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Dense and sparse polynomials

f =
D∑
i=0

cix i ci ∈ R

Dense representation

▶ List of all the ci’s
▶ Arithmetic size: O(D)
▶ Bit size: O(D logH)

Basic operations

▶ Addition: O(D) (trivial)

▶ Multiplication : Õ(D) via FFT

▶ Euclidean division, gcd, multipoint

evaluation, interpolation, . . . → Õ(D)
via reduction to multiplication

Sparse representation

▶ List of the pairs (i, ci) for nonzero ci’s
▶ Arithmetic size: O(T ) (sparsity of f )

▶ Bit size: O(T (logD + logH))

Basic operations

▶ Addition: O(T ) (list merge)

▶ Multiplication, division, gcd, . . . : ?
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Multivariate polynomials

f =
T∑
i=0

cix
e1i
1
xe2i

2
· · · xenin

Sparse representation

▶ List of the tuples (e1i, . . . , eni; ci)
▶ Bit size: O(T (n logD + logH)) where D = 1 +maxi,j eji

Kronecker substitution

▶ f 7→ fu(x) = f (x, xD, xD
2

, . . . , xD
n−1

) =
∑

i cix
e1i+e2iD+···+eniDn−1

▶ fu has degree Dn → same bit size as f
▶ Invertible transformation, compatible with polynomial operations

Work with univariate polynomials – same results for multivariate polynomials



4/32

1. Known algorithms and challenges

2. The main tool: sparse interpolation

3. Fast multiplication and exact division algorithms
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Multiplication of sparse polynomials

(
T−1∑
i=0

cixei
)
×

T−1∑
j=0

djx fj

 =
T−1∑
i=0

T−1∑
j=0

cidjxei+fj

Naive algorithm

Compute every cidj , 0 ≤ i, j < T
▶ O(T 2) coefficient multiplications and exponent additions

▶ Some coefficient additions, sorting, etc.

Less naive algorithms

▶ Good data structures [Johnson (1974), Yan (1998), Monagan-Pearce (2011)]

▶ Parallel implementation for efficiency [Monagan-Pearce (2009)]

Can we do better?
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Sparsity of a product

(x 14+2 x7+2)×(3 x 13+5 x8+3) = 3 x27+5 x22+6 x20+10 x 15+3 x 14+6 x 13+10 x8+6 x7+6

→ 9 nonzero terms

(x 14 + 2 x7 + 2)× (x 14 − 2 x7 + 2) = x28 + 4

→ 2 nonzero terms

▶ f#: sparsity (or number of nonzero terms) of a polynomial f

1 ≤ (fg)# ≤ f#g#

Difficulty

▶ Can we predict the output sparsity?

▶ Need of output-sensitive algorithms
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Structural sparsity: a partial solution

(x 14 + 2 x7 + 2 x0)× (x 14 +−2 x7 + 2 x0) = x28 + 0 x21 + 0 x 14 + 0 x7 + 4 x0

→ Structural sparsity 5

Theorem [Arnold-Roche (2015)]

There is a randomized algorithm to compute the product of two sparse polynomials f ,
g ∈ Z[x] of degree ≤ D and height ≤ H, with bit cost quasi-linear in S logD + T logH
where T = max(f#, g#, (fg)#) and S is the structural sparsity of the product

Limitation(
T−1∑
i=0

x i
)
×

(
T−1∑
i=0

xTi+1 − xTi
)

= XT 2 − 1 has structural sparsity T 2 + 1
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Division of sparse polynomials

Compute q and r such that f = g · q + r with deg r < deg g

x2n+1 − x2n = (xn+1 − xn + 1)× xn − xn

→ sparse output

x2n+1 + x2n = (xn+1 − xn + 1)× (xn + 2 xn−1 + · · ·+ 2) + xn − 2 xn−1 − · · · − 2

→ dense output

x2n+1 − x2n = (xn+1 − 2 xn + 1)× (xn + xn−1 + 2 xn−2 + · · ·+ 2
n−1)

+(2n − 3)xn − xn−1 − 2 xn−2 − · · · − 2
n−1

→ large coefficients

▶ Output size even more variable than in the case of multiplication!
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Division algorithms

Classical Euclidean Algorithm

▶ Uses O(g#q#) ring operations

▶ But many exponent comparisons → dominates the cost!

