In-place polynomial arithmetic

Pascal Giorgi' Bruno Grenet! Daniel S. Roche?

JNCF'20 — Luminy — March 2-6, 2020

1 LIRMM, Université de Montpellier
2 CS Department, US Naval Academy

1/22

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°&:5) = O(nt-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

2/22

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°&:5) = O(nt-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

Other polynomial and power series operations:
Short and middle products ~ M(n) 4+ O(n)

Inversion, divisions: O(M(n))
Evaluation & interpolation: ~ O(M(n) log n)
GCD: O(M(n) log n)

2/22

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°&:5) = O(nt-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

Other polynomial and power series operations:
Short and middle products ~ M(n) + O(n)
Inversion, divisions: O(M(n))

Evaluation & interpolation: ~ O(M(n) log n)
GCD: O(M(n) log n)

What about space complexity?
2/22

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)

3/22

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

3/22

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

3/22

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one ring element

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

v' = Read-only input / read-write output
= Reasonable from a programmer’s viewpoint
3/22

Space complexity of multiplication algorithms

space time
Naive algorithm: o(1) 0O(n?)

4/22

Space complexity of multiplication algorithms

Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

space

o(1)

O(n)
n+ O(log n)
O(log n)

time

o(n?)

< 6.5n'°83
< Tnlog3
< 10n'83

4/22

Space complexity of multiplication algorithms

Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

Toom-Cook algorithms:

Toom-3 (1963)

space

o(1)

O(n)
n+ O(log n)
O(log n)

time

0O(n?)

< 6.5n'°83
< Tnlog3
< 10n'83

< 7473 nlogs 5

4/22

Space complexity of multiplication algorithms

space
Naive algorithm: 0(1)
Karatsuba’s algorithm:

Original (1962) O(n)

Thomé (2002) n+ O(log n)

Roche (2009) O(log n)
Toom-Cook algorithms:

Toom-3 (1963) O(n)
FFT/TFT-based algorithms (given w?" = 1):

Original (1965) O(n)

Roche (2009) if n = 2% 0(1)

Harvey, Roche (2010) 0(1)

time

o(n?)

< 6.5n'°83
< Tnlog3
< 10n'83

< 7473 nlog3 5

~ 9nlog(2n)
~ 11nlog(2n)

O(nlog(n))

4/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)

5/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)

Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)

5/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)
Division with remainder: max(2.5m-n,3n) 2.5M(m) + M(n)
(in size (m+n—1,n)) 4n 2M(m) + 2M(n)

5/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)
Division with remainder: max(2.5m-n,3n) 2.5M(m) + M(n)
(in size (m+n—1,n)) 4n 2M(m) + 2M(n)

Evaluation & interpolation:
Bostan, Lecerf, Schost nlogn 1.5M(n)logn (eval)
(2003) nlogn 2.5M(n)logn (interp)

5/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)
Division with remainder: max(2.5m-n,3n) 2.5M(m) + M(n)
(in size (m+n—1,n)) 4n 2M(m) + 2M(n)
Evaluation & interpolation:
Bostan, Lecerf, Schost nlogn 1.5M(n)logn (eval)
(2003) nlogn 2.5M(n)logn (interp)
von zur Gathen, Shoup n 3.5M(n)logn (eval)
(1992) 3n 5.5M(n)logn (interp)

5/22

Space complexity analyses for other operations

space time
Naive algorithms: 0(1) 0O(n?)
(inversion, division, multipoint evaluation, interpolation)
Inversion and divisions: Hanrot, Quercia, Zimmermann (2004)
Power series inversion: 2n 2M(n)
Power series division: 2.5n 2.5M(n)
Division with remainder: max(2.5m-n,3n) 2.5M(m) + M(n)
(in size (m+n—1,n)) 4n 2M(m) + 2M(n)

Evaluation & interpolation:

Bostan, Lecerf, Schost nlogn 1.5M(n)logn (eval)
(2003) nlogn 2.5M(n)logn (interp)

von zur Gathen, Shoup n 3.5M(n)logn (eval)
(1992) 3n 5. 5M(n) logn (interp)

Giorgi, Grenet, Roche (2020) 2n M(n)logn (interp)

5/22

Our problematic

Arithmetic on polynomials without extra memory?

6/22

Our problematic

Arithmetic on polynomials without extra memory?

= Polynomial multiplications
= Karatsuba? Toom-Cook?
= FFT/TFT without w?" = 17
= Other products (short and middle)?

6/22

Our problematic

Arithmetic on polynomials without extra memory?
= Polynomial multiplications
= Karatsuba? Toom-Cook?
= FFT/TFT without w?" = 17
= Other products (short and middle)?

