In-place polynomial arithmetic

```
Pascal Giorgi<sup>1</sup> Bruno Grenet<sup>1</sup> Daniel S. Roche<sup>2</sup> JNCF'20 – Luminy – March 2-6, 2020
```

¹ LIRMM, Université de Montpellier

² CS Department, US Naval Academy

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: $O(n^2)$

Karatsuba: $O(n^{\log_2 3}) = O(n^{1.585})$ Karatsuba (1962)

Toom-3: $O(n^{\log_3 5}) = O(n^{1.465})$ Toom (1963), Cook (1966)

FFT-based algorithms:

 $O(n \log n)$ with $\omega^{2n} = 1$

 $O(n \log n \log \log n)$

Cooley, Tukey (1965)

Cantor, Kaltofen (1991)

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: $O(n^2)$

Karatsuba: $O(n^{\log_2 3}) = O(n^{1.585})$ Karatsuba (1962)

Toom-3: $O(n^{\log_3 5}) = O(n^{1.465})$ Toom (1963), Cook (1966)

FFT-based algorithms:

 $O(n \log n)$ with $\omega^{2n} = 1$ Cooley, Tukey (1965) $O(n \log n \log \log n)$ Cantor, Kaltofen (1991)

. . .

Other polynomial and power series operations:

Short and middle products M(n) + O(n)

Inversion, divisions: O(M(n))

Evaluation & interpolation: $O(M(n) \log n)$

GCD: $O(M(n) \log n)$

. . .

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: $O(n^2)$

Karatsuba: $O(n^{\log_2 3}) = O(n^{1.585})$ Karatsuba (1962)

Toom-3: $O(n^{\log_3 5}) = O(n^{1.465})$ Toom (1963), Cook (1966)

FFT-based algorithms:

 $O(n \log n)$ with $\omega^{2n} = 1$ Cooley, Tukey (1965) $O(n \log n \log \log n)$ Cantor, Kaltofen (1991)

. . .

Other polynomial and power series operations:

Short and middle products M(n) + O(n)

Inversion, divisions: O(M(n))

Evaluation & interpolation: $O(M(n) \log n)$

GCD: $O(M(n) \log n)$

. . .

What about space complexity?

Algebraic-RAM Machine

- Standard registers of size $O(\log n)$
- Algebraic registers containing one ring element
- → Count extra registers used (not input nor output)

Algebraic-RAM Machine

- Standard registers of size $O(\log n)$
- Algebraic registers containing one ring element
- → Count *extra* registers used (not input nor output)

Read-write permissions

- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication

Algebraic-RAM Machine

- Standard registers of size $O(\log n)$
- Algebraic registers containing one ring element
- → Count *extra* registers used (not input nor output)

Read-write permissions

- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication
- Read-write input and output
 - Too permissive in general
 - Variant: inputs must be restored at the end

Algebraic-RAM Machine

- Standard registers of size O(log n)
- Algebraic registers containing one ring element
- → Count *extra* registers used (not input nor output)

Read-write permissions

- Read-only input / write-only output
 - (Close to) classical complexity theory
 - Lower bound $\Omega(n^2)$ on time \times space for multiplication
- Read-write input and output
 - Too permissive in general
 - Variant: inputs must be restored at the end
- ✓ Read-only input / read-write output
 - Reasonable from a programmer's viewpoint

	space	time
Naive algorithm:	O(1)	$O(n^2)$

	space	time
Naive algorithm:	O(1)	$O(n^2)$

Karatsuba's algorithm:

Original (1962)	O(n)	$< 6.5 n^{\log 3}$
Thomé (2002)	$n + O(\log n)$	$< 7n^{\log 3}$
Roche (2009)	$O(\log n)$	$< 10 n^{\log 3}$

Karatsuba's algorithm:

Original (1962) O(n) $< 6.5 n^{\log 3}$ Thomé (2002) $n + O(\log n)$ $< 7 n^{\log 3}$ Roche (2009) $O(\log n)$ $< 10 n^{\log 3}$

Toom-Cook algorithms:

Toom-3 (1963) O(n) $< \frac{73}{4} n^{\log_3 5}$

Space time O(1) $O(n^2)$

Karatsuba's algorithm:

