Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach

Bruno Grenet

LIX - École Polytechnique

ISSAC 2014 - Kobe, Japan
July 23., 2014

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathrm{q}}, \mathbb{R}, \mathbