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Classical factorization algorithms

Factorization of a polynomial f
Find f1, . . . , ft, irreducible, s.t. f = f1 × · · · × ft.

I Many algorithms
• over Z, Q, Q(α), Q, Qp, Fq, R, C, . . . ;
• in 1, 2, . . . , n variables.

I Complexity: polynomial in deg(f)

X102Y101 + X101Y102 − X101Y101 − X− Y + 1

= (X+ Y − 1)× (X101Y101 − 1)

= (X+ Y − 1)× (XY − 1)× (1+ XY + · · ·+ X100Y100)
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Lacunary factorization algorithms

Definition

f(X1, . . . , Xn) =

k∑
j=1

cjX
α1j

1 · · ·Xαnj
n

I size(f) ' k
(

maxj(size(cj)) + nlog(deg f)
)

Theorems
There exist deterministic polynomial-time algorithms computing

I linear factors (integer roots) of f ∈ Z[X]; [Cucker-Koiran-Smale’98]

I low-degree factors of f ∈ Q(α)[X]; [H. Lenstra’99]

I low-degree factors of f ∈ Q(α)[X1, . . . , Xn]. [Kaltofen-Koiran’06]

It is NP-hard to compute roots of f ∈ Fp[X]. [Bi-Cheng-Rojas’13]
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Main result

Let K be any field of characteristic 0.
Theorem
The computation of the degree-d factors of f ∈ K[X1, . . . , Xn]
reduces to

I univariate lacunary factorizations plus post-processing, and
I multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

I New algorithm for K = Q(α); some factors for K = Q,R,C,Qp
I Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki’13]
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Linear factors of bivariate polynomials
[Chattopadhyay-G.-Koiran-Portier-Strozecki’13]

Observation
(Y − uX− v) divides f(X, Y) ⇐⇒ f(X,uX+ v) ≡ 0

Theorem

val

∑̀
j=1

cjX
αj(uX+ v)βj

 6 α1 + (`
2

)
if nonzero and uv 6= 0.

Gap Theorem
Suppose that f = f1+ f2 with valX(f2) > valX(f1)+

(#f1
2

)
. Then

for all uv 6= 0, (Y−uX− v) divides f iff it divides both f1 and f2.
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Puiseux series

Observation for low-degree factors
g(X, Y) divides f(X, Y) ⇐⇒ f(X,φ(X)) ≡ 0

g(X, Y) = g0(X)

degY(g)∏
i=1

(Y − φi(X)) ∈ K(X)[Y]

I g0 ∈ K[X]

I φ1, . . . , φd ∈ K(X) ⊂ K〈〈X〉〉 are Puiseux series:

φ(X) =
∑
t>t0

atX
t/n with at ∈ K, at0 6= 0. (val(φ) = t0/n)

I If g is irreducible,
g divides f ⇐⇒ ∃i, f(X,φi) = 0 ⇐⇒ ∀i, f(X,φi) = 0
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Valuation bound

Theorem
Let f1 =

∑`
j=1 cjX

αjYβj and g a degree-d irreducible polynomial
with a root φ ∈ K〈〈X〉〉 of valuation v.

If the family (Xαjφβj)j is linearly independent,

val(f1(X,φ)) 6 min
j
(αj + vβj) + (2d(4d+ 1) − v)

(
`

2

)
.
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Gap Theorem

Gap Theorem
Let

f =
∑̀
j=1

cjX
αjYβj︸ ︷︷ ︸

f1

+

k∑
j=`+1

cjX
αjYβj︸ ︷︷ ︸

f2

with α1 + vβ1 6 · · · 6 αk + vβk. Let g a degree-d irreducible
polynomial, with a root of valuation v.
If ` is the smallest index s.t.

α`+1 + vβ`+1 > (α1 + vβ1) + (2d(4d+ 1) − v)

(
`

2

)
,

then g divides f iff it divides both f1 and f2.

I Depends (only) on v.
I Bounds the growth of αj + vβj in f1 (neither αj nor βj)
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Combining two valuations

Technical proposition
Let f1 =

∑`
j=1 cjX

αjYβj and v1 6= v2 such that for all j{
αj + v1βj 6 α1 + v1β1 + (2d(4d+ 1) − v1)

(
`
2

)
αj + v2βj 6 α2 + v2β2 + (2d(4d+ 1) − v2)

(
`
2

)
.

Then for all p, q, |αp −αq| 6 O(`2d4) and |βp −βq| 6 O(`2d4).

