Root finding over finite fields using Graeffe transforms

Bruno Grenet
LIRMM
Université de Montpellier

Joris van der Hoeven \& Grégoire Lecerf CNRS - LIX
École polytechnique

JNCF - Cluny - November 3., 2015

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{\mathrm{q}}: f(\alpha)=0\right\}$.

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{\mathrm{q}}[X]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{\mathrm{q}}: f(\alpha)=0\right\}$.

- Assumption (A): f is monic, separable, splits over $\mathbb{F}_{q}, f(0) \neq 0$:

$$
f(X)=\prod_{i=1}^{d}\left(X-\alpha_{i}\right), \quad \alpha_{i} \in \mathbb{F}_{q}^{*}, \quad \alpha_{i} \neq \alpha_{j}
$$

(easy reduction: $\mathrm{f} \leftarrow \operatorname{gcd}\left(\mathrm{f}, \mathrm{X}^{\mathrm{q}-1}-1\right)$)

Statement of the problem

Root finding over finite fields

Given $f \in \mathbb{F}_{\mathrm{q}}[\mathrm{X}]$, compute its roots, that is $\left\{\alpha \in \mathbb{F}_{\mathrm{q}}: f(\alpha)=0\right\}$.

- Assumption (A): f is monic, separable, splits over $\mathbb{F}_{q}, f(0) \neq 0$:

$$
f(X)=\prod_{i=1}^{d}\left(X-\alpha_{i}\right), \quad \alpha_{i} \in \mathbb{F}_{\mathrm{q}}^{*}, \quad \alpha_{i} \neq \alpha_{j}
$$

(easy reduction: $\mathrm{f} \leftarrow \operatorname{gcd}\left(\mathrm{f}, \mathrm{X}^{\mathrm{q}-1}-1\right)$)

- Motivated by sparse interpolation
[van der Hoeven \& Lecerf, 2014]

State of the art EG settings

- No deterministic polytime algorithm is known (even under ERH)

State of the art Ef settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithms: Õ $\left(\mathrm{d} \log ^{2} q\right)$ in average
[Rabin (1980)]

State of the art Ef settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithms: $\tilde{O}\left(\mathrm{~d} \log ^{2} \mathrm{q}\right)$ in average
[Rabin (1980)]
- Many factorization algorithms \rightsquigarrow no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

State of the art Ef settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithms: $\tilde{O}\left(\mathrm{~d} \log ^{2} \mathrm{q}\right)$ in average [Rabin (1980)]
- Many factorization algorithms \rightsquigarrow no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when $\mathrm{q}-1$ is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

State of the art Ef settings

- No deterministic polytime algorithm is known (even under ERH)
- Randomized algorithms: $\tilde{O}\left(d \log ^{2} q\right)$ in average
[Rabin (1980)]
- Many factorization algorithms \rightsquigarrow no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
- Better complexity bounds when $\mathrm{q}-1$ is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rónyai (1989), Shoup (1991, 1992), Źratek (2010)]
- FFT finite field: $p=M \cdot 2^{m}+1$ with $M=O(\log p)$
- Useful in practice
- Adapt old algorithms
- New technique based on Graeffe transforms
- Fast implementations

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(X-\alpha)=X^{p-1}-1$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{P}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{P}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$

- With some luck, $\operatorname{gcd}\left(f, X^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{P}_{\dot{p}}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, X^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{p}$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{P}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, X^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathrm{p}}$

$$
\operatorname{deg}\left(\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)\right) \simeq d / 2
$$

Rabin's algorithm

- $\prod_{\alpha \in \mathbb{F}_{p}^{*}}(X-\alpha)=X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$
- With some luck, $\operatorname{gcd}\left(f, X^{\frac{p-1}{2}}-1\right) \notin\{1, f\}$.
- Push your luck: $\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)$ for some random $\tau \in \mathbb{F}_{\mathbf{p}}$

$$
\operatorname{deg}\left(\operatorname{gcd}\left(f,(X+\tau)^{\frac{p-1}{2}}-1\right)\right) \simeq d / 2
$$

Randomized algorithm

The roots of $f \in \mathbb{F}_{\mathfrak{p}}[X]$ can be computed in expected time $\tilde{O}\left(d \log ^{2} p\right)$.

