb{F}_{q}$

- If $\omega$ is a $p$-PRU in $\mathbb{F}_{q}, f\left(\omega^{j}\right)=\left(f \bmod x^{p}-1\right)\left(\omega^{j}\right)$
- Small $q$ for efficiency reasons
- Coefficients should remain nonzero modulo $q \rightarrow q=\operatorname{poly}(T \log H)$


## Algorithm

1. Compute a $p$-PRU $\omega \in \mathbb{F}_{q}$

Effective Dirichlet's theorem
2. Evaluate $f$ at $1, \omega, \ldots, \omega^{2 T-1}$
3. Compute the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j}$
4. Compute its roots and get the exponents by Bluestein's transform

Second ingredient: compute $f \bmod x^{p}-1$

## Evaluations in a larger ring

- $\mathbb{F}_{q}$ is too small $\rightarrow$ coefficients known modulo $q$
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)
$\rightarrow \operatorname{Ring} \mathbb{Z} / q^{k} \mathbb{Z}$ where $q^{k}>2 H$


## Transposed Vandermonde system solving modulo $q^{k}$

- Evaluation on a $p$-PRU $\omega_{k} \in \mathbb{Z} / q^{k} \mathbb{Z}$
- Invertible matrix $\rightarrow \omega_{k}$ should be principal
- Transposed algorithm of fast (dense) interpolation


## Algorithm

1. Compute a $p$-PRU $\omega_{k} \in \mathbb{Z} / q^{k} \mathbb{Z}$ from $\omega \in \mathbb{F}_{q}$

Newton iteration
2. Evaluate $f$ at $1, \omega_{k}, \ldots, \omega_{k}^{T-1}$
3. Solve a transposed Vandermonde system, build using the exponents $\tilde{O}(T k \log q)$

## Third ingredient: Embed exponents into coefficients

Compute both $f(x)$ and $f\left(\left(1+q^{k}\right) x\right)$ modulo $\left\langle x^{p}-1, q^{2 k}\right\rangle$

## Paillier-like embedding

$>\left(1+q^{k}\right)^{e_{i}}=1+e_{i} q^{k} \bmod q^{2 k}$

- Image of a monomial $c_{i} x^{e_{i}}$ of $f$ :
- in $f(x) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle \rightarrow c_{i} x^{e_{i}} \bmod p$
$-\operatorname{in} f\left(\left(1+q^{k}\right) x\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle \rightarrow c_{i}\left(1+e_{i} q^{k}\right) x^{e_{i} \bmod p}$
Collisions
- If $c_{i} x^{e_{i}}$ is collision-free modulo $x^{p}-1 \rightarrow$ reconstruct both $c_{i}$ and $e_{i}$
- Possibly noisy terms from collisions $e_{i}=e_{j} \bmod p$
$\rightarrow$ Compute $f^{*}$ such that $\left(f-f^{*}\right)_{\#} \leq \frac{1}{2} f_{\#}$ w.h.p.


## Complete algorithm

## Algorithm

1. $f^{*} \leftarrow 0$
2. Repeat $\log T$ times :
3. Compute $p, q, \omega \in \mathbb{F}_{q}, \omega_{k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$
4. Compute exponents of $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q\right\rangle$
5. Compute $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$
6. Compute $\left(f-f^{*}\right)\left(\left(1+q^{k}\right) x\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$
7. Reconstruct collision-free monomials plus some noise

First ingredient Second ingredient Second ingredient Third ingredient
8. Update $f^{*}$
9. Return $f^{*}$

Theorem
[Giorgi-G.-Perret du Cray-Roche (2022)]
Given a modular blackbox or an SLP for $f \in \mathbb{Z}[x]$, the algorithm returns the sparse representation off with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D+\log H))$

1. Known algorithms and challenges
2. The main tool: sparse interpolation
3. Fast multiplication and exact division algorithms

