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What about space complexity?
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= Other tasks: often O(n)

= |Improvements on Karatsuba's algorithm:
= Thomé (2002): n+ O(log n)
= Roche (2009): O(log n)
— time complexity multiplied by a constant

= Improvements on FFT-based algorithms:
= Roche (2009): O(1) if n = 2*
= Harvey & Roche (2010): O(1)
— time complexity multiplied by a constant

1. Models to be defined later.
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Space-complexity models

Algebraic-RAM machine:
— Standard registers of size O(log n)
— Algebraic registers containing one coefficient

= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-only input / read-write output
= Thomé (2002), Roche (2009) and Harvey & Roche (2010)
= Reasonable from a programmer’s viewpoint

= Read-write input and output
= Too permissive in general
= Special case: inputs must be restored at the end
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= Low short product: product of truncated power series
= Useful in other algorithms

= Time complexity: M(n)

= Space complexity: O(n)
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Middle product

= Useful for Newton iteration
» G+ G(1— GF) mod X2 with GF =1+ X"H
= division, square root, ...

= Time complexity: M(n) — Tellegen's transposition
= Space complexity: O(n)



Multiplications as linear maps

X = 2n—1
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Multiplications as linear maps

Full product Short products Middle product
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In-place algorithms from out-of-place algorithms
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Definitions.

= TISP(t(n),s(n)): decidable in time t(n) and space s(n)
= A < B: A decidable with oracle B

= constant number of calls to oracle
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= A=B:A<Band B<A
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Definitions.

= TISP(t(n),s(n)): decidable in time t(n) and space s(n)
= A < B: A decidable with oracle B

= constant number of calls to oracle

= negligible extra time

= without extra space (O(1))
= A=B:A<Band B<A

Proposition.
If B € TISP(t(n),s(n)) and A < B, then

A € TISP(O(t(n)), s(n) + O(1))
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Remark.

= FP:nxn—>2n-1

= SPo:nxn—n SPhi:n—1xn—1—n-—1,
= MP:2n—1xn—n
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Visual proof
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Visual proof

SPh

SPi,

= Use of fake padding (in input, not in output!)
= SPio(n) < MP(n); SPhi(n) < MP(n—1)
= FP(n) < SPhi(n) + SPis(n) < MP(n) + MP(n—1)
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Remark. FP} = FP}

Theorem. FPT = SP
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SP to FP*

FP,-(n) < SPio(n) + SPpi(n) +n—1
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FP* to SP

(fo + x[n/2] ﬂ)'(go + X("/”gl) = fogo+X"?!(fog1+figo) mod X"

SPio(n) < FP([n/2]) + FPig([n/2]) + FP{([n/2])
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Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?
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Converse directions?

= From FP to SP:

= problem with the output size
= without space restriction: is SP(n) ~ FP(n/2)?

= From FP to MP:
= partial result: log(n) increase in time complexity
= without space restriction: Tellegen's transposition principle

16



In-place algorithms from
out-of-place algorithms
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Framework

= In-place algorithms parametrized by out-of-place algorithm
= Qut-of-place: Uses cn extra space
= Constant ¢ known in the algorithm

= Goal:
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

= Technique:
= QOracle calls in smaller size
= Recursive call
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In-place FP*
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k
[n/K]
[n/k] =1 n—k—1

19



k

[n/k] —1 n—k—1

20



k

[n/k] —1 n—k—1

s ck+2k—1<n—k— k<23

« T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

20



k

[n/k]

[n/k] —1 n—k—1

s ck+2k—1<n—k— k<23

« T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

T(n) < (2c + 7)M(n) + o(M(n)) .
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)
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In-place short product

X =

1 I
= k<n/(c+2)

= T(n) = [/KIM(K)+([/k] =1)M(k=1)+2k([/k] =1)+ T (n—k)

k

[n/k]

T(n) < (2¢ +5)M(n) + o(M(n))
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In-place middle product

[n/k]
= Only f's size decreases, not g!
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In-place middle product

[n/k]
= Only f's size decreases, not g!
o T(n,m) = [7kIM(K) + T(n,m — k)

T(n, m) < M(n)logys..,(m) + o(M(n)log m)
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Other operations

Work in progress!

= Use our in-place algorithms as building blocks
= Newton iteration: division, square root, ...
= Evaluation & interpolation

— (at most) log(n) increase in complexity

Remark.
= |n place: division with remainder
= Only quotient or only remainder: not clear
= Main difficulty: size of the output
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Conclusion

= TISP-reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems

= Remove the log(n) for middle product or prove a lower bound
= Karatsuba’s algorithm with read-write restorable inputs

= General result on Tellegen's transposition principle

Thank you!

25



	Space-preserving reductions
	In-place algorithms from out-of-place algorithms