Modified Rabin's algorithm (for FFT finite fields)

$X^{p-1}-1=\prod_{i=0}^{2^{\ell}-1}\left(X^{M 2^{m-\ell}}-\xi^{i}\right)$, where ξ is primitive of order 2^{ℓ}.

Modified Rabin's algorithm (for FFT finite fields)

$X^{p-1}-1=\prod_{i=0}^{2^{\ell}-1}\left(X^{M 2^{m-\ell}}-\xi^{i}\right)$, where ξ is primitive of order 2^{ℓ}.

Modified Rabin's algorithm (for FFT finite fields)

$X^{p-1}-1=\prod_{i=0}^{2^{\ell}-1}\left(X^{M 2^{m-\ell}}-\xi^{i}\right)$, where ξ is primitive of order 2^{ℓ}.

Modified Rabin's algorithm (for FFT finite fields)

$X^{p-1}-1=\prod_{i=0}^{2^{\ell}-1}\left(X^{\mathrm{M} 2^{m-\ell}}-\xi^{i}\right)$, where ξ is primitive of order 2^{ℓ}.

Worthwhile in practice for small $\ell=2,3, \ldots$

The Graeffe transform

$$
\begin{aligned}
& \text { Let } f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X] . \\
& \qquad f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
\end{aligned}
$$

The Graeffe transform

$$
\begin{aligned}
& \text { Let } f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X] . \\
& \qquad f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
\end{aligned}
$$

Definition

$\mathrm{G}_{2}(\mathrm{f})(\mathrm{X})=\prod_{\mathrm{i}}\left(\mathrm{X}-\alpha_{\mathrm{i}}^{2}\right)$ is the Graeffe transform of f .

The Graeffe transform

$$
\begin{aligned}
& \text { Let } f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X] . \\
& \qquad f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
\end{aligned}
$$

Definition

$\mathrm{G}_{2}(\mathrm{f})(\mathrm{X})=\prod_{i}\left(\mathrm{X}-\alpha_{\mathrm{i}}^{2}\right)$ is the Graeffe transform of f .
$G_{\rho}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{\rho}\right)$ is the Graeffe transform of order ρ of f.

The Graeffe transform

Let $f(X)=\prod_{i}\left(X-\alpha_{i}\right) \in \mathbb{F}_{p}[X]$.

$$
f(X) f(-X)=\prod_{i}\left(X-\alpha_{i}\right)\left(-X-\alpha_{i}\right)=(-1)^{d} \prod_{i}\left(X^{2}-\alpha_{i}^{2}\right)
$$

Definition

$\mathrm{G}_{2}(\mathrm{f})(\mathrm{X})=\prod_{i}\left(\mathrm{X}-\alpha_{\mathrm{i}}^{2}\right)$ is the Graeffe transform of f .
$G_{\rho}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{\rho}\right)$ is the Graeffe transform of order ρ of f.

Remarks:

- $\mathrm{G}_{\rho_{1} \rho_{2}}=\mathrm{G}_{\rho_{1}} \circ \mathrm{G}_{\rho_{2}}$, and in particular $\mathrm{G}_{2} \ell=\mathrm{G}_{2} \circ \ldots \circ \mathrm{G}_{2}$
- $G_{p-1}(f)(X)=\prod_{i}\left(X-\alpha_{i}^{p-1}\right)=(X-1)^{d}$

Using Graeffe transforms

$$
\mathrm{f} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{1} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{2} \xrightarrow{\mathrm{G}_{2}} \cdots \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{\mathrm{m}} \xrightarrow{\mathrm{G}_{M}} \mathrm{~g}_{\mathrm{m}+1}
$$