Input: f =
∑k
j=1 cjX

αjYβj , d ∈ Z+ and v1, v2 ∈ Q

Output Degree-d factors of f, having roots of valuations v1 and v2
1. Write f = f1 + · · ·+ fs, using the Gap Theorem w.r.t. v1 and v2;

2. Write each ft = XaYbf◦t , where deg(f◦t) 6 O(`2d4);

3. Factor gcd(f◦1, . . . , f◦t).  low-degree bivariate factorization
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Newton polygon and Puiseux series

X

Y

0 1 2 3 4 5 6 7

1

2

3

4

5

6

•
•
• •

• • •
• •

• •
•

Ostrowski Theorem
If f = gh, then
Newt(f) = Newt(g) + Newt(h).

Newton-Puiseux Theorem
For each edge in the lower hull
of slope −v, f has a root
φ ∈ K〈〈X〉〉 of valuation v.

f = X3 + 2 YX− Y2X4 + Y3X3 − 2 Y2X2 − 4 Y3 + 2 Y4X3 − 2 Y5X2

+ Y3X6 + 2 Y4X4 − Y5X7 + Y6X6

= (X− 2 Y2 + Y3X4)(X2 + 2 Y − Y2X3 + Y3X2)
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Corollary
For f ∈ K[X, Y] to have a factor g with a root of valuation v, its
Newton polygon needs to have an edge of slope −v.

10 / 16
Bruno Grenet – Computing low-degree factors of lacunary polynomials

N



Weighted-homogeneous factors

X

Y

0 1 2 3 4 5 6 7

1

2

3

4

5

6

•

• •
• • •

• •
•

Weighted-homogeneity
A polynomial g =

∑
j bjX

γjYδj

is (p, q)-homogeneous of order
ω if pγj + qδj = ω for all j.

If f, g are (p, q)-homogeneous:
g divides f ⇐⇒
g(X1/q, 1) divides f(X1/q, 1)

Input: f =
∑k
j=1 cjX

αjYβj , d ∈ Z+ and v = p/q ∈ Q
Output Degree-d (p, q)-homogeneous factors of f

1. Write f = f1 + · · ·+ fs as a sum of (p, q)-hom. polynomials;
2. Compute the common degree-(d/q) factors of the ft(X1/q, 1)’s;

 univariate lacunary factorization
3. Return Yp deg(g)g(Xq/Yp) for each factor g.
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Algorithm

Input: f =
∑k
j=1 cjX

αjYβj and d ∈ Z+;
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute Newt(f), and the possible valuations v = p/q of its
roots, with p, q 6 d;

2. For each v = p/q, compute the (p, q)-homogeneous factors;

• Lacunary univariate polynomials
• Known polytime algorithm for Q(α) only; exponential for Q, C

3. For each pair (v1, v2), compute the non-homogeneous factors
with roots of valuations v1 and v2;

• Low-degree bivariate polynomials
• Known polytime algorithms for Q(α), Q, R, C, Qp, etc.

4. Return the union of the sets of factors, with multiplicity.
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Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute Newt(f), and the possible valuations v = p/q of its
roots, with p, q 6 d;

2. For each v = p/q, compute the (p, q)-homogeneous factors;
• Lacunary univariate polynomials
• Known polytime algorithm for Q(α) only; exponential for Q, C

3. For each pair (v1, v2), compute the non-homogeneous factors
with roots of valuations v1 and v2;

• Low-degree bivariate polynomials
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Multivariate polynomials

Degree-d factors of f =
k∑
j=1

cjX
α1,j
1 · · ·Xαn,jn

I Do not compute the n-dimensional Newton polytope!
I Compute the Newton polygons Ni,j of f ∈ K[X \ Xi, Xj][Xi, Xj];
I Weighted homogeneous factors  1-dimensional factors

• Every Ni,j is 1-dimensional (or 0-dimensional)
• Univariate lacunary factorization

I Non-homogeneous factors  multidimensional factors

• At least one Ni,j is 2-dimensional
• Multivariate low-degree factorization

I New ingredient: Merge the partitions of f, to avoid exponential
growth in the number of low-degree polynomials
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Implementation

http://www.mathemagix.org/ > Packages > Lacunaryx

Factorization-related algorithms for lacunary polynomials

I Integer roots of lacunary univariate polynomials
I Linear factors of lacunary univariate and bivariate polynomials
I Very large degree polynomials (G. Lecerf)

I Example: Integer roots of p with deg(p) ' 2185 and #p ' 100 000
in < 10 seconds
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Conclusion

I Computing low-degree factors of lacunary multivariate polynomials

• Reduction to
{

univariate lacunary polynomials
low-degree multivariate polynomials

• “Field-independent”
• Simpler and more general than previous algorithms
• Partial results in large positive characteristic [CGKPS’13]
• Implementation within Mathemagix: work in progress

I Open questions:

• Lacunary factors in polynomial time?
• More general settings: SLP/arithmetic circuits

• Degree-d factors in positive characteristic?

• Small positive characteristic?

ありがとう
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