Memory-efficient polynomial arithmetic

Pascal Giorgi¹ **Bruno Grenet**¹ Daniel S. Roche² Séminaire LACL — 26 nov. 2018

¹ LIRMM, Université de Montpellier

² CS Department, US Naval Academy

Polynomial arithmetic

- Multiplication: M(n)
 - Naïve: $2n^2 + 2n 1$
 - Karatsuba: $< 6.5 n^{\log_2 3}$
 - Toom-3: $< 18.75 n^{\log_3 5}$
 - FFT-based: $4.5n \log n + O(n)$ or $O(n \log n \log \log n)$

Polynomial arithmetic

- Multiplication: M(n)
 - Naïve: $2n^2 + 2n 1$
 - Karatsuba: $< 6.5 n^{\log_2 3}$
 - Toom-3: $< 18.75 n^{\log_3 5}$
 - FFT-based: $4.5n \log n + O(n)$ or $O(n \log n \log \log n)$
- Other tasks:
 - Euclidean division: 5M(n) + o(M(n))
 - GCD: $O(M(n) \log n)$
 - Evaluation & interpolation: $O(M(n) \log n)$
 - Power series computations: O(M(n)) or $O(M(n) \log n)$
 - . .

Polynomial arithmetic

- Multiplication: M(n)
 - Naïve: $2n^2 + 2n 1$
 - Karatsuba: $< 6.5 n^{\log_2 3}$
 - Toom-3: $< 18.75 n^{\log_3 5}$
 - FFT-based: $4.5n \log n + O(n)$ or $O(n \log n \log \log n)$
- Other tasks:
 - Euclidean division: 5M(n) + o(M(n))
 - GCD: $O(M(n) \log n)$
 - Evaluation & interpolation: $O(M(n) \log n)$
 - Power series computations: O(M(n)) or $O(M(n) \log n)$
 - ...

What about space complexity?

Space complexity of polynomial arithmetic

- Quadratic multiplication algorithm: $O(1)^1$
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n)

1. Models to be defined later.

Space complexity of polynomial arithmetic

- Quadratic multiplication algorithm: $O(1)^1$
- Karatsuba, Toom-3, FFT: *O*(*n*)
- Other tasks: often O(n)
- Improvements on Karatsuba's algorithm:
 - Thomé (2002): $n + O(\log n)$
 - Roche (2009): *O*(log *n*)
 - \rightarrow time complexity multiplied by a constant

^{1.} Models to be defined later.

Space complexity of polynomial arithmetic

- Quadratic multiplication algorithm: $O(1)^{1}$
- Karatsuba, Toom-3, FFT: O(n)
- Other tasks: often O(n)
- Improvements on Karatsuba's algorithm:
 - Thomé (2002): $n + O(\log n)$
 - Roche (2009): *O*(log *n*)
 - ightarrow time complexity multiplied by a constant
- Improvements on FFT-based algorithms:
 - Roche (2009): O(1) if $n = 2^k$
 - Harvey & Roche (2010): *O*(1)
 - ightarrow time complexity multiplied by a constant

^{1.} Models to be defined later.

- \rightarrow *Standard* registers of size $O(\log n)$
- $\rightarrow \textit{Algebraic} \text{ registers containing one coefficient}$

- \rightarrow *Standard* registers of size $O(\log n)$
- ightarrow Algebraic registers containing one coefficient
- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication

- \rightarrow Standard registers of size $O(\log n)$
- → Algebraic registers containing one coefficient
- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication
- Read-only input / read-write output
 - Thomé (2002), Roche (2009) and Harvey & Roche (2010)
 - Reasonable from a programmer's viewpoint

- \rightarrow *Standard* registers of size $O(\log n)$
- → Algebraic registers containing one coefficient
- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication
- Read-only input / read-write output
 - Thomé (2002), Roche (2009) and Harvey & Roche (2010)
 - Reasonable from a programmer's viewpoint
- Read-write input and output
 - Too permissive in general
 - Special case: inputs must be restored at the end

Short product

Short product

Short product

- Low short product: product of truncated power series
- Useful in other algorithms
- Time complexity: M(n)
- Space complexity: O(n)

Middle product

Middle product

Middle product

- Useful for Newton iteration
 - $G \leftarrow G(1 GF) \mod X^{2n}$ with $GF = 1 + X^nH$
 - division, square root, . . .
- Time complexity: $M(n) \rightarrow$ Tellegen's transposition
- Space complexity: O(n)

6

Outline

Space-preserving reductions

In-place algorithms from out-of-place algorithms

Space-preserving reductions

Reductions

Definitions.

- TISP(t(n), s(n)): decidable in time t(n) and space s(n)
- $A \leq B$: A decidable with oracle B
 - constant number of calls to oracle
 - negligible extra time
 - without extra space (O(1))
- $A \equiv B$: $A \leq B$ and $B \leq A$

Reductions

Definitions.

- TISP(t(n), s(n)): decidable in time t(n) and space s(n)
- *A* < *B*: *A* decidable with oracle *B*
 - constant number of calls to oracle
 - negligible extra time
 - without extra space (O(1))
- $A \equiv B$: $A \leq B$ and $B \leq A$

Proposition.

If $B \in TISP(t(n), s(n))$ and $A \leq B$, then

$$A \in \mathsf{TISP}(O(t(n)), s(n) + O(1))$$

Results

Theorem.

Results

Theorem.

Remark.

- FP: $n \times n \rightarrow 2n-1$
- $SP_{lo}: n \times n \rightarrow n$; $SP_{hi}: n-1 \times n-1 \rightarrow n-1$;
- MP : $2n 1 \times n \rightarrow n$

Visual proof

• Use of fake padding (in input, **not** in output!)