Using Graeffe transforms

$$
\mathrm{f} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{1} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{2} \xrightarrow{\mathrm{G}_{2}} \cdots \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{\mathrm{m}} \xrightarrow{\mathrm{G}_{\mathrm{M}}} \mathrm{~g}_{\mathrm{m}+1}
$$

Using Graeffe transforms

$$
\begin{aligned}
& \mathrm{f} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{1} \xrightarrow{\mathrm{G}_{2}} \mathrm{~g}_{2} \stackrel{\mathrm{G}_{2}}{\longleftrightarrow} \cdots \stackrel{\mathrm{G}_{2}}{\longleftrightarrow} \mathrm{~g}_{\mathrm{m}} \xrightarrow{\mathrm{G}_{\mathrm{M}}} \mathrm{~g}_{\mathrm{m}+1} \\
& \mathrm{Z}(\mathrm{f}) \longleftarrow \mathrm{Z}_{1} \longleftarrow \mathrm{z}_{2} \longleftarrow \cdots \longleftarrow
\end{aligned}
$$

Using Graeffe transforms

- $Z_{m} \subseteq\left\{\zeta^{i 2^{m}}: 0 \leqslant i \leqslant M-1\right\}$ where ζ is a primitive element of \mathbb{F}_{p}^{*}

Using Graeffe transforms

- $Z_{m} \subseteq\left\{\zeta^{i 2^{m}}: 0 \leqslant i \leqslant M-1\right\}$ where ζ is a primitive element of \mathbb{F}_{p}^{*}
- For $\beta \in Z_{k+1}$,
- $\operatorname{gcd}\left(g_{k}, X^{2}-\beta\right)= \begin{cases}X-\alpha_{i} & \text { (simple root) } \\ \left(X-\alpha_{i}\right)\left(X-\alpha_{j}\right) & \text { (multiple root) }\end{cases}$

Using Graeffe transforms

- $Z_{m} \subseteq\left\{\zeta^{i 2^{m}}: 0 \leqslant i \leqslant M-1\right\}$ where ζ is a primitive element of \mathbb{F}_{p}^{*}
- For $\beta \in Z_{k+1}$,
- $\operatorname{gcd}\left(g_{k}, X^{2}-\beta\right)= \begin{cases}X-\alpha_{i} & \text { (simple root) } \\ \left(X-\alpha_{i}\right)\left(X-\alpha_{j}\right) & \text { (multiple root) }\end{cases}$
- If $\beta=\zeta^{e}, \alpha_{i}, \alpha_{j} \in\left\{\zeta^{e / 2}, \zeta^{\left(e+2^{m} M\right) / 2}\right\}$

Deterministic complexity

Improvements and generalization:

- Modular composition for Graeffe transforms
[Kedlaya-Umans (2008)]
- Fast discrete logarithms in $\mathbb{F}_{\mathrm{q}}^{*}$
[Pohlig-Hellman (1978)]
- Computation of roots à la Pollard-Strassen [Shoup (1991)]

Deterministic complexity

Improvements and generalization:

- Modular composition for Graeffe transforms
[Kedlaya-Umans (2008)]
- Fast discrete logarithms in $\mathbb{F}_{\mathrm{q}}^{*}$
[Pohlig-Hellman (1978)]
- Computation of roots à la Pollard-Strassen
[Shoup (1991)]

Theorem

Given $f \in \mathbb{F}_{\mathrm{q}}[X]$ satisfying (A), the irreducible factorization of $(q-1)$ and a primitive element of \mathbb{F}_{q}^{*}, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+o(1)}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

Deterministic complexity

Improvements and generalization:

- Modular composition for Graeffe transforms
[Kedlaya-Umans (2008)]
- Fast discrete logarithms in $\mathbb{F}_{\mathrm{q}}^{*}$
[Pohlig-Hellman (1978)]
- Computation of roots à la Pollard-Strassen
[Shoup (1991)]