## How to use sparse interpolation?

## Multiplication

- Given $f, g \in \mathbb{Z}[x]$, compute $f \times g$
- Desired complexity: $\tilde{O}\left(\max \left(f_{\#}, g_{\#},(f g)_{\#}\right)(\log D+\log H)\right)$
- $f \times g$ is a special SLP $\rightarrow$ use sparse interpolation
- Caveats:
- No a priori bound on $(f g)_{\#}$
- Cost of sparse polynomial evaluation


## Exact division

- Given $f, g \in \mathbb{Z}[x]$ s.t $g \mid f$, compute $f / g$
- Desired complexity: $\tilde{O}\left(\max \left(f_{\#}, g_{\#},(f / g)_{\#}\right)(\log D+\log H)\right)$
- Caveats:
- No bound on $(f / g)_{\#}$, nor on $\|f / g\|_{\infty}$
- $f / g$ is a special SLP with divisions


## Evaluation of sparse polynomials

Given $f=\sum_{i=0}^{T-1} c_{i} X^{e_{i}}$ and $\alpha$, compute $f(\alpha)$

## Not polynomial-time over $\mathbb{Z}$

- If $\alpha \neq \pm 1, \alpha^{D}$ needs $D$ bits to be written


## Over a finite field $\mathbb{F}_{q}$

- $\alpha^{e}: O(\log e)$ operations in $\mathbb{F}_{q}$
- Computation of $f(\alpha)$ :
- $O(T \log D)$ operations in $\mathbb{F}_{q}$
- $\tilde{O}(T \log D \log q)$ bit operations not quasi-linear!
- Slight improvement: $O(\log D+T \log D / \log \log D)$ or $O(T \log D / \log T) \quad[Y a o(1976)]$


## Avoid bound on $T$

## Standard doubling strategy

- Try to compute $f \times g$ or $f / g$ with bound $T$
- If the result is incorrect, double $T$
$\rightarrow$ Requires a fast equality test for $f \times g=h$


## Sparse product verification

- Classical method: evaluate $f, g, h$ at a random point $\rightarrow$ too costly
- Main idea: evaluate $(f \times g) \bmod x^{p}-1$ at a random point, for a random $p$
- Sparse and structured vector-matrix-vector product
- Bit complexity $\tilde{O}(T(\log D+\log H))$


## Overview of multiplication algorithm

Two-level algorithm

1. Reduce $f, g$ and their derivatives $f^{\prime}, g^{\prime}$ modulo $x^{p}-1$
2. Use sparse interpolation and verification to compute:

- $\left(f \bmod x^{p}-1\right) \times\left(g \bmod x^{p}-1\right)$
- $\left(f^{\prime} \bmod x^{p}-1\right) \times\left(g \bmod x^{p}-1\right)$ and $\left(f \bmod x^{p}-1\right) \times\left(g^{\prime} \bmod x^{p}-1\right)$

3. Deduce $(f g) \bmod x^{p}-1$ and $(f g)^{\prime} \bmod x^{p}-1$ and reconstruct $f g$

## Choice of $p$ and complexity

- We want no collision w.h.p. $\rightarrow p=O\left(f_{\#}^{2} g_{\#}^{2} \log D\right)$

$$
(f g)_{\#} \leq f_{\#} g_{\#}
$$

- Reduction and reconstruction: $\tilde{O}(T(\log D+\log H))$

$$
T=\max \left(f_{\#}, g_{\#},(f g)_{\#}\right)
$$

- Sparse interpolation of polynomials of degree $O(p) \rightarrow$ poly $(\log D)$ is good enough


## Theorem

[Giorgi-G.-Perret du Cray (2019)]
Randomized algorithm of complexity $\tilde{O}(T(\log D+\log H))$ for sparse polynomial product over $\mathbb{Z}$ or $\mathbb{F}_{q}$ of large characteristic

