Memory-efficient polynomial arithmetic

Pascal Giorgi* Bruno Grenet'! Daniel S. Roche?

LIP, ENS de Lyon — 11 apr. 2019
1 LIRMM, Université de Montpellier

2 CS Department, US Naval Academy

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n%> +2n—1
» Karatsuba: < 6.5n/°¢23
= Toom-3: < 18.75n'°&:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n%> +2n—1
» Karatsuba: < 6.5n/°¢23
= Toom-3: < 18.75n'°&:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

= Other tasks:

= Euclidean division: 5M(n) + o(M(n))
GCD: O(M(n)log n)
= Evaluation & interpolation: O(M(n) log n)

= Power series computations: O(M(n)) or O(M(n) log n)

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n%> +2n—1
» Karatsuba: < 6.5n/°¢23
= Toom-3: < 18.75n'°&:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

= Other tasks:

= Euclidean division: 5M(n) + o(M(n))
GCD: O(M(n)log n)
= Evaluation & interpolation: O(M(n) log n)

= Power series computations: O(M(n)) or O(M(n) log n)

What about space complexity?

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

1. Models to be defined later.

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

1. Models to be defined later.

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

= Improvements on FFT-based algorithms:
= Roche (2009): O(1) if n = 2*
= Harvey & Roche (2010): O(1)
— time complexity multiplied by a constant

1. Models to be defined later.

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

V' = Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + A1) (g0 + &1) — fogo — fig1) X2 + figr X"

Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + f1) (g0 + £1) — fogo — frg1) X% + figi X"
= Thomé'02: Careful use of n temp. registers + O(log n) stack

= Roche'09: half-additive version ~~ only O(log n) stack
(hy < hy + fg where deg(h;) < deg(f), deg(g))

Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + f1) (g0 + £1) — fogo — frg1) X% + figi X"
= Thomé'02: Careful use of n temp. registers + O(log n) stack

= Roche'09: half-additive version ~~ only O(log n) stack
(hy < hy + fg where deg(h;) < deg(f), deg(g))

s FFT-based algorithms:
» (F,G) = (F(w'), G(w')); = FG(w'); — FG

Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + f1) (g0 + £1) — fogo — frg1) X% + figi X"
= Thomé'02: Careful use of n temp. registers + O(log n) stack

= Roche'09: half-additive version ~~ only O(log n) stack
(hy < hy + fg where deg(h;) < deg(f), deg(g))

s FFT-based algorithms:
» (F,G) = (F(w'), G(w')); = FG(w'); — FG

= Every — is in-place (overwriting) but # points is 1 + deg(FG)
» > size((F(w'), G(w));) = 2size(FG)

Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + f1) (g0 + £1) — fogo — frg1) X% + figi X"
= Thomé'02: Careful use of n temp. registers + O(log n) stack

= Roche'09: half-additive version ~~ only O(log n) stack
(hy < hy + fg where deg(h;) < deg(f), deg(g))

s FFT-based algorithms:
» (F,G) = (F(w'), G(w')); = FG(w'); — FG

= Every — is in-place (overwriting) but # points is 1 + deg(FG)
~ size((F(w'), G(w'));) = 2size(FG)

= Roche’'09: Compute half of the result + recurse
= Harvey-Roche'10: same with TFT (vdH'04)

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= O(1)-space Karatsuba's algorithm?

= What about Toom-Cook algorithm?

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= O(1)-space Karatsuba's algorithm?

= What about Toom-Cook algorithm?

= What about other products (short and middle)?

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= O(1)-space Karatsuba's algorithm?

= What about Toom-Cook algorithm?

= What about other products (short and middle)?

Results:
= Yes!
= Almost (for other products)

Polynomial products and linear maps
Space-preserving reductions

In-place algorithms from out-of-place algorithms

Polynomial products and linear maps

Short product

Short product

<
=] high short product low short product

n—1 n

Short product

<
=] high short product low short product

n—1 n

= Low short product: product of truncated power series
= Useful in other algorithms

= Time complexity: M(n)

= Space complexity: O(n)

Middle product

10

Middle product

10

Middle product

Useful for Newton iteration
» G+ G(1— GF)mod X" with GF =1+ X"H
= division, square root, ...

= Time complexity: M(n) — Tellegen's transposition
= Space complexity: O(n)

O(1) space in the most permissive model via transposition of
Harvey-Roche algorithm (Bostan-Lecerf-Schost'03)

10

Multiplications as linear maps

X = 2n—1

11

Multiplications as linear maps

Multiplications as linear maps

3n—1

11

Multiplications as linear maps

11

Multiplications as linear maps

SPi,

FP MP

SP;

Full product Short products Middle product

11

Space-preserving reductions

12

Relative difficulties of products

= Without space restrictions:
= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SP, + SPy,; + (n — 1) additions

13

Relative difficulties of products

= Without space restrictions:
= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SP, + SPy,; + (n — 1) additions

= Size of inputs and outputs:
= FP:nxn—2n-1
= SPo:nxn—n
= SPh:n—1xn—-1—=n-1;
= MP:2n—1xn—n

13

Relative difficulties of products

= Without space restrictions:
= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SP, + SPy,; + (n — 1) additions

= Size of inputs and outputs:
= FP:nxn—2n-1
= SPo:nxn—n
= SPh:n—1xn—-1—=n-1;
= MP:2n—1xn—n

Reductions unusable in space-restricted settings!

13

A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)
= A <. B: A computable with oracle B and
= constant number c of calls to oracle
= negligible extra time
= without extra space (O(1))
s A=.B:A<.Band B<. A

14

A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)
= A <. B: A computable with oracle B and
= constant number c of calls to oracle
= negligible extra time
= without extra space (O(1))
s A=.B:A<.Band B<. A

Proposition
If B € TISP(t(n),s(n)) and A <. B, then

A € TISP(c t(n) + o(t(n)), s(n) + O(1))

14

<3 1[5 <1 MP

R

5

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)

16

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPi,(n) < MP(n); SPhi(n) < MP(n—1)

16

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPio(n) < MP(n); SPhi(n) < MP(n—1)
= FP(n) < SPhi(n) + SPis(n) < MP(n) + MP(n—1)

16

Half-additive full product: h< h+f - g

lo*

Half-additive full product: h< h+f - g

Half-additive full product: h< h+f - g

Remark FP," =; FP,

FP* <3/, SP and SP <, FP*

From SP to FP*

18

From SP to FP*

18

From SP to FP*

18

From SP to FP*

From SP to FP*

FP,-(n) < SPio(n) + SPpi(n) +n—1

From FP* to SP

(fo 1 x[n/2] fl)'(é’o + X(”mgl) = fogo+ X"\ (fog1+figo) mod X"

19

From FP* to SP

(fo 1 x[n/2] fl)'(é’o + X(”mgl) = fogo+ X"\ (fog1+figo) mod X"

19

From FP* to SP

(fo+ XI"21£) - (g0 + XI"\g1) = fogo+ X"/ (fyg1+Figo) mod X

N

19

From FP* to SP

(fo+ XI"21£) - (g0 + XI"\g1) = fogo+ X"/ (fyg1+Figo) mod X

N

19

From FP* to SP

(foJrXWﬂfl go+X("/21g1 = fogo+ X"\ (fog1+figo) mod X"

N

19

From FP* to SP

(foJrXWﬂfl go+X("/21g1 = fogo+ X"\ (fog1+figo) mod X"

N

19

From FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

19

From FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

SPio(n) < FP([n/2]) + FPig([n/2]) + FP{([n/2])

19

Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

20

Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

= From SP to MP:
= partial result:
= up to log(n) increase in time complexity
= techniques from next part
= without space restriction or in a permissive model
= FP to MP through Tellegen’s transposition principle

20

In-place algorithms from
out-of-place algorithms

21

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known to the algorithm

22

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known to the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

22

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known to the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

= Technique:
= Oracle calls in smaller size
= Tail recursive call
= fake padding

22

Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space

23

Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space

= Fake padding:
= Pretend to pad inputs with zeroes
= Make the data structure responsible for it
= O(1) increase in memory
= Cf. strides in dense linear algebra

= OK in inputs, not in outputs!

23

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

24

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

k

2k—1

ck

24

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

k
]

24

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X &) = fogo + X*(fol + Fao) + X?Fg
k
[n/k]

24

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*&) = fogo + X*(fog + Feo) + X**F&
k
[n/k]
[n/k] —1

24

In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*8) = fogo + X (fog + Fgo) + X? F&
k
[n/k]
[n/k] =1 n—k—1

24

k

[n/k] —1 n—k—1

25

k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

25

k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

T(n) < (2c + 7)M(n) + o(M(n)) ”e

In-place short product

26

In-place short product

ck

26

In-place short product

26

In-place short product

26

In-place short product

26

In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

26

In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

T(n) < (2¢ +5)M(n) + o(M(n))

26

In-place middle product

27

In-place middle product

27

In-place middle product

[n/k]

27

In-place middle product

[n/k] -
= Recursive call on part of f... but on full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)

27

In-place middle product

[n/k] -
= Recursive call on part of f... but on full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)

c+1

T(n, n) < M(n)loges2(n) + o(M(n)logn) if M(n) is quasi-linear
o O(M(n)) otherwise

27

Other operations

Work in progress!

28

Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

28

Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

Remark
= |n place: division with remainder
= Only quotient or only remainder: not clear
= Main difficulty: size of the output

28

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

30

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

30

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Remove the log(n) for middle product or prove a lower bound
= General result on Tellegen's transposition principle
= What about integer multiplication?

30

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Remove the log(n) for middle product or prove a lower bound
= General result on Tellegen's transposition principle
= What about integer multiplication?

Thank youl!

30

	Polynomial products and linear maps
	Space-preserving reductions
	In-place algorithms from out-of-place algorithms