Theorem

Given $f \in \mathbb{F}_{\mathrm{q}}[X]$ satisfying (A), the irreducible factorization of $(q-1)$ and a primitive element of \mathbb{F}_{q}^{*}, the roots of f can be computed in time

$$
\tilde{O}\left(\sqrt{S_{1}(q-1)} d \log ^{2} q\right)+\left(d \log ^{2} q\right)^{1+o(1)}
$$

where $S_{1}(q-1)$ is the largest factor of $q-1$.

- Refines Shoup's complexity bounds
- Note: If $\mathrm{q}=\mathrm{M} \cdot 2^{\mathrm{m}}+1, \mathrm{M}=\mathrm{O}(\log \mathrm{q})$, complexity $\mathrm{O}\left(\mathrm{d} \log ^{2} \mathrm{q}\right)$.

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{p}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{p}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{p}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{p}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Remarks:

- $\left(f+\varepsilon f^{\prime}\right)(X)=f(X+\varepsilon)$
- $G_{2}\left(f+\varepsilon f^{\prime}\right)=G_{2}(f)+\varepsilon g$ with $g\left(X^{2}\right)=f(X) f^{\prime}(-X)+f(-X) f^{\prime}(X)$

Tangent Graeffe transform

Definition

The tangent Graeffe transform of order π of $f \in \mathbb{F}_{p}[X]$ is

$$
G_{\pi}\left(f+\varepsilon f^{\prime}\right) \in\left(\mathbb{F}_{p}[\varepsilon] /\left\langle\varepsilon^{2}\right\rangle\right)[X] .
$$

Remarks:

- $\left(f+\varepsilon f^{\prime}\right)(X)=f(X+\varepsilon)$
- $G_{2}\left(f+\varepsilon f^{\prime}\right)=G_{2}(f)+\varepsilon g$ with $g\left(X^{2}\right)=f(X) f^{\prime}(-X)+f(-X) f^{\prime}(X)$

Lemma
 Let $g+\varepsilon \bar{g}=G_{2 e}\left(f+\varepsilon f^{\prime}\right)$. A nonzero root β of g is simple iff $\bar{g}(\beta) \neq 0$. The corresponding root of f is $\alpha=2^{\ell} \beta g^{\prime}(\beta) / \bar{g}(\beta)$.

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

$$
f(X+\tau+\varepsilon) \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{\ell}+\varepsilon \bar{g}_{\ell} \xrightarrow{G_{2}} \cdots \xrightarrow{G_{2}} g_{m}+\varepsilon \bar{g}_{m}
$$

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $\mathrm{f}_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{\mathrm{p}}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

$$
\begin{aligned}
Z_{0} \stackrel{\longleftarrow}{\text { Only simple roots }} & Z_{\ell} \longleftarrow \cdots \\
& Z_{m} \\
& \left\{\xi^{e}: 0 \leqslant e<M\right\}
\end{aligned}
$$

Randomized algorithm

Goal: Ensure many simple roots.

- Replace f by $f_{\tau}(X)=f(X+\tau)$ for a random $\tau \in \mathbb{F}_{p}$.

Lemma

If $2^{\ell} \leqslant \frac{p-1}{d(d-1)}, G_{2^{\ell}}\left(f_{\tau}\right)$ has no multiple root with prob. $\geqslant 1 / 2$.

recursive call:
f/ $\prod_{\alpha \in Z_{0}}(X-\alpha)$
$Z_{0} \overleftarrow{\text { Only simple roots }}$
Z_{ℓ}

Randomized complexity

Theorem

Given $f \in \mathbb{F}_{p}[X]$ satisfying (A) and a primitive element of \mathbb{F}_{p}^{*}, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

Randomized complexity

Theorem

Given $f \in \mathbb{F}_{p}[X]$ satisfying (A) and a primitive element of \mathbb{F}_{p}^{*}, the randomized algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

- Same asymptotic as Rabin's algorithm
- Better efficiency in practice
- Primitive elements easy to compute in practice

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability $\geqslant 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.