▶ O(f# + q#g2

#) using sorted lists

▶ O(f# + q#g# log(f# + q#g#)) using heap or geobucket [Johnson (1974), Yan (1998)]

▶ Space → heap size

▶ 1 + q# [Johnson (1974)]

▶ O(g#) [Monagan-Pearce (2007)]

Best known algorithm [Monagan-Pearce (2011)]

▶ Heap of size min(g#, q#)
▶ Complexity O(f# + q#g# logmin(q#, g#))

Output-sensitive but non-linear algorithm
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Gcd of sparse polynomials

gcd(xab − 1, xab − xa − xb + 1) = xa+b−1 + xa+b−2 + · · ·+ xa − xb−1 − xb−2 − · · · − 1

[Schinzel (2002)]

Hardness results

▶ Testing if two sparse polynomials over Z are coprime is coNP-hard [Plaisted (1984)]

▶ Generalization over Fq
[von zur Gathen-Karpinski-Shparlinski (1996), Karpinski-Shparlinski (1999), Kaltofen-Koiran (2005)]

Upper bounds

Let f , g ∈ Z[x] with a fixed sparsity and height:
▶ If f or g is cyclotomic-free, gcd(f , g) in complexity Õ(logD)

[Filaseta-Granville-Schinzel (2008)]

▶ Compute a polynomial with the same roots as gcd(f , g) in Q̄ in complexity Õ(logD)
(in particular : coprimality test) [Amoroso-Leroux-Sombra (2015)]

Are there output-sensitive algorithms that computes gcd and the Bézout coefficients?
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Challenges for sparse polynomial operations

Output sensitivity

▶ Output size is usually not determined by input size

▶ Algorithms must be output sensitive

▶ Depending on operations, output size may be very variable

Known complexities

▶ Multiplication and division: output-sensitive quadratic algorithms

▶ gcd: exponential time in the general case

Today: Output-sensitive quasi-linear algorithms for multiplication and exact division

▶ Ignored: Divisibility testing
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Definition of the problem

Input: A sparse polynomial f ∈ R[x] in an implicit representation
Bounds on D, H and/or T

Output: The sparse representation of f

Implicit representations

▶ Straight-line program (SLP), a.k.a arithmetic circuit

▶ Blackbox → evaluation program for f on elements of R
▶ Extended blackbox → evaluate f outside R

▶ Modular blackbox: if R = Z, evaluate f (θ) mod m for any m ∈ Z
▶ Remainder blackbox: evaluate on θ ∈ R[x]/⟨g⟩ for any g ∈ R[x]

Remark

▶ Given an SLP, one can compute explicitely f
▶ Infeasible because of intermediate expression swell
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Many variants of the problem

Ring of coefficients

▶ Z or Q: size growth → modular techniques

▶ Large finite fields

▶ Finite fields of large characteristic
▶ Small finite fields

Input representation

▶ Blackboxes: count the number of queries + extra arithmetic / bit operations

▶ SLP: count the cost of each query
▶ arithmetic cost: number L of instructions

▶ bit cost: Õ(L logH) where H bounds the height of the constants

Randomization

▶ Deterministic

▶ Monte Carlo randomization

▶ Las Vegas randomization
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Blackbox algorithm using geometric progressions

f =
T−1∑
i=0

cixei →


f (1)
f (ω)

.

.

.

f (ωn)

 =


1 · · · 1

ωe0 · · · ωet−1

.

.

.

.

.

.

ωne0 · · · ωnet−1




c0

c1

.

.

.

cT−1


Property

▶ The sequence (f (ωj))j≥0 is linearly recurrent, of minimal polynomial

∏
i(x − ωei)

Algorithm [Prony (1795), Ben-Or–Tiwari (1988), . . . ]

1. Evaluate f at 1, ω, . . . , ω2T−1

2. Compute the minimal polynomial of (f (ωj))j using Berlekamp-Massey algorithm

3. Compute its roots and obtain the exponents e0, . . . , eT−1

4. Solve a transposed Vandermonde system to get the coefficients c0, . . . , cT−1
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SLP algorithm using cyclic extensions

Compute explicitely f mod xp − 1 =
∑

i cix
ei mod p

for some prime p [Garg-Schost (2009)]

Loss of information

▶ Exponents known only modulo p
▶ Possible collisions between monomials

Reconstruction of full exponents

▶ Use several pj’s and (polynomial) Chinese remaindering, diversification, . . .