= Other operations
= Inversions and divisions

= Evaluation & interpolation
= GCD, ...

6/22

Our problematic

Arithmetic on polynomials without extra memory?
= Polynomial multiplications
v' = Karatsuba? Toom-Cook?
v = FFT/TFT without w?" = 17
v = Other products (short and middle)? (almost)

= Other operations
v = Inversions and divisions (almost)
v' = Evaluation & interpolation
7 = GCD,...

6/22

Space-efficient polynomial products

Short product

7/22

Short product

7/22

Short product

Formal definition
= SP,(f,g) ="f-g mod X"
= SPhi(f,g) =1 gdivX”

Example of use
Product of truncated power series

7/22

Middle product

8/22

Middle product

8/22

Middle product

Formal definition
MP(f,g) = (f - gdivX""1) mod X"

Example of use
Newton iteration (division, square root, . ..)

8/22

Multiplications as linear maps

Example:
f=3X24+2X+1

g=X>+2X+4
fg =3X* 4+ 8X3 +17X? + 10X + 4

9/22

Multiplications as linear maps

Example:

f=3X2+2X+1
g=X>+2X+4
fg =3X* 4+ 8X3 +17X? + 10X + 4

1 4
2 1 4] |10
3 2 1| [2| = |17
3 1 8
L 3_ _3_

9/22

Multiplications as linear maps

Full product:

X = 2n—1

10/22

Multiplications as linear maps

Full product:

10/22

Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

11/22

Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

11/22

Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

Techniques
= Oracle calls in smaller size
= Fake padding of inputs (cf. strides in lin. alg.)
= Tail recursive call (avoid O(log n) stack)

11/22

Framework

Reduction from out-of-place algorithms to in-place algorithms
= Oblivious of the actual out-of-place algorithm
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

Techniques
= Oracle calls in smaller size
= Fake padding of inputs (cf. strides in lin. alg.)
= Tail recursive call (avoid O(log n) stack)

Similar approach for matrix mul.: Boyer, Dumas, Pernet, Zhou (2009)

11/22

Our results

Theorem
= In-place (half-additive) full product in time (2¢c + 7)M(n)

= In-place short product in time (2¢ + 5)M(n)

= In-place middle product in time O(M(n)log n)
(or O(M(n)) if M(n) = Q(n*?))

12/22

Our results

Theorem
= In-place (half-additive) full product in time (2¢c + 7)M(n)

= In-place short product in time (2¢c + 5)M(n)
= In-place middle product in time O(M(n)log n)
(or O(M(n)) if M(n) = Q(n**+?))
Half-additive full product:

h <+ h+f - g where deg(h) < deg(f),deg(g)

SEEEREEE
x 000000
+= (O 00000eD

12/22

In-place FP* from out-of-place FP

In-place FP* from out-of-place FP

(o + X*F) - (g0 + X&) = fogo + X (fo& + Fao) + X* &

In-place FP* from out-of-place FP

x = 2k — 1

ck

(o + X*F) - (g0 + X&) = fogo + X (fo& + Feo) + X* &

In-place FP* from out-of-place FP

(o + X*F) - (g0 + X&) = fogo + X (fo& + Feo) + X* &

In-place FP* from out-of-place FP

k
[n/k]

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Feo) + X**F

In-place FP* from out-of-place FP

k

[n/k]
[n/k] -1

(o + X¥F) - (g0 + X &) = fogo + X (fog + Fgo) + X*F&

In-place FP* from out-of-place FP

k

[n/k]

[l =1 n—k—1

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Fgo) + X**F2

In-place FP* from out-of-place FP

k
[n/k]
[n/k] -1 n—k—1
X —
no n—k

1
= ck+2k—1<n—k = k<2

= T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

13/22

In-place FP* from out-of-place FP

k
[n/k]
[n/k] -1 n—k—1
X —
no n—k

1
= ck+2k—1<n—k = k<2

= T(n) = (2[n/k] — 1)(M(k) + 2k — 1) + T(n — k)

T(n) < (2¢ + 7)M(n) 4+ o(M(n))
13/22

Newton iteration: inversion and
divisions

Standard Newton iteration for inversion

Lemma
If Gx = F~1 mod Xk, G, + (1 - GF)Gy = F~1 mod X2k

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[<= —SP(MP(F1.24[> Glo..x(): Glo..x[)

then Gpg. 24 contains F~1 mod X2k

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[< —SP(MP(Fp1..24[» Glo..[)» Glo..k[)

then Gpg. 24 contains F~1 mod X2k

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[<= —SP(MP(F1..24(; Gjo..[)» Go..x[)

then Gpg. 24 contains F~1 mod X2k

| I | F
[1 | | F

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[<= —SP(MP(F1..24(; Gjo..[)» Go..x[)