Justification: holds for a random f rather than $f(X+\tau)$.

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability $\geqslant 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.

Justification: holds for a random f rather than $f(X+\tau)$.

$$
\mathrm{f}(\mathrm{X}+\tau+\varepsilon) \xrightarrow[\mathrm{G}_{2^{\ell}}]{\mathrm{g}_{\ell}}+\varepsilon \overline{\mathrm{g}}_{\ell}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability $\geqslant 1 / 2$, for a random $\tau \in \mathbb{F}_{\mathrm{p}}$.

Justification: holds for a random f rather than $f(X+\tau)$.

$$
\mathrm{f}(\mathrm{X}+\tau+\varepsilon) \xrightarrow{\mathrm{G}_{2^{\ell}}} \mathrm{g}_{\ell}+\varepsilon \bar{g}_{\ell}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability $\geqslant 1 / 2$, for a random $\tau \in \mathbb{F}_{\mathrm{p}}$.

Justification: holds for a random f rather than $f(X+\tau)$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{X}+\tau+\varepsilon) \xrightarrow{\mathrm{G}_{2^{\ell}}} \mathrm{g}_{\ell}+\varepsilon \bar{g}_{\ell} \\
& \mathrm{Z}_{0} \longleftrightarrow \text { only simple roots } Z_{\ell} \\
&\left\{\xi^{e}: 0 \leqslant e<M \cdot 2^{\ell}\right\}
\end{aligned}
$$

Heuristic algorithm

Heuristic

If $2^{\ell} \simeq p / d, G_{2^{\ell}}(f(X+\tau))$ has $\Omega(d)$ simple roots with probability $\geqslant 1 / 2$, for a random $\tau \in \mathbb{F}_{p}$.

Justification: holds for a random f rather than $f(X+\tau)$.

Heuristic complexity

Theorem

Suppose that f is chosen at random in $\mathbb{F}_{p}[X]$ or that the heuristic holds. Given a primitive element of \mathbb{F}_{p}^{*}, the heuristic algorithm runs in expected time $\tilde{O}\left(d \log ^{2} p\right)$, for $p=M \cdot 2^{m}+1$ with $M=O(\log p)$.

$$
p=7 \cdot 2^{26}+1
$$

$$
p=5 \cdot 2^{55}+1
$$

Conclusion

- Revisit classical algorithms for FFT finite fields

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
- Good deterministic complexity bounds
- Good probabilistic complexity bounds
- Good running times

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
- Good deterministic complexity bounds
- Good probabilistic complexity bounds
- Good running times
- Source code in C++, in Mathemagix

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
- Good deterministic complexity bounds
- Good probabilistic complexity bounds
- Good running times
- Source code in $\mathrm{C}++$, in Mathemagix
- Root finding is not the bottleneck for sparse interpolation anymore

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
- Good deterministic complexity bounds
- Good probabilistic complexity bounds
- Good running times
- Source code in C++, in Mathemagix
- Root finding is not the bottleneck for sparse interpolation anymore
- Open questions:
- Deterministic alg.: use of tangent Graeffe transforms
- Heuristic alg.: Graeffe transform of order 2^{l} is the bottleneck
- Prove the heuristic

Conclusion

- Revisit classical algorithms for FFT finite fields
- New approach using Graeffe transforms
- Good deterministic complexity bounds
- Good probabilistic complexity bounds
- Good running times
- Source code in C++, in Mathemagix
- Root finding is not the bottleneck for sparse interpolation anymore
- Open questions:
- Deterministic alg.: use of tangent Graeffe transforms
- Heuristic alg.: Graeffe transform of order 2^{l} is the bottleneck
- Prove the heuristic

Merci de votre attention!

