Generic reductions for in-place polynomial

multiplication

Pascal Giorgi' Bruno Grenet! Daniel S. Roche?

ISSAC'19 — Beijing — July 15-18, 2019

1 LIRMM, Université de Montpellier
2 CS Department, US Naval Academy

1/19

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°8:5) = O(n1-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

2/19

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°8:5) = O(n1-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

Other polynomial operations:
Euclidean division: O(M(n))
GCD: O(M(n) log n)
Evaluation & interpolation: ~ O(M(n) log n)

2/19

Computer Algebra 101

Multiplication of polynomials: M(n)

Naive: o(n?)
Karatsuba: O(n'°¢23) = O(n!-5%%) Karatsuba (1962)
Toom-3: O(n'°8:5) = O(n1-4%%) Toom (1963), Cook (1966)
FFT-based algorithms:
O(nlog n) with w?" =1 Cooley, Tukey (1965)
O(nlog nloglog n) Cantor, Kaltofen (1991)

Other polynomial operations:

Euclidean division: O(M(n))
GCD: O(M(n) log n)
Evaluation & interpolation: ~ O(M(n) log n)

What about space complexity?

2/19

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one coefficient

— Count extra registers used (not input nor output)

3/19

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one coefficient

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

3/19

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one coefficient

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

3/19

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one coefficient

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

= Read-only input / read-write output
= Reasonable from a programmer’s viewpoint
3/19

Space-complexity models

Algebraic-cRAM Machine
= Standard registers of size O(log n)
= Algebraic registers containing one coefficient

— Count extra registers used (not input nor output)

Read-write permissions
= Read-only input / write-only output
= (Close to) classical complexity theory
= Lower bound Q(n?) on time x space for multiplication

= Read-write input and output
= Too permissive in general
= Variant: inputs must be restored at the end

v' = Read-only input / read-write output
= Reasonable from a programmer’s viewpoint
3/19

Space complexity of multiplication algorithms

space time
Naive algorithm: o(1) 0O(n?)

4/19

Space complexity of multiplication algorithms

Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

space

o(1)

O(n)
n+ O(log n)
O(log n)

time

o(n?)

~ 6.5n'83
~ 7nlog3

~ 10n'e3

4/19

Space complexity of multiplication algorithms

Naive algorithm:

Karatsuba’s algorithm:
Original (1962)
Thomé (2002)

Roche (2009)

Toom-Cook algorithms:

Toom-3 (1963)

space

o(1)

O(n)
n+ O(log n)
O(log n)

time

0O(n?)

~ 6.5n'83
~ 7nlog3

~ 10nlog3

~ 7473 nlogs 5

4/19

Space complexity of multiplication algorithms

space
Naive algorithm: 0(1)
Karatsuba’s algorithm:

Original (1962) O(n)

Thomé (2002) n+ O(log n)

Roche (2009) O(log n)
Toom-Cook algorithms:

Toom-3 (1963) O(n)
FFT/TFT-based algorithms (given w?" = 1):

Original (1965) O(n)

Roche (2009) if n = 2% 0(1)

Harvey, Roche (2010) 0(1)

time

o(n?)

~ 6.5n'83
~ 7nlog3
~ 10nlog3

~ I3 plogs 5
an

~ 9nlog(2n)
~ 11nlog(2n)

O(nlog(n))

4/19

Our problematic

Can every polynomial multiplication algorithm be performed

without extra memory?

5/19

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= Karatsuba? Toom-Cook?

= FFT/TFT without w?" = 17

= What about other products (short and middle)?

5/19

Our problematic

Can every polynomial multiplication algorithm be performed
without extra memory?

= Karatsuba? Toom-Cook?

= FFT/TFT without w?" = 17

= What about other products (short and middle)?

Results:
= Yes!

= Almost (for other products)

5/19

Space-preserving reductions between products

Self-reductions: In-place algorithms from out-of-place algorithms

6/19

Space-preserving reductions
between products

Short product

7/19

Short product

7/19

Short product

Formal definition
= SP(f,g)="f-g mod X"
= SPhi(f,g)="f-g divX"

Example of use
Product of truncated power series

7/19

Middle product

8/19

Middle product

8/19

Middle product

Formal definition
MP(f,g) = (f - g div X"71) mod X"

Example of use
Newton iteration (division, square root, . ..)

8/19

Relative difficulties of products

Notations
= FP: full (standard) product
= FP(n), SPio(n), SPhi(n), MP(n): complexity for size-n inputs

9/19

Relative difficulties of products

Notations
= FP: full (standard) product
= FP(n), SPio(n), SPhi(n), MP(n): complexity for size-n inputs

Classical results (no space restriction)
= SPi,(n) < FP(n) and SPy;(n) < FP(n—1)

= FP(n) < SPio(n) + SPi(n)

= MP(n) =FP(n)+n—1 (transposition principle)

9/19

Relative difficulties of products

Notations
» FP: full (standard) product
= FP(n), SPio(n), SPhi(n), MP(n): complexity for size-n inputs

Classical results (no space restriction)
= SPi,(n) < FP(n) and SPy;(n) < FP(n—1)

= FP(n) < SPi,(n) + SPhi(n)
= MP(n) =FP(n)+n—1 (transposition principle)

Space-restricted settings

X Reductions unusable
v Reduction still valid

9/19

Relative difficulties in space-restricted settings

Half-additive full product FP*

10/19

Relative difficulties in space-restricted settings

Half-additive full product FP™

Add f - g to h where deg(h) < deg(f),deg(g)

Theorem (“SP = FP™")
The following reductions do not increase space:

. FP*(n) < SPyo(n) + SPhi(n) + n—1
= SPi,(n) < 3FP*([n/2])

10/19

Summary of relative difficulties

Without space restrictions In space-restricted settings
SP
Sp = FP(H) = MP FP<| Il | <wmP
FPT

11/19

Summary of relative difficulties

Without space restrictions In space-restricted settings
SP
Sp = FP(H) = MP FP<| Il | <wmP
FPT

Converse directions
= SP(n) <FP(n)?
= problem with output size : nv. 2n—1
= without space restrictions: is SP(n) < FP(n/2) ?
= FP=MP?
= partial result: MP(n) < FP(n) x log(n)
= related: space-preserving transposition? Kaltofen (2000)

11/19

Self-reductions: In-place algorithms
from out-of-place algorithms

Framework

In-place algorithms parametrized by out-of-place algorithms
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

12/19

Framework

In-place algorithms parametrized by out-of-place algorithms
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm
Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

12/19

Framework

In-place algorithms parametrized by out-of-place algorithms
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal

= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

Techniques
= Oracle calls in smaller size
= Fake padding of inputs (cf. strides in lin. alg.)
= Tail recursive call (avoid O(log n) stack)

12/19

Framework

In-place algorithms parametrized by out-of-place algorithms
= Assumption: Out-of-place alg. uses cn extra space
= Constant ¢ known to the in-place algorithm

Goal
= Space complexity: O(1)
= Time complexity: closest to the out-of-place algorithm

Techniques
= Oracle calls in smaller size
= Fake padding of inputs (cf. strides in lin. alg.)
= Tail recursive call (avoid O(log n) stack)

Similar approach for matrix mul.: Boyer, Dumas, Pernet, Zhou (2009)

12/19

Our results

Theorem
= In-place (half-additive) full product in time (2¢ + 7)M(n)

= In-place short product in time (2c + 5)M(n)

= In-place middle product in time O(M(n) log n)
(or O(M(n)) if M(n) = Q(n1*?))

13/19

Multiplications as linear maps

Full product:

X = 2n—1

14/19

Multiplications as linear maps

Short products:

14/19

[_,_W_V_\

Multiplications as linear maps

Middle product:

3n—1

@
(
[
(

14/19

Multiplications as linear maps

Middle product:

14/19

Multiplications as linear maps

Graphical representation:

SP,

FP MP

SP;

Full product Short products Middle product 14/19

In-place FP* from out-of-place FP

15/19

In-place FP* from out-of-place FP

(o + X*F) - (g0 + X&) = fogo + X (fo& + Fao) + X* &

15/19

In-place FP* from out-of-place FP

x = 2k — 1

ck

(o + X*F) - (g0 + X&) = fogo + X (fo& + Feo) + X* &

15/19

In-place FP* from out-of-place FP

(o + X*F) - (g0 + X&) = fogo + X (fo& + Feo) + X* &

15/19

In-place FP* from out-of-place FP

k
[n/k]

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Feo) + X**F

15/19

In-place FP* from out-of-place FP

k

[n/k]
[n/k] -1

(o + X¥F) - (g0 + X &) = fogo + X (fog + Fgo) + X*F&

15/19

In-place FP* from out-of-place FP

k

[n/k]

[l =1 n—k—1

(fo+ X*F) - (g0 + X*8) = fogo + X*(fo& + Fgo) + X**F2

15/19

k

[n/k]

[n/k] —1 n—k—1

16/19

k
[n/k]
(/] -1 k1
X —
D n—k

" ck+2k—1<n—k = k<25

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

16/19

k
[n/k]
(/] -1 k1
X —
D n—k

" ck+2k—1<n—k = k<25

« T(n) = (2[n/k] — 1)(M(K) + 2k — 1) + T(n — k)

T(n) < (2¢ + 7)M(n) 4+ o(M(n))
16/19

In-place short product

17/19

In-place short product

17/19

In-place short product

17/19

In-place short product

17/19

In-place short product

17/19

In-place short product

17/19

In-place middle product

18/19

In-place middle product

18/19

In-place middle product

[n/k]

18/19

In-place middle product

[n/k]
= Recursive call:

= the size of f decreases. ..
= but not the size of g!

= T(n,m) = [n/k]M(k)+ (["/k] — 1)k + T(n,m— k)

18/19

In-place middle product

[n/k]
= Recursive call:

= the size of f decreases. ..
= but not the size of g!

= T(n,m) = [7/kKIM(k) + ([7/x] — 1)k + T(n,m — k)
T(n,n) < {I\/I(n) Iog%(n) + o(M(n)log n) if M(n) is quasi-linear

O(M(n)) otherwise 18/19

Conclusion

= Space-preserving reductions between polynomial products
= Self-reductions to obtain in-place algorithms

19/19

Conclusion

= Space-preserving reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

19/19

Conclusion

= Space-preserving reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Other polynomial operations — work in progress!

= Extra log(n) for the middle product
= Remove it or prove a lower bound
= General result on the transposition principle

= In-place integer arithmetic?

19/19

Conclusion

= Space-preserving reductions between polynomial products
= Self-reductions to obtain in-place algorithms

Comparisons
= Better use specialized in-place algorithms. ..
= ... when they exist!

Main open problems
= Other polynomial operations — work in progress!

= Extra log(n) for the middle product
= Remove it or prove a lower bound
= General result on the transposition principle

= In-place integer arithmetic?

Thank youl!

19/19

	Space-preserving reductions between products
	Self-reductions: In-place algorithms from out-of-place algorithms