## New difficulties for an exact division algorithm

## Evaluation

- To compute $(f / g) \bmod x^{p}-1, g$ must be coprime with $x^{p}-1$
- To work modulo some $q$, they must remain coprime in $\mathbb{F}_{q}[x]$
$\rightarrow$ Additional conditions on $p$ and $q$


## No two-level approach

- Two-level algorithm for $f \times g$ :
- Compute $\left(f \bmod x^{p}-1\right) \times\left(g \bmod x^{p}-1\right)$
- Reduce the result to get $(f g) \bmod x^{p}-1$
- There is no reason for $\left(g \bmod x^{p}-1\right)$ to divide $\left(f \bmod x^{p}-1\right)$
$\rightarrow$ Requires a truly efficient sparse interpolation algorithm
Bounds on $T$ and $H$
- $(f / g)_{\#}$ can be as large as $D$
- Height of $f / g$ can be as large as $H^{O((f / g) \#)}$
- Both bounds must be discovered at the same time
$\rightarrow$ Modular product verification algorithm


## Exact division algorithm

## Algorithm

1. $h \leftarrow 0 ; T \leftarrow g \# ; H \leftarrow$ height of $g$
2. While $T \geq 1$ :
3. Compute $h_{p} \leftarrow(f / g-h) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$ using sparse interpolation
4. If $f=g \times\left(h+h_{p}\right) \bmod x^{p}-1$ : modular verification alg.
5. Compute new terms of $h$ from $h_{p}$
6. $T \leftarrow T / 2$
7. Else: $H \leftarrow H^{2}$
8. If $f=g \times h$ : return $h$
sparse verification alg..
9. Else: restart, with $T$ twice as large

## Theorem

[Giorgi-G.-Perret du Cray-Roche (2022)]
Given $f, g \in \mathbb{Z}[x]$ such that $g \mid f$, the algorithm returns $f / g$ with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D+\log H))$

## Conclusion

## Overlooked in this presentation

## Divisibility testing

- Given $f$ and $g$, does $g$ divides $f$ ?
- Easy if $\operatorname{deg}(g)$ or $\operatorname{deg}(f)-\operatorname{deg}(g)$ is small
- New polynomial-time algorithm in some special cases [Giorgi-G.-Perret du Cray (2021)] $\rightarrow$ Problem not known to be polynomial in general


## Sparse interpolation without sparsity bound

- Early termination techniques
- Quasi-linear running time?
- Classical method $\rightarrow$ requires a large prime number
- D5-like approach to avoid primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]
- Non suitable for multiplication and exact division $\rightarrow$ too costly


## Conclusion and open questions

## Multiplication and exact division

- Multiplication of sparse polynomials
- First quasi-linear algorithm over $\mathbb{Z}$ or $\mathbb{F}_{q}$ with large characteristic
- Exact division of sparse polynomials
- First quasi-linear algorithm over $\mathbb{Z}$
- First "quasi-linear in $T$ " algorithm over $\mathbb{F}_{q}$ with large characteristic


## Sparse interpolation

- First quasi-linear algorithm over $\mathbb{Z}$


## Open questions

- Quasi-linear algorithms over $\mathbb{F}_{q}$ with small characteristic
- Division with remainder, remainder only
- gcd with Bézout coefficients


## Conclusion and open questions

## Multiplication and exact division

- Multiplication of sparse polynomials
- First quasi-linear algorithm over $\mathbb{Z}$ or $\mathbb{F}_{q}$ with large characteristic
- Exact division of sparse polynomials
- First quasi-linear algorithm over $\mathbb{Z}$
- First "quasi-linear in $T$ " algorithm over $\mathbb{F}_{q}$ with large characteristic


## Sparse interpolation

- First quasi-linear algorithm over $\mathbb{Z}$


## Open questions

- Quasi-linear algorithms over $\mathbb{F}_{q}$ with small characteristic
- Division with remainder, remainder only
- gcd with Bézout coefficients

Thank you!