then Gpg. 24 contains F~1 mod X2k

| I | F
[1 B

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[<= —SP(MP(F1..24(; Gjo..[)» Go..x[)

then Gpg. 24 contains F~1 mod X2k

[D | F
L] | | F

14/22

Standard Newton iteration for inversion

Lemma
Given F~1 mod XX in Gio..[, after

Gik..2k[<= —SP(MP(F1..24(; Gjo..[)» Go..x[)

then Gpg. 24 contains F~1 mod X2k

—
. I

14/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k

15/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..k o) < —SP(MP(Fp1_rt 11 Gpo..kD)> Go..cp)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k

| | F

| | | F~

= Compute less and less coefficients at each step
= Accelerating and decelerating phases

15/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k
| N | F
[] | | F

= Compute less and less coefficients at each step

= Accelerating and decelerating phases

15/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k
| N | F
T | F

= Compute less and less coefficients at each step

= Accelerating and decelerating phases

15/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k
| I | ~
[] | | F

= Compute less and less coefficients at each step

= Accelerating and decelerating phases

15/22

In-place algorithm

Lemma
Given F~1 mod XX in Gio..[, after

Gik..c+e < —SP(MP(F1..k15 Go..k[)> Gpo..p)

then Gpg_ ;¢ contains F~1 mod X“*' where ¢ < k
| I | ~
[] [] | F

= Compute less and less coefficients at each step

= Accelerating and decelerating phases

15/22

Theorem
= Given F at precision n, one can compute F~1 mod X" in time
O(M(n)log n) without extra space.
= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n) log n) without extra space.

16/22

Theorem
= Given F at precision n, one can compute F~1 mod X" in time
O(M(n)log n) without extra space.
= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n) log n) without extra space.

= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n)) without extra space if F can be erased.

16/22

Theorem

= Given F at precision n, one can compute F~1 mod X" in time
O(M(n)log n) without extra space.

= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n) log n) without extra space.

= Given F and G at precision n, one can compute F/G mod X"
in time O(M(n)) without extra space if F can be erased.

Update step (Generalized Karp-Markstein's trick):

Qpi ket <= SP(Gigyps Fire ko = MP(G_ky41; Qpo..k))

= Since Fg_x[not needed anymore, can serve as work space

16/22

Euclidean division

Theorem
Given size-(2n — 1) polynomial A and size-n polynomial B, one can

compute

= (AdivB, A mod B) in time ~ 6.29M(n) without extra space?!
= Adiv B in time O(M(m)log m) without extra space

1. 4M(n) without space restrictions

17/22

Euclidean division

Theorem
Given size-(2n — 1) polynomial A and size-n polynomial B, one can

compute

= (AdivB, A mod B) in time ~ 6.29M(n) without extra space?!
= Adiv B in time O(M(m)log m) without extra space

Remark
The best known algorithm for computing A mod B only, in-place,

requires O(n?) operations

1. 4M(n) without space restrictions

17/22

Multipoint evaluation and
interpolation

Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)

= Classical algorithm computes the subproduct tree: size

[ML (x-a) |
| mhx-a) | [Tz (X — 2) |
[~ \
[(X-a)(X—a) | (X = 20-1)(X — an)|

/N
))

18/22

Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)

= Classical algorithm computes the subproduct tree: size nlogn
= von zur Gathen, Shoup (1992):
= evaluate by groups of ("/logn) points

= space: O(("/1ogn) log("/10gn)) = O(n)
= time: O(log n x M("/1ogn) log("/10gn)) = O(M(n) log n)

18/22

Multipoint evaluation

Evaluate a size-n polynomial F on (ay,...,ap)
= Classical algorithm computes the subproduct tree: size nlogn

= von zur Gathen, Shoup (1992):
= evaluate by groups of ("/logn) points
= space: O(("/1ogn) log("/10gn)) = O(n)
= time: O(log n x M("/10gn) log("/10gn)) = O(M(n) log n)

= Our technique:
= evaluate by smaller and smaller groups of points

= space complexity O(1) using free output space as work space
= Still time O(M(n) log n)

18/22

Interpolation

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) =y

= Classical algorithm
= Compute M = [[.(X — a;) and its derivative M’
= Compute F/M=5", %ﬁ using a D&C alg.
= Time O(M(n)log n); space nlog n for the evaluation of M’(a;)

19/22

Interpolation

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) =y

= Classical algorithm
= Compute M = [[.(X — a;) and its derivative M’
= Compute F/M=5", %ﬁ using a D&C alg.
= Time O(M(n)log n); space nlog n for the evaluation of M’(a;)

= Using space-O(n) evaluation: O(n) space with time
O(M(n) log n)

19/22

Interpolation

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) =y

= Classical algorithm
= Compute M = [[.(X — a;) and its derivative M’
= Compute F/M=5", %ﬁ using a D&C alg.
= Time O(M(n)log n); space nlog n for the evaluation of M’(a;)

= Using space-O(n) evaluation: O(n) space with time
O(M(n) log n)

= Using space-O(1) evaluation: still O(n) space. ..