[Garg-Schost (2009), Giesbrecht-Roche (2011), . . . ]

▶ Encode exponents into coefficients à la Paillier or using derivatives

[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

▶ Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

▶ Accept collisions and reconstruct f iteratively

[Arnold-Giesbrecht-Roche (2013), Huang (2019)]
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Summary of main algorithms

Blackbox algorithms, using geometric progressions

▶ Require O(T ) queries to the blackbox

▶ Arithmetic complexity : poly(T ,D)
▶ Remark: over Z, f (ωj) has bit size Ω(D)

SLP algorithms, using cyclic extensions

▶ Over Z and Fq, bit cost poly(T , logD, logH)
▶ Best known complexity: Õ(T logD log q) over Fq if q = Ω̃(DT ) [Huang (2019)]

New algorithm

Input: A modular blackbox for f ∈ Z[x], bounds on T , D and H
Complexity: Õ(T (logD + logH))
General idea: Combine both techniques
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First ingredient: compute exponents of f mod xp − 1

Choice of p
▶ Prime such that (f mod xp − 1)# ≥ 5

6
f# w.h.p.

▶ Random choice of p = O(T logD)

Evaluations in a small field Fq
▶ If ω is a p-PRU in Fq, f (ωj) = (f mod xp − 1)(ωj)
▶ Small q for efficiency reasons

▶ Coefficients should remain nonzero modulo q → q = poly(T logH)

Algorithm

1. Compute a p-PRU ω ∈ Fq Effective Dirichlet’s theorem

2. Evaluate f at 1, ω, . . . , ω2T−1
2T queries

3. Compute the minimal polynomial of (f (ωj))j Õ(T log q)

4. Compute its roots and get the exponents by Bluestein’s transform Õ(p log q)



20/32

Second ingredient: compute f mod xp − 1

Evaluations in a larger ring

▶ Fq is too small → coefficients known modulo q
▶ Use larger ring where coefficients can be represented

▶ Using large finite field is too costly (primality testing, etc.)

→ Ring Z/qkZ where qk > 2H

Transposed Vandermonde system solving modulo qk

▶ Evaluation on a p-PRU ωk ∈ Z/qkZ
▶ Invertible matrix → ωk should be principal
▶ Transposed algorithm of fast (dense) interpolation

Algorithm

1. Compute a p-PRU ωk ∈ Z/qkZ from ω ∈ Fq Newton iteration

2. Evaluate f at 1, ωk , . . . , ωT−1

k T queries

3. Solve a transposed Vandermonde system, build using the exponents Õ(Tk log q)
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Third ingredient: Embed exponents into coefficients

Compute both f (x) and f ((1 + qk)x) modulo ⟨xp − 1, q2k⟩

Paillier-like embedding

▶ (1 + qk)ei = 1 + eiqk mod q2k

▶ Image of a monomial cixei of f :

▶ in f (x) mod ⟨xp − 1, q2k⟩→ cixei mod p

▶ in f ((1 + qk)x) mod ⟨xp − 1, q2k⟩→ ci(1 + eiqk)xei mod p

Collisions

▶ If cixei is collision-free modulo xp − 1 → reconstruct both ci and ei
▶ Possibly noisy terms from collisions ei = ej mod p

→ Compute f ∗ such that (f − f ∗)# ≤ 1

2
f# w.h.p.
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Complete algorithm

Algorithm

1. f ∗ ← 0

2. Repeat log T times :

3. Compute p, q, ω ∈ Fq, ωk ∈ Z/q2kZ
4. Compute exponents of (f − f ∗) mod ⟨xp − 1, q⟩ First ingredient

5. Compute (f − f ∗) mod ⟨xp − 1, q2k⟩ Second ingredient

6. Compute (f − f ∗)((1 + qk)x) mod ⟨xp − 1, q2k⟩ Second ingredient

7. Reconstruct collision-free monomials plus some noise Third ingredient

8. Update f ∗

9. Return f ∗

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox or an SLP for f ∈ Z[x], the algorithm returns the sparse
representation of f with probability ≥ 2

3
, and has bit complexity Õ(T (logD + logH))
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How to use sparse interpolation?

Multiplication

▶ Given f , g ∈ Z[x], compute f × g
▶ Desired complexity: Õ(max(f#, g#, (fg)#)(logD + logH))
▶ f × g is a special SLP → use sparse interpolation

▶ Caveats:

▶ No a priori bound on (fg)#
▶ Cost of sparse polynomial evaluation

Exact division

▶ Given f , g ∈ Z[x] s.t g | f , compute f /g
▶ Desired complexity: Õ(max(f#, g#, (f /g)#)(logD + logH))
▶ Caveats:

▶ No bound on (f /g)#, nor on ∥f /g∥∞
▶ f /g is a special SLP with divisions
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Evaluation of sparse polynomials

Given f =
∑T−1

i=0
cixei and α, compute f (α)

Not polynomial-time over Z
▶ If α ̸= ±1, αD

needs D bits to be written

Over a finite field Fq
▶ αe

: O(log e) operations in Fq
▶ Computation of f (α) :

▶ O(T logD) operations in Fq
▶ Õ(T logD log q) bit operations not quasi-linear!