Original (1962) O(n) $< 6.5 n^{\log 3}$ Thomé (2002) $n + O(\log n)$ $< 7 n^{\log 3}$ Roche (2009) $O(\log n)$ $< 10 n^{\log 3}$

Toom-Cook algorithms:

Toom-3 (1963) O(n) $< \frac{73}{4} n^{\log_3 5}$

FFT/TFT-based algorithms (given $\omega^{2n} = 1$):

Original (1965) O(n) $\sim 9n \log(2n)$ Roche (2009) if $n = 2^k$ O(1) $\sim 11n \log(2n)$ Harvey, Roche (2010) O(1) $O(n \log(n))$

	space	time
Naive algorithms:	O(1)	$O(n^2)$
(inversion, division,	multipoint evaluation,	interpolation)

space time O(1) $O(n^2)$

Naive algorithms: O(1) $O(n^2)$ (inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)

Power series inversion: 2n 2M(n)Power series division: 2.5n 2.5M(n)

Naive algorithms:

space time O(1) $O(n^2)$

(inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)

Power series inversion: 2n 2M(n)Power series division: 2.5n 2.5M(n)

Division with remainder: $\max(2.5m-n, 3n)$ 2.5M(m) + M(n)

(in size (m+n-1, n)) 4n 2M(m) + 2M(n)

space time O(1) $O(n^2)$

Naive algorithms: O(1) $O(n^2)$ (inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)

Power series inversion: 2n 2M(n)Power series division: 2.5n 2.5M(n)

Division with remainder: $\max(2.5m-n, 3n)$ 2.5M(m) + M(n)(in size (m+n-1, n)) 4n 2M(m) + 2M(n)

Evaluation & interpolation:

Bostan, Lecerf, Schost $n \log n$ $1.5M(n) \log n$ (eval) (2003) $n \log n$ 2.5M(n) log n (interp)

space time O(1) $O(n^2)$

(inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)

Power series inversion: 2n 2M(n)Power series division: 2.5n 2.5M(n)

Division with remainder: $\max(2.5m-n, 3n)$ 2.5M(m) + M(n)(in size (m+n-1, n)) 4n 2M(m) + 2M(n)

Evaluation & interpolation:

Naive algorithms:

 $1.5M(n) \log n$ Bostan, Lecerf, Schost $n \log n$ (eval) (2003) $n \log n$ $2.5M(n) \log n$ (interp) von zur Gathen, Shoup $3.5M(n) \log n$ n (eval) $5.5M(n) \log n$ 3n(1992)(interp)

space time O(1) $O(n^2)$

(inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)

Power series inversion: 2n 2M(n)Power series division: 2.5n 2.5M(n)

Division with remainder: $\max(2.5m-n,3n)$ 2.5M(m)+M(n)(in size (m+n-1,n)) 4n 2M(m)+2M(n)

Evaluation & interpolation:

Naive algorithms:

 $1.5M(n) \log n$ Bostan, Lecerf, Schost $n \log n$ (eval) (2003) $n \log n$ $2.5M(n) \log n$ (interp) von zur Gathen, Shoup $3.5M(n) \log n$ n (eval) $5.5M(n) \log n$ 3n(1992)(interp) Giorgi, Grenet, Roche (2020) 2n5 $M(n) \log n$ (interp)

- Polynomial multiplications
 - Karatsuba? Toom-Cook?
 - FFT/TFT without $\omega^{2n} = 1$?
 - Other products (short and middle)?

- Polynomial multiplications
 - Karatsuba? Toom-Cook?
 - FFT/TFT without $\omega^{2n} = 1$?
 - Other products (short and middle)?
- Other operations
 - Inversions and divisions
 - Evaluation & interpolation
 - GCD, . . .

- Polynomial multiplications
 - ✓ Karatsuba? Toom-Cook?
 - ✓ FFT/TFT without $\omega^{2n} = 1$?
 - ✓ Other products (short and middle)? (almost)
- Other operations
 - ✓ Inversions and divisions (almost)
 - ✓ Evaluation & interpolation
 - ? GCD, ...