19/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

F(X)=M(X) Y M}’(fa') (Xia)
j=1 J J

20/22

Our approach

Given (a1,¥1), ..., (an, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

FOX) = M(X) S 2 !
(O =M 2 i) o — 2
M(X) Z/é i Y; 1
- i=1 j=1+k(i—1) M'(aj) (X — aj)

20/22

Our approach

Given (a1,y1), - .., (an, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space

n yj 1
(),; M'(a)) (X = a))
n/k ki v "
= M(X) {
;j—l§i—1) M'(a;) (X — a))
n/k n/k
_ Ni(X)
- M(X); T ; N;(X)Si(X)
ki y
j=1+k(i—1) i

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space
n/k
F mod Xk = Z N;(S; mod Xk) mod XX where §; = M/T;
i=1

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;

1. Given k, compute F mod X* using O(k) space
n/k
F mod Xk = Z N;(S; mod Xk) mod XX where §; = M/T;
i=1
= Compute each N; using interpolation

= Compute each T; using a D&C approach

= Deduce each S; mod X* =[], Tj mod X*

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space

2. Given k, F mod X*, compute F mod X‘** using O(k) space

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space

2. Given k, F mod X*, compute F mod X‘** using O(k) space

= Interpolate (F div X*) mod X*

yi — (F mod X¥)(a;)
Vi~ 1

Ch

= Use of multipoint evaluation

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space
2. Given k, F mod X*, compute F mod X‘** using O(k) space

3. Compute smaller and smaller chunks of F

20/22

Our approach

Given (a1,y1), ---, (@n, ¥n), compute a size-n poly. F s.t. F(a;) = y;
1. Given k, compute F mod X* using O(k) space
2. Given k, F mod X*, compute F mod X‘** using O(k) space
3. Compute smaller and smaller chunks of F

Theorem
Multipoint evaluation and interpolation can be computed in time

O(M(n) log n) without extra space

20/22

Summary of the results

Polynomial multiplication
Full product
Short product
Middle product

Inversion and divisions:
Power series inversion:
Power series division:
Division with remainder:

Evaluation & interpolation:
Evaluation
Interpolation

*O(M(n)) if M(n) = Q(n'+9)

space

time

(2¢ + 7)M(n)
(2¢ + 5)M(n))
M(n) log..2 (n)*

3.81M(n) log(n)*
4.50M(n) log(n)*
6.29M(n)

11.61M(n)logn
105M(n) log n

21/22

Conclusion

= Fine analysis of space-time complexities of polynomial arith.

= In-place algorithms with (often) same asymptotic complexity for
= Polynomial products (full, middle, short)
= Power series inversion & division, Euclidean division
= Multipoint evaluation, interpolation

22/22

Conclusion

= Fine analysis of space-time complexities of polynomial arith.
= In-place algorithms with (often) same asymptotic complexity for
= Polynomial products (full, middle, short)
= Power series inversion & division, Euclidean division
= Multipoint evaluation, interpolation
= Space-aware reductions between polynomial products
= Different situation than without space restriction
= Questions related to the transposition principle

22/22

Conclusion

= Fine analysis of space-time complexities of polynomial arith.

= In-place algorithms with (often) same asymptotic complexity for
= Polynomial products (full, middle, short)
= Power series inversion & division, Euclidean division
= Multipoint evaluation, interpolation

= Space-aware reductions between polynomial products
= Different situation than without space restriction
= Questions related to the transposition principle
Main open problems
= Remove log(n) factor for the middle product & inversion
= Other operations (GCD, ...); general characterization
= Case of integer arithmetic
= Practical issues

22/22

Conclusion

= Fine analysis of space-time complexities of polynomial arith.

= In-place algorithms with (often) same asymptotic complexity for
= Polynomial products (full, middle, short)
= Power series inversion & division, Euclidean division
= Multipoint evaluation, interpolation

= Space-aware reductions between polynomial products
= Different situation than without space restriction
= Questions related to the transposition principle

Main open problems
= Remove log(n) factor for the middle product & inversion
= Other operations (GCD, ...); general characterization
= Case of integer arithmetic
= Practical issues

Thank you! 22/22

	Space-efficient polynomial products
	Newton iteration: inversion and divisions
	Multipoint evaluation and interpolation

