Memory-efficient polynomial arithmetic

Pascal Giorgi* Bruno Grenet'! Daniel S. Roche?
Séminaire LACL — 26 nov. 2018

1 LIRMM, Université de Montpellier

2 CS Department, US Naval Academy

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n> +2n—1
= Karatsuba: < 6.5n/°%23
= Toom-3: < 18.75n'°8:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n> +2n—1
= Karatsuba: < 6.5n/°%23
= Toom-3: < 18.75n'°8:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

= Other tasks:
= Euclidean division: 5M(n) + o(M(n))
= GCD: O(M(n) log n)
= Evaluation & interpolation: O(M(n) log n)
= Power series computations: O(M(n)) or O(M(n) log n)

Polynomial arithmetic

= Multiplication: M(n)
= Naive: 2n> +2n—1
= Karatsuba: < 6.5n/°%23
= Toom-3: < 18.75n'°8:5
= FFT-based: 4.5nlog n+ O(n) or O(nlog nloglog n)

= Other tasks:
= Euclidean division: 5M(n) + o(M(n))
= GCD: O(M(n) log n)
= Evaluation & interpolation: O(M(n) log n)
= Power series computations: O(M(n)) or O(M(n) log n)

What about space complexity?

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

1. Models to be defined later.

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

1. Models to be defined later.

Space complexity of polynomial arithmetic

= Quadratic multiplication algorithm: O(1)1!
= Karatsuba, Toom-3, FFT: O(n)
= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

= Improvements on FFT-based algorithms:
= Roche (2009): O(1) if n = 2*
= Harvey & Roche (2010): O(1)
— time complexity multiplied by a constant

1. Models to be defined later.

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

= Read-write input and output
= Too permissive in general
= Special case: inputs must be restored at the end

Short product

Short product

<
=] high short product low short product

n—1 n

Short product

<
=] high short product low short product

n—1 n

= Low short product: product of truncated power series
= Useful in other algorithms

= Time complexity: M(n)

= Space complexity: O(n)

Middle product

Middle product

Middle product

= Useful for Newton iteration
» G+ G(1— GF) mod X2 with GF =1+ X"H
= division, square root, ...

= Time complexity: M(n) — Tellegen's transposition
= Space complexity: O(n)

Multiplications as linear maps

X = 2n—1

Multiplications as linear maps

Multiplications as linear maps

3n—1

Multiplications as linear maps

Multiplications as linear maps

Full product Short products Middle product

Space-preserving reductions

In-place algorithms from out-of-place algorithms

Space-preserving reductions

Definitions.

= TISP(t(n),s(n)): decidable in time t(n) and space s(n)
= A < B: A decidable with oracle B

= constant number of calls to oracle

= negligible extra time

= without extra space (O(1))
= A=B:A<Band B<A

10

Definitions.

= TISP(t(n),s(n)): decidable in time t(n) and space s(n)
= A < B: A decidable with oracle B

= constant number of calls to oracle

= negligible extra time

= without extra space (O(1))
= A=B:A<Band B<A

Proposition.
If B € TISP(t(n),s(n)) and A < B, then

A € TISP(O(t(n)), s(n) + O(1))

10

Theorem.

4

IN

Il MP

IA

/4

11

Theorem.

4

IN

Il MP

IA

/4

Remark.

= FP:nxn—>2n-1

= SPo:nxn—n SPhi:n—1xn—1—n-—1,
= MP:2n—1xn—n

11

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)

12

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPi,(n) < MP(n); SPhi(n) < MP(n—1)

12

Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPio(n) < MP(n); SPhi(n) < MP(n—1)
= FP(n) < SPhi(n) + SPis(n) < MP(n) + MP(n—1)

12

Half-additive full product: h< h+f - g

lo*

Half-additive full product: h< h+f - g

Half-additive full product: h< h+f - g

Remark. FP} = FP}

Theorem. FPT = SP

SP to FP*

14

SP to FP*

14

SP to FP*

14

SP to FP*

SP to FP*

FP,-(n) < SPio(n) + SPpi(n) +n—1

FP* to SP

(fo 1 x[n/2] fl)'(é’o + X(”mgl) = fogo+ X"\ (fog1+figo) mod X"

5

FP* to SP

(fo 1 x[n/2] fl)'(é’o + X(”mgl) = fogo+ X"\ (fog1+figo) mod X"

5

FP* to SP

(fo+ XI"21£) - (g0 + XI"\g1) = fogo+ X"/ (fyg1+Figo) mod X

N

5

FP* to SP

(fo+ XI"21£) - (g0 + XI"\g1) = fogo+ X"/ (fyg1+Figo) mod X

N

5

FP* to SP

(foJrXWﬂfl go+X("/21g1 = fogo+ X"\ (fog1+figo) mod X"

N

5

FP* to SP

(foJrXWﬂfl go+X("/21g1 = fogo+ X"\ (fog1+figo) mod X"

N

5

FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

5

FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

SPio(n) < FP([n/2]) + FPig([n/2]) + FP{([n/2])

5

Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

16

Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

= From FP to MP:
= partial result: log(n) increase in time complexity
= without space restriction: Tellegen's transposition principle

16

In-place algorithms from
out-of-place algorithms

17

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known in the algorithm

18

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known in the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

18

Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known in the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

= Technique:
= QOracle calls in smaller size
= Recursive call

18

In-place FP*

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

19

In-place FP*

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

k

2k—1

ck

19

In-place FP*

(fo + X F) - (g0 + X &) = fogo + X*(fo& + Fao) + X?Fg

k
]

19

In-place FP*

(fo + X F) - (g0 + X &) = fogo + X*(fol + Fao) + X?Fg
k
[n/k]

In-place FP*

(fo + X F) - (g0 + X*&) = fogo + X*(fog + Feo) + X**F&
k
[n/k]
[n/k] —1

19

In-place FP*

(fo+ XXF) - (g0 + X*&) = fogo + X*(fo& + Tev) + X**F
k
[n/K]
[n/k] =1 n—k—1

19

k

[n/k] —1 n—k—1

20

k

[n/k] —1 n—k—1

s ck+2k—1<n—k— k<23

« T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

20

k

[n/k]

[n/k] —1 n—k—1

s ck+2k—1<n—k— k<23

« T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

T(n) < (2c + 7)M(n) + o(M(n)) .

In-place short product

21

In-place short product

ck

21

In-place short product

21

In-place short product

21

In-place short product

21

In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

21

In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

T(n) < (2¢ +5)M(n) + o(M(n))

21

In-place middle product

22

In-place middle product

22

In-place middle product

[n/k]

22

In-place middle product

[n/k]
= Only f's size decreases, not g!
o T(n,m) = [7kIM(K) + T(n,m — k)

22

In-place middle product

[n/k]
= Only f's size decreases, not g!
o T(n,m) = [7kIM(K) + T(n,m — k)

T(n, m) < M(n)logys..,(m) + o(M(n)log m)

22

Other operations

Work in progress!

23

Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

23

Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

Remark.
= |n place: division with remainder
= Only quotient or only remainder: not clear
= Main difficulty: size of the output

23

V, \J& I
47

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

25

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

25

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems

= Remove the log(n) for middle product or prove a lower bound
= Karatsuba’s algorithm with read-write restorable inputs

= General result on Tellegen's transposition principle

25

Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems

= Remove the log(n) for middle product or prove a lower bound
= Karatsuba’s algorithm with read-write restorable inputs

= General result on Tellegen's transposition principle

Thank you!

25

	Space-preserving reductions
	In-place algorithms from out-of-place algorithms