Space-efficient polynomial products

Short product

Short product

Short product

Formal definition

- $SP_{lo}(f,g) = f \cdot g \mod X^n$
- $SP_{hi}(f,g) = f \cdot g \operatorname{div} X^n$

Example of use

Product of truncated power series

Middle product

Middle product

Middle product

Formal definition

$$MP(f,g) = (f \cdot g \operatorname{div} X^{n-1}) \operatorname{mod} X^n$$

Example of use

Newton iteration (division, square root, ...)

Example:

$$f = 3X^{2} + 2X + 1$$

$$g = X^{2} + 2X + 4$$

$$fg = 3X^{4} + 8X^{3} + 17X^{2} + 10X + 4$$

Example:

$$f = 3X^{2} + 2X + 1$$

$$g = X^{2} + 2X + 4$$

$$fg = 3X^{4} + 8X^{3} + 17X^{2} + 10X + 4$$

$$\begin{bmatrix} 1 & & & \\ 2 & 1 & & \\ 3 & 2 & 1 & \\ & 3 & 2 & \\ & & 3 & \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 17 \\ 8 \\ 3 \end{bmatrix}$$

Full product:

Full product:

Framework

Reduction from out-of-place algorithms to in-place algorithms

- Oblivious of the actual out-of-place algorithm
- Assumption: Out-of-place alg. uses cn extra space
- Constant c known to the in-place algorithm

Framework

Reduction from out-of-place algorithms to in-place algorithms

- Oblivious of the actual out-of-place algorithm
- Assumption: Out-of-place alg. uses cn extra space
- Constant c known to the in-place algorithm

Goal

- Space complexity: O(1)
- Time complexity: closest to the out-of-place algorithm

Framework

Reduction from out-of-place algorithms to in-place algorithms

- Oblivious of the actual out-of-place algorithm
- Assumption: Out-of-place alg. uses cn extra space
- Constant c known to the in-place algorithm

Goal

- Space complexity: O(1)
- Time complexity: closest to the out-of-place algorithm

Techniques

- Oracle calls in smaller size
- Fake padding of inputs
- Tail recursive call

(cf. strides in lin. alg.)

(avoid $O(\log n)$ stack)

Framework

Reduction from out-of-place algorithms to in-place algorithms

- Oblivious of the actual out-of-place algorithm
- Assumption: Out-of-place alg. uses cn extra space
- Constant c known to the in-place algorithm

Goal

- Space complexity: O(1)
- Time complexity: closest to the out-of-place algorithm

Techniques

- Oracle calls in smaller size
- Fake padding of inputs (cf. strides in lin. alg.)
- Tail recursive call (avoid $O(\log n)$ stack)

Similar approach for matrix mul.: Boyer, Dumas, Pernet, Zhou (2009)

Our results

Theorem

- In-place (half-additive) full product in time (2c + 7)M(n)
- In-place short product in time (2c + 5)M(n)
- In-place middle product in time $O(M(n) \log n)$

(or
$$O(M(n))$$
 if $M(n) = \Omega(n^{1+\delta})$)

Our results

Theorem

- In-place (half-additive) full product in time (2c + 7)M(n)
- In-place short product in time (2c + 5)M(n)
- In-place middle product in time $O(M(n) \log n)$

(or
$$O(M(n))$$
 if $M(n) = \Omega(n^{1+\delta})$)

Half-additive full product:

$$h \leftarrow h + f \cdot g$$
 where $\deg(h) < \deg(f), \deg(g)$

$$\times \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

$$+ = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

$$(f_0 + X^k \hat{f}) \cdot (g_0 + X^k \hat{g}) = f_0 g_0 + X^k (f_0 \hat{g} + \hat{f} g_0) + X^{2k} \hat{f} \hat{g}$$

•
$$ck + 2k - 1 \le n - k \implies k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

•
$$ck + 2k - 1 \le n - k \implies k \le \frac{n+1}{c+3}$$

$$T(n) = (2\lceil n/k \rceil - 1)(M(k) + 2k - 1) + T(n - k)$$

$$T(n) \le (2c+7)\mathsf{M}(n) + o(\mathsf{M}(n))$$

Newton iteration: inversion and

divisions

Lemma

If
$$G_k = F^{-1} \mod X^k$$
, $G_k + (1 - G_k F)G_k = F^{-1} \mod X^{2k}$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

then $G_{[0..2k]}$ contains $F^{-1} \mod X^{2k}$

 F^{-1}

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..2k[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..2k[},G_{[0..k[}),G_{[0..k[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$\textit{G}_{[k..k+\ell[} \leftarrow -\mathsf{SP}(\mathsf{MP}(\textit{F}_{[1..k+\ell[},\textit{G}_{[0..k[}),\textit{G}_{[0..\ell[})$$