Visual proof

- Use of fake padding (in input, not in output!)
- $SP_{lo}(n) \le MP(n)$; $SP_{hi}(n) \le MP(n-1)$

Visual proof

- Use of fake padding (in input, not in output!)
- $SP_{lo}(n) \leq MP(n)$; $SP_{hi}(n) \leq MP(n-1)$
- $\qquad \mathsf{FP}(n) \leq \mathsf{SP}_{\mathsf{hi}}(n) + \mathsf{SP}_{\mathsf{lo}}(n) \leq \mathsf{MP}(n) + \mathsf{MP}(n-1)$

Half-additive full product: $h \leftarrow h + f \cdot g$

Half-additive full product: $h \leftarrow h + f \cdot g$

Half-additive full product: $h \leftarrow h + f \cdot g$

Remark. $FP_{lo}^+ \equiv FP_{hi}^+$

Theorem. $FP^+ \equiv SP$

SP to FP⁺

SP to FP⁺

SP to FP⁺

SP to FP⁺

SP to FP⁺

$$\mathsf{FP}^+_{\mathsf{lo}}(\mathit{n}) \leq \mathsf{SP}_{\mathsf{lo}}(\mathit{n}) + \mathsf{SP}_{\mathsf{hi}}(\mathit{n}) + \mathit{n} - 1$$

FP+ to SP

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} (f_0 g_1 + f_1 g_0) \mod X^n$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$

$$\left(f_0 + X^{\lceil n/2 \rceil} f_1\right) \cdot \left(g_0 + X^{\lceil n/2 \rceil} g_1\right) = f_0 g_0 + X^{\lceil n/2 \rceil} \left(f_0 g_1 + f_1 g_0\right) \mod X^n$$

$$\mathsf{SP}_{\mathsf{lo}}(n) \leq \mathsf{FP}(\lfloor n/2 \rfloor) + \mathsf{FP}_{\mathsf{lo}}^+(\lfloor n/2 \rfloor) + \mathsf{FP}_{\mathsf{hi}}^+(\lceil n/2 \rceil)$$

Converse directions?

- From FP to SP:
 - problem with the output size
 - without space restriction: is $SP(n) \simeq FP(n/2)$?

Converse directions?

- From FP to SP:
 - problem with the output size
 - without space restriction: is $SP(n) \simeq FP(n/2)$?
- From FP to MP:
 - partial result: log(n) increase in time complexity
 - without space restriction: Tellegen's transposition principle

In-place algorithms from out-of-place algorithms

Framework

- In-place algorithms parametrized by out-of-place algorithm
 - Out-of-place: Uses *cn* extra space
 - ullet Constant c known in the algorithm

Framework

- In-place algorithms parametrized by out-of-place algorithm
 - Out-of-place: Uses *cn* extra space
 - Constant c known in the algorithm
- Goal:
 - Space complexity: *O*(1)
 - Time complexity: closest to the out-of-place algorithm

Framework

- In-place algorithms parametrized by out-of-place algorithm
 - Out-of-place: Uses *cn* extra space
 - Constant c known in the algorithm
- Goal:
 - Space complexity: *O*(1)
 - Time complexity: closest to the out-of-place algorithm
- Technique:
 - Oracle calls in smaller size
 - Recursive call

In-place FP⁺

In-place FP⁺

In-place FP+

In-place FP+

In-place FP⁺

In-place FP⁺

Analysis

Analysis

•
$$ck + 2k - 1 \le n - k \to k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

Analysis

•
$$ck + 2k - 1 \le n - k \to k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

$$T(n) \le (2c+7)M(n) + o(M(n))$$

- $k \le n/(c+2)$
- $T(n) = \lceil n/k \rceil M(k) + (\lceil n/k \rceil 1) M(k-1) + 2k(\lceil n/k \rceil 1) + T(n-k)$

- $k \le n/(c+2)$
- $T(n) = \lceil n/k \rceil M(k) + (\lceil n/k \rceil 1) M(k-1) + 2k(\lceil n/k \rceil 1) + T(n-k)$

$$T(n) \le (2c+5)\mathsf{M}(n) + o(\mathsf{M}(n))$$

- Only f's size decreases, not g!
- $T(n,m) = \lceil n/k \rceil M(k) + T(n,m-k)$

- Only f's size decreases, not g!
- $T(n,m) = \lceil n/k \rceil M(k) + T(n,m-k)$

$$T(n,m) \leq \mathsf{M}(n) \log_{1+1/c+1}(m) + o(\mathsf{M}(n) \log m)$$

Other operations

Work in progress!

Other operations

Work in progress!

- Use our in-place algorithms as building blocks
 - Newton iteration: division, square root, ...
 - Evaluation & interpolation
 - \rightarrow (at most) $\log(n)$ increase in complexity

Other operations

Work in progress!

- Use our in-place algorithms as building blocks
 - Newton iteration: division, square root, ...
 - Evaluation & interpolation
 - \rightarrow (at most) $\log(n)$ increase in complexity

Remark.

- In place: division with remainder
- Only quotient or only remainder: not clear
- Main difficulty: size of the output

Summary

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms. . .
- ... when they exist!

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms. . .
- ... when they exist!

Main open problems

- Remove the log(n) for middle product or prove a lower bound
 - Karatsuba's algorithm with read-write restorable inputs
- General result on Tellegen's transposition principle

- TISP-reductions between polynomial products
- Self-reductions to obtain in-place algorithms

Comparisons

- Better use specialized in-place algorithms. . .
- ... when they exist!

Main open problems

- Remove the log(n) for middle product or prove a lower bound
 - Karatsuba's algorithm with read-write restorable inputs
- General result on Tellegen's transposition principle

Thank you!