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Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba:  O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°&:5) = O(nt-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)
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Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba:  O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°&:5) = O(nt-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

Other polynomial and power series operations:
Short and middle products ~ M(n) + O(n)
Inversion, divisions: O(M(n))

Evaluation & interpolation: ~ O(M(n) log n)
GCD: O(M(n) log n)

What about space complexity?
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Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)
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Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

v' = Read-only input / read-write output
= Reasonable from a programmer’s viewpoint
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Space complexity of multiplication algorithms

space time
Naive algorithm: o(1) 0O(n?)
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Space complexity of multiplication algorithms

Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

space

o(1)

O(n)
n+ O(log n)
O(log n)

time

o(n?)

< 6.5n'°83
< Tnlog3
< 10n'83
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Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

Toom-Cook algorithms:

Toom-3 (1963)

space

o(1)
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n+ O(log n)
O(log n)

time
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Space complexity of multiplication algorithms

space
Naive algorithm: 0(1)
Karatsuba’s algorithm:

Original (1962) O(n)

Thomé (2002) n+ O(log n)

Roche (2009) O(log n)
Toom-Cook algorithms:

Toom-3 (1963) O(n)
FFT/TFT-based algorithms (given w?" = 1):

Original (1965) O(n)

Roche (2009) if n = 2% 0(1)

Harvey, Roche (2010) 0(1)

time

o(n?)

< 6.5n'°83
< Tnlog3
< 10n'83

< 7473 nlog3 5

~ 9nlog(2n)
~ 11nlog(2n)

O(nlog(n))
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Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
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Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)
Division with remainder: max(2.5m-n,3n)  2.5M(m) + M(n)
(in size (m+n—1,n)) 4n 2M(m) + 2M(n)

Evaluation & interpolation:

Bostan, Lecerf, Schost nlogn 1.5M(n)logn  (eval)
(2003) nlogn 2.5M(n)logn (interp)

von zur Gathen, Shoup n 3.5M(n)logn  (eval)
(1992) 3n 5. 5M(n) logn (interp)

Giorgi, Grenet, Roche (2020) 2n M(n)logn  (interp)
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Our problematic

Arithmetic on polynomials without extra memory?
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Our problematic

Arithmetic on polynomials without extra memory?
= Polynomial multiplications
v' = Karatsuba? Toom-Cook?
v = FFT/TFT without w?" = 17
v = Other products (short and middle)? (almost)

= Other operations
v = Inversions and divisions (almost)
v' = Evaluation & interpolation
7 = GCD,...
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Space-efficient polynomial products



Short product
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Short product
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Short product

Formal definition
= SP,(f,g) ="f-g mod X"
= SPhi(f,g) =1 gdivX”

Example of use
Product of truncated power series
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Middle product
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Middle product
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Middle product

Formal definition
MP(f,g) = (f - gdivX""1) mod X"

Example of use
Newton iteration (division, square root, . ..)
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Multiplications as linear maps

Example:
f=3X24+2X+1

g=X>+2X+4
fg =3X* 4+ 8X3 +17X? + 10X + 4
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Multiplications as linear maps

Example:

f=3X2+2X+1
g=X>+2X+4
fg =3X* 4+ 8X3 +17X? + 10X + 4

1 4
2 1 4] |10
3 2 1| [2| = |17
3 1 8
L 3_ _3_
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Multiplications as linear maps

Full product:

X = 2n—1

10/22



Multiplications as linear maps

Full product:
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Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm
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Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

Techniques
= Oracle calls in smaller size
= Fake padding of inputs (cf. strides in lin. alg.)
= Tail recursive call (avoid O(log n) stack)

Similar approach for matrix mul.: Boyer, Dumas, Pernet, Zhou (2009)
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Our results

Theorem
= In-place (half-additive) full product in time (2¢c + 7)M(n)

= In-place short product in time (2¢ + 5)M(n)

= In-place middle product in time O(M(n)log n)
(or O(M(n)) if M(n) = Q(n*?))
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Our results

Theorem
= In-place (half-additive) full product in time (2¢c + 7)M(n)

= In-place short product in time (2¢c + 5)M(n)
= In-place middle product in time O(M(n)log n)
(or O(M(n)) if M(n) = Q(n**+?))
Half-additive full product:

h <+ h+f - g where deg(h) < deg(f),deg(g)

SEEEREEE
x 000000
+= (O 00000eD
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In-place FP* from out-of-place FP




In-place FP* from out-of-place FP

(o + X*F) - (g0 + X&) = fogo + X (fo& + Fao) + X* &
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In-place FP* from out-of-place FP

k
[n/k]

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Feo) + X**F



In-place FP* from out-of-place FP

k

[n/k]
[n/k] -1

(o + X¥F) - (g0 + X &) = fogo + X (fog + Fgo) + X*F&



In-place FP* from out-of-place FP

k

[n/k]

[l =1 n—k—1

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Fgo) + X**F2



In-place FP* from out-of-place FP

k
[n/k]
[n/k] -1 n—k—1
X —
no n—k

1
= ck+2k—1<n—k = k<2

= T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)
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In-place FP* from out-of-place FP

k
[n/k]
[n/k] -1 n—k—1
X —
no n—k

1
= ck+2k—1<n—k = k<2

= T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

T(n) < (2¢ + 7)M(n) 4+ o(M(n))
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Newton iteration: inversion and
divisions




Standard Newton iteration for inversion

Lemma
If Gx = F~1 mod Xk, G, + (1 - GF)Gy = F~1 mod X2k
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Lemma
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Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[ <= —SP(MP(F1..24(; Gjo..[)» Go..x[)

then Gpg. 24 contains F~1 mod X2k

—
. I
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In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k
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In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..k o) < —SP(MP(Fp1_rt 11 Gpo..kD)> Go..cp)
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| | F

| | | F~

= Compute less and less coefficients at each step
= Accelerating and decelerating phases
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Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)
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Theorem
= Given F at precision n, one can compute F~1 mod X" in time
O(M(n)log n) without extra space.
= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n) log n) without extra space.
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Theorem

= Given F at precision n, one can compute F~1 mod X" in time
O(M(n)log n) without extra space.

= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n) log n) without extra space.

= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n)) without extra space if F can be erased.

Update step (Generalized Karp-Markstein's trick):

Qpi ket <= SP(Gigyps Fire ko = MP(G_ky41; Qpo..k))

= Since Fg_x[ not needed anymore, can serve as work space
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Euclidean division

Theorem
Given size-(2n — 1) polynomial A and size-n polynomial B, one can

compute

= (AdivB, A mod B) in time ~ 6.29M(n) without extra space?!
= Adiv B in time O(M(m)log m) without extra space

1. 4M(n) without space restrictions
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Euclidean division

Theorem
Given size-(2n — 1) polynomial A and size-n polynomial B, one can

compute

= (AdivB, A mod B) in time ~ 6.29M(n) without extra space?!
= Adiv B in time O(M(m)log m) without extra space

Remark
The best known algorithm for computing A mod B only, in-place,

requires O(n?) operations

1. 4M(n) without space restrictions

17/22



Multipoint evaluation and
interpolation




Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)

= Classical algorithm computes the subproduct tree: size

[ ML (x-a) |
| mhx-a) | [Tz (X — 2) |
[~ \
[ (X-a)(X—a) | (X = 20-1)(X — an)|

/N
) )
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Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)

= Classical algorithm computes the subproduct tree: size nlogn
= von zur Gathen, Shoup (1992):
= evaluate by groups of ("/logn) points

= space: O(("/1ogn) log("/10gn)) = O(n)
= time: O(log n x M("/1ogn) log("/10gn)) = O(M(n) log n)
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Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)
= Classical algorithm computes the subproduct tree: size nlogn

= von zur Gathen, Shoup (1992):
= evaluate by groups of ("/logn) points
= space: O(("/1ogn) log("/10gn)) = O(n)
= time: O(log n x M("/10gn) log("/10gn)) = O(M(n) log n)

= Our technique:
= evaluate by smaller and smaller groups of points

= space complexity O(1) using free output space as work space
= Still time O(M(n) log n)
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Interpolation

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) =y

= Classical algorithm
= Compute M = [[.(X — a;) and its derivative M’
= Compute F/M=5", %ﬁ using a D&C alg.
= Time O(M(n)log n); space nlog n for the evaluation of M’(a;)
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Interpolation

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) =y

= Classical algorithm
= Compute M = [[.(X — a;) and its derivative M’
= Compute F/M=5", %ﬁ using a D&C alg.
= Time O(M(n)log n); space nlog n for the evaluation of M’(a;)

= Using space-O(n) evaluation: O(n) space with time
O(M(n) log n)

= Using space-O(1) evaluation: still O(n) space. ..
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Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space
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Our approach

Given (a1,¥1), ..., (an, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

FOX) = M(X) S 2 !
(O =M 2 i) o — 2
M(X) Z/é i Y; 1
- i=1 j=1+k(i—1) M'(aj) (X — aj)
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Our approach

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

n yj 1
( ),; M'(a)) (X = a))
n/k ki v "
= M(X) {
;j—l§i—1) M'(a;) (X — a))
n/k n/k
_ Ni(X)
- M(X); T ; N;(X)Si(X)
ki y
j=1+k(i—1) i
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Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space
n/k
F mod Xk = Z N;(S; mod Xk) mod XX where §; = M/T;
i=1
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Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space
n/k
F mod Xk = Z N;(S; mod Xk) mod XX where §; = M/T;
i=1
= Compute each N; using interpolation

= Compute each T; using a D&C approach

= Deduce each S; mod X* =[], Tj mod X*
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Our approach
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Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space

2. Given k, F mod X*, compute F mod X‘** using O(k) space

= Interpolate (F div X*) mod X*

yi — (F mod X¥)(a;)
Vi~ 1

Ch

= Use of multipoint evaluation

20/22



Our approach
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Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space
2. Given k, F mod X*, compute F mod X‘** using O(k) space
3. Compute smaller and smaller chunks of F

Theorem
Multipoint evaluation and interpolation can be computed in time

O(M(n) log n) without extra space
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Summary of the results

Polynomial multiplication
Full product
Short product
Middle product

Inversion and divisions:
Power series inversion:
Power series division:
Division with remainder:

Evaluation & interpolation:
Evaluation
Interpolation

*O(M(n)) if M(n) = Q(n'+9)

space

time

(2¢ + 7)M(n)
(2¢ + 5)M(n))
M(n) log..2 (n)*

3.81M(n) log(n)*
4.50M(n) log(n)*
6.29M(n)

11.61M(n)logn
105M(n) log n
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Conclusion

= Fine analysis of space-time complexities of polynomial arith.

= In-place algorithms with (often) same asymptotic complexity for
= Polynomial products (full, middle, short)
= Power series inversion & division, Euclidean division
= Multipoint evaluation, interpolation
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