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..k+\ell]} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..k+\ell]}, G_{[0..k[}), G_{[0..\ell[})$$

$$F^{-1}$$

- Compute less and less coefficients at each step
- Accelerating and decelerating phases

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..k+\ell]} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..k+\ell]},G_{[0..k[}),G_{[0..\ell[})$$

- Compute less and less coefficients at each step
- Accelerating and decelerating phases

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..k+\ell]} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..k+\ell]},G_{[0..k[}),G_{[0..\ell[})$$

- Compute less and less coefficients at each step
- Accelerating and decelerating phases

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..k+\ell[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..k+\ell[},G_{[0..k[}),G_{[0..\ell[})$$

- Compute less and less coefficients at each step
- Accelerating and decelerating phases

Lemma

Given $F^{-1} \mod X^k$ in $G_{[0..k[}$, after

$$G_{[k..k+\ell[} \leftarrow -\mathsf{SP}(\mathsf{MP}(F_{[1..k+\ell[},G_{[0..k[}),G_{[0..\ell[})$$

- Compute less and less coefficients at each step
- Accelerating and decelerating phases

Results

Theorem

- Given F at precision n, one can compute $F^{-1} \mod X^n$ in time $O(M(n) \log n)$ without extra space.
- Given F and G at precision n, one can compute $F/G \mod X^n$ in time $O(M(n) \log n)$ without extra space.

Results

Theorem

- Given F at precision n, one can compute $F^{-1} \mod X^n$ in time $O(M(n) \log n)$ without extra space.
- Given F and G at precision n, one can compute $F/G \mod X^n$ in time $O(M(n) \log n)$ without extra space.
- Given F and G at precision n, one can compute $F/G \mod X^n$ in time O(M(n)) without extra space if F can be erased.

Results

Theorem

- Given F at precision n, one can compute $F^{-1} \mod X^n$ in time $O(M(n) \log n)$ without extra space.
- Given F and G at precision n, one can compute $F/G \mod X^n$ in time $O(M(n) \log n)$ without extra space.
- Given F and G at precision n, one can compute $F/G \mod X^n$ in time O(M(n)) without extra space if F can be erased.

Update step (Generalized Karp-Markstein's trick):

$$Q_{[k..k+\ell]} \leftarrow \mathsf{SP}(G_{[0..\ell]}^{-1}, F_{[k..k+\ell]} - \mathsf{MP}(G_{[1..k+\ell]}, Q_{[0..k]}))$$

• Since $F_{[0..k[}$ not needed anymore, can serve as work space

Euclidean division

Theorem

Given size-(2n-1) polynomial A and size-n polynomial B, one can compute

- $(A \operatorname{div} B, A \operatorname{mod} B)$ in time $\simeq 6.29 \operatorname{M}(n)$ without extra space ¹
- A div B in time $O(M(m) \log m)$ without extra space

^{1.} 4M(n) without space restrictions

Euclidean division

Theorem

Given size-(2n-1) polynomial A and size-n polynomial B, one can compute

- $(A \operatorname{div} B, A \operatorname{mod} B)$ in time $\simeq 6.29 \operatorname{M}(n)$ without extra space 1
- $A \operatorname{div} B$ in time $O(M(m) \log m)$ without extra space

Remark

The best known algorithm for computing $A \mod B$ only, in-place, requires $O(n^2)$ operations

^{1.} 4M(n) without space restrictions

Multipoint evaluation and

interpolation

Multipoint evaluation

Evaluate a size-n polynomial F on (a_1, \ldots, a_n)

Classical algorithm computes the subproduct tree: size n log n

18/22

Multipoint evaluation

Evaluate a size-n polynomial F on (a_1, \ldots, a_n)

- Classical algorithm computes the subproduct tree: size n log n
- von zur Gathen, Shoup (1992):
 - evaluate by groups of $\binom{n}{\log n}$ points
 - space: $O((n/\log n)\log(n/\log n)) = O(n)$
 - time: $O(\log n \times M(n/\log n) \log(n/\log n)) = O(M(n) \log n)$

Multipoint evaluation

Evaluate a size-n polynomial F on (a_1, \ldots, a_n)

- Classical algorithm computes the subproduct tree: size n log n
- von zur Gathen, Shoup (1992):
 - evaluate by groups of $\binom{n}{\log n}$ points
 - space: $O((n/\log n)\log(n/\log n)) = O(n)$
 - time: $O(\log n \times M(n/\log n)\log(n/\log n)) = O(M(n)\log n)$
- Our technique:
 - evaluate by smaller and smaller groups of points
 - space complexity O(1) using free output space as work space
 - Still time $O(M(n) \log n)$

Interpolation

Given $(a_1, y_1), \ldots, (a_n, y_n)$, compute a size-n poly. F s.t. $F(a_i) = y_i$

- Classical algorithm
 - Compute $M = \prod_i (X a_i)$ and its derivative M'
 - Compute $F/M = \sum_{i} \frac{y_i}{M'(a_i)} \frac{1}{X a_i}$ using a D&C alg.
 - Time $O(M(n) \log n)$; space $n \log n$ for the evaluation of $M'(a_i)$

Interpolation

- Classical algorithm
 - Compute $M = \prod_i (X a_i)$ and its derivative M'
 - Compute $F/M = \sum_{i} \frac{y_i}{M'(a_i)} \frac{1}{X a_i}$ using a D&C alg.
 - Time $O(M(n) \log n)$; space $n \log n$ for the evaluation of $M'(a_i)$
- Using space-O(n) evaluation: O(n) space with time $O(M(n) \log n)$

Interpolation

- Classical algorithm
 - Compute $M = \prod_i (X a_i)$ and its derivative M'
 - Compute $F/M = \sum_{i} \frac{y_i}{M'(a_i)} \frac{1}{X a_i}$ using a D&C alg.
 - Time $O(M(n) \log n)$; space $n \log n$ for the evaluation of $M'(a_i)$
- Using space-O(n) evaluation: O(n) space with time $O(M(n) \log n)$
- Using space-O(1) evaluation: still O(n) space. . .

Given $(a_1, y_1), \ldots, (a_n, y_n)$, compute a size-n poly. F s.t. $F(a_i) = y_i$

Given $(a_1, y_1), \ldots, (a_n, y_n)$, compute a size-n poly. F s.t. $F(a_i) = y_i$

$$F(X) = M(X) \sum_{j=1}^{n} \frac{y_j}{M'(a_j)} \frac{1}{(X - a_j)}$$

Given $(a_1, y_1), \ldots, (a_n, y_n)$, compute a size-n poly. F s.t. $F(a_i) = y_i$

$$F(X) = M(X) \sum_{j=1}^{n} \frac{y_j}{M'(a_j)} \frac{1}{(X - a_j)}$$
$$= M(X) \sum_{i=1}^{n/k} \sum_{j=1+k(i-1)}^{ki} \frac{y_j}{M'(a_j)} \frac{1}{(X - a_j)}$$

Given $(a_1, y_1), \ldots, (a_n, y_n)$, compute a size-n poly. F s.t. $F(a_i) = y_i$

$$F(X) = M(X) \sum_{j=1}^{n} \frac{y_j}{M'(a_j)} \frac{1}{(X - a_j)}$$

$$= M(X) \sum_{i=1}^{n/k} \sum_{j=1+k(i-1)}^{ki} \frac{y_j}{M'(a_j)} \frac{1}{(X - a_j)}$$

$$= M(X) \sum_{i=1}^{n/k} \frac{N_i(X)}{T_i(X)} = \sum_{i=1}^{n/k} N_i(X) S_i(X)$$
where $T_i = \prod_{j=1+k(i-1)}^{ki} (X - a_j)$ and $S_i = \frac{M}{T_i}$

Given
$$(a_1, y_1), \ldots, (a_n, y_n)$$
, compute a size- n poly. F s.t. $F(a_i) = y_i$

$$F \mod X^k = \sum_{i=1}^{n/k} N_i(S_i \mod X^k) \mod X^k$$
 where $S_i = M/T_i$