▶ Slight improvement: O(logD + T logD/ log logD) or O(T logD/ log T ) [Yao (1976)]
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Avoid bound on T
Standard doubling strategy

▶ Try to compute f × g or f /g with bound T
▶ If the result is incorrect, double T

→ Requires a fast equality test for f × g = h

Sparse product verification [Giorgi-G.-Perret du Cray (2019, 2022)]

▶ Classical method: evaluate f , g, h at a random point → too costly

▶ Main idea: evaluate (f × g) mod xp − 1 at a random point, for a random p
▶ Sparse and structured vector-matrix-vector product

▶ Bit complexity Õ(T (logD + logH))
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Overview of multiplication algorithm

Two-level algorithm

1. Reduce f , g and their derivatives f ′, g′ modulo xp − 1

2. Use sparse interpolation and verification to compute:

▶ (f mod xp − 1)× (g mod xp − 1)
▶ (f ′ mod xp − 1)× (g mod xp − 1) and (f mod xp − 1)× (g′ mod xp − 1)

3. Deduce (fg) mod xp − 1 and (fg)′ mod xp − 1 and reconstruct fg

Choice of p and complexity

▶ We want no collision w.h.p. → p = O(f 2

#g
2

# logD) (fg)# ≤ f#g#
▶ Reduction and reconstruction : Õ(T (logD + logH)) T = max(f#, g#, (fg)#)
▶ Sparse interpolation of polynomials of degree O(p) → poly(logD) is good enough

Theorem [Giorgi-G.-Perret du Cray (2019)]

Randomized algorithm of complexity Õ(T (logD + logH)) for sparse polynomial product
over Z or Fq of large characteristic
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New difficulties for an exact division algorithm

Evaluation

▶ To compute (f /g) mod xp − 1, g must be coprime with xp − 1

▶ To work modulo some q, they must remain coprime in Fq[x]
→ Additional conditions on p and q

No two-level approach

▶ Two-level algorithm for f × g:

▶ Compute (f mod xp − 1)× (g mod xp − 1)
▶ Reduce the result to get (fg) mod xp − 1

▶ There is no reason for (g mod xp − 1) to divide (f mod xp − 1)
→ Requires a truly efficient sparse interpolation algorithm

Bounds on T and H
▶ (f /g)# can be as large as D
▶ Height of f /g can be as large as HO((f /g)#)

▶ Both bounds must be discovered at the same time

→ Modular product verification algorithm [Giorgi-G.-Perret du Cray (2022)]
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Exact division algorithm

Algorithm

1. h← 0; T ← g#; H ← height of g
2. While T ≥ 1:

3. Compute hp ← (f /g − h) mod ⟨xp − 1, q2k⟩ using sparse interpolation

4. If f = g × (h+ hp) mod xp − 1: modular verification alg.
5. Compute new terms of h from hp
6. T ← T/2

7. Else: H ← H2

8. If f = g × h: return h sparse verification alg..
9. Else: restart, with T twice as large

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given f , g ∈ Z[x] such that g | f , the algorithm returns f /g with probability ≥ 2

3
, and has bit

complexity Õ(T (logD + logH))
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Conclusion
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Overlooked in this presentation

Divisibility testing

▶ Given f and g, does g divides f ?

▶ Easy if deg(g) or deg(f )− deg(g) is small

▶ New polynomial-time algorithm in some special cases [Giorgi-G.-Perret du Cray (2021)]

→ Problem not known to be polynomial in general

Sparse interpolation without sparsity bound

▶ Early termination techniques [Kaltofen-Lee (2003)]

▶ Quasi-linear running time?

▶ Classical method → requires a large prime number

▶ D5-like approach to avoid primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]

▶ Non suitable for multiplication and exact division → too costly
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Conclusion and open questions

Multiplication and exact division

▶ Multiplication of sparse polynomials

▶ First quasi-linear algorithm over Z or Fq with large characteristic

▶ Exact division of sparse polynomials

▶ First quasi-linear algorithm over Z
▶ First “quasi-linear in T ” algorithm over Fq with large characteristic

Sparse interpolation

▶ First quasi-linear algorithm over Z

Open questions

▶ Quasi-linear algorithms over Fq with small characteristic many cancellations

▶ Division with remainder, remainder only

▶ gcd with Bézout coefficients

Thank you!
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