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= Other tasks:

= Euclidean division: 5M(n) + o(M(n))
GCD: O(M(n)log n)
= Evaluation & interpolation: O(M(n) log n)

= Power series computations: O(M(n)) or O(M(n) log n)

What about space complexity?
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= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

= Improvements on FFT-based algorithms:
= Roche (2009): O(1) if n = 2*
= Harvey & Roche (2010): O(1)
— time complexity multiplied by a constant

1. Models to be defined later.
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Previous results

= Karatsuba's algorithm:
= Divide-and-Conquer: (fy + X2 f) - (g0 + X?g1)
= fogo + ((fo + f1) (g0 + £1) — fogo — frg1) X% + figi X"
= Thomé'02: Careful use of n temp. registers + O(log n) stack

= Roche'09: half-additive version ~~ only O(log n) stack
(hy < hy + fg where deg(h;) < deg(f), deg(g))

s FFT-based algorithms:
» (F,G) = (F(w'), G(w')); = FG(w'); — FG

= Every — is in-place (overwriting) but # points is 1 + deg(FG)
~ size((F(w'), G(w'));) = 2size(FG)

= Roche’'09: Compute half of the result + recurse
= Harvey-Roche'10: same with TFT (vdH'04)
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Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= O(1)-space Karatsuba's algorithm?

= What about Toom-Cook algorithm?

= What about other products (short and middle)?

Results:
= Yes!
= Almost (for other products)
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Short product
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=] high short product  low short product
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= Low short product: product of truncated power series
= Useful in other algorithms

= Time complexity: M(n)

= Space complexity: O(n)
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Middle product

Useful for Newton iteration
» G+ G(1— GF)mod X" with GF =1+ X"H
= division, square root, ...

= Time complexity: M(n) — Tellegen's transposition
= Space complexity: O(n)

O(1) space in the most permissive model via transposition of
Harvey-Roche algorithm (Bostan-Lecerf-Schost'03)
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Multiplications as linear maps

X = 2n—1
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Multiplications as linear maps

SPi,

FP MP

SP;

Full product Short products Middle product
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Space-preserving reductions
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Relative difficulties of products

= Without space restrictions:
= SP < FP and FP <SPy, + SPy;
= MP = FP (transposition)
= MP <SP, + SPy,; + (n — 1) additions

= Size of inputs and outputs:
= FP:nxn—2n-1
= SPo:nxn—n
= SPh:n—1xn—-1—=n-1;
= MP:2n—1xn—n

Reductions unusable in space-restricted settings!
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A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)
= A <. B: A computable with oracle B and
= constant number c of calls to oracle
= negligible extra time
= without extra space (O(1))
s A=.B:A<.Band B<. A

14



A relevant notion of reduction

Definitions
= TISP(t(n),s(n)): computable in time t(n) and space s(n)
= A <. B: A computable with oracle B and
= constant number c of calls to oracle
= negligible extra time
= without extra space (O(1))
s A=.B:A<.Band B<. A

Proposition
If B € TISP(t(n),s(n)) and A <. B, then

A € TISP(c t(n) + o(t(n)), s(n) + O(1))
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<3 1[5 <1 MP

R
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Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
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Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPio(n) < MP(n); SPhi(n) < MP(n—1)
= FP(n) < SPhi(n) + SPis(n) < MP(n) + MP(n—1)
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Half-additive full product: h< h+f - g

Remark FP," =; FP,

FP* <3/, SP and SP <, FP*
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From SP to FP*

FP,-(n) < SPio(n) + SPpi(n) +n—1
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From FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

SPio(n) < FP([n/2]) + FPig([n/2]) + FP{([n/2])
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Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?
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Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

= From SP to MP:
= partial result:
= up to log(n) increase in time complexity
= techniques from next part
= without space restriction or in a permissive model
= FP to MP through Tellegen’s transposition principle
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In-place algorithms from
out-of-place algorithms
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Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known to the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

= Technique:
= Oracle calls in smaller size
= Tail recursive call
= fake padding
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Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space
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Tail recursion and fake padding

= Tail recursion:
= Only one recursive call 4 last (or first) instruction
= No need of recursive stack ~~ avoid O(log n) extra space

= Fake padding:
= Pretend to pad inputs with zeroes
= Make the data structure responsible for it
= O(1) increase in memory
= Cf. strides in dense linear algebra

= OK in inputs, not in outputs!

23
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In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*&) = fogo + X*(fog + Feo) + X**F&
k
[n/k]
[n/k] —1
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In-place FP* from out-of-place FP

(fo + X F) - (g0 + X*8) = fogo + X (fog + Fgo) + X? F&
k
[n/k]
[n/k] =1 n—k—1
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k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<
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k
[n/k]
[n/k] —1 n—k—1
X =
no n—k

+1
s ck+2k-1<n—k = k<

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

T(n) < (2c + 7)M(n) + o(M(n)) ”e



In-place short product
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

T(n) < (2¢ +5)M(n) + o(M(n))
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In-place middle product

[n/k]
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In-place middle product

[n/k] -
= Recursive call on part of f... but on full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)
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In-place middle product

[n/k] -
= Recursive call on part of f... but on full g!
= T(n,m) = ["/k]M(k) + T(n,m — k)

c+1

T(n, n) < M(n)loges2(n) + o(M(n)logn) if M(n) is quasi-linear
o O(M(n)) otherwise
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Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

Remark
= |n place: division with remainder
= Only quotient or only remainder: not clear
= Main difficulty: size of the output
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Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Remove the log(n) for middle product or prove a lower bound
= General result on Tellegen's transposition principle
= What about integer multiplication?

Thank youl!
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