Given
$$(a_1, y_1), \ldots, (a_n, y_n)$$
, compute a size- n poly. F s.t. $F(a_i) = y_i$

$$F \mod X^k = \sum_{i=1}^{n/k} N_i(S_i \mod X^k) \mod X^k$$
 where $S_i = M/T_i$

- Compute each N_i using interpolation
- Compute each *T_i* using a D&C approach
- Deduce each $S_i \mod X^k = \prod_{j \neq i} T_j \mod X^k$

- 1. Given k, compute $F \mod X^k$ using O(k) space
- 2. Given k, $F \mod X^{\ell}$, compute $F \mod X^{\ell+k}$ using O(k) space

Given
$$(a_1, y_1), \ldots, (a_n, y_n)$$
, compute a size- n poly. F s.t. $F(a_i) = y_i$

- 1. Given k, compute $F \mod X^k$ using O(k) space
- 2. Given k, $F \mod X^{\ell}$, compute $F \mod X^{\ell+k}$ using O(k) space
 - Interpolate $(F \operatorname{div} X^{\ell}) \operatorname{mod} X^{k}$

$$y_i \rightsquigarrow \frac{y_i - (F \mod X^k)(a_i)}{a_i^\ell}$$

Use of multipoint evaluation

- 1. Given k, compute $F \mod X^k$ using O(k) space
- 2. Given k, $F \mod X^{\ell}$, compute $F \mod X^{\ell+k}$ using O(k) space
- 3. Compute smaller and smaller chunks of F

Given
$$(a_1, y_1), \ldots, (a_n, y_n)$$
, compute a size- n poly. F s.t. $F(a_i) = y_i$

- 1. Given k, compute $F \mod X^k$ using O(k) space
- 2. Given k, $F \mod X^{\ell}$, compute $F \mod X^{\ell+k}$ using O(k) space
- 3. Compute smaller and smaller chunks of F

Theorem

Multipoint evaluation and interpolation can be computed in time $O(M(n) \log n)$ without extra space

Summary of the results

	space	time
Polynomial multiplication		
Full product	O(1)	(2c+7)M(n)
Short product	O(1)	(2c+5)M(n))
Middle product	<i>O</i> (1)	$M(n)\log_{\frac{c+2}{c+1}}(n)^*$
Inversion and divisions:		
Power series inversion:	O(1)	$3.81M(n)\log(n)$
Power series division:	O(1)	$4.50M(n)\log(n)$
Division with remainder:	O(1)	6.29M(<i>n</i>)
Evaluation & interpolation	1:	
Evaluation	O(1)	$11.61M(n)\log n$
Interpolation	O(1)	$105M(n)\log n$

time

 $^{\star}O(M(n))$ if $M(n) = \Omega(n^{1+\delta})$

- Fine analysis of space-time complexities of polynomial arith.
- In-place algorithms with (often) same asymptotic complexity for
 - Polynomial products (full, middle, short)
 - Power series inversion & division, Euclidean division
 - Multipoint evaluation, interpolation

- Fine analysis of space-time complexities of polynomial arith.
- In-place algorithms with (often) same asymptotic complexity for
 - Polynomial products (full, middle, short)
 - Power series inversion & division, Euclidean division
 - Multipoint evaluation, interpolation
- Space-aware reductions between polynomial products
 - Different situation than without space restriction
 - Questions related to the transposition principle

- Fine analysis of space-time complexities of polynomial arith.
- In-place algorithms with (often) same asymptotic complexity for
 - Polynomial products (full, middle, short)
 - Power series inversion & division, Euclidean division
 - Multipoint evaluation, interpolation
- Space-aware reductions between polynomial products
 - Different situation than without space restriction
 - Questions related to the transposition principle

Main open problems

- Remove log(n) factor for the middle product & inversion
- Other operations (GCD, ...); general characterization
- Case of integer arithmetic
- Practical issues

- Fine analysis of space-time complexities of polynomial arith.
- In-place algorithms with (often) same asymptotic complexity for
 - Polynomial products (full, middle, short)
 - Power series inversion & division, Euclidean division
 - Multipoint evaluation, interpolation
- Space-aware reductions between polynomial products
 - Different situation than without space restriction
 - Questions related to the transposition principle

Main open problems

- Remove log(n) factor for the middle product & inversion
- Other operations (GCD, ...); general characterization
- Case of integer arithmetic
- Practical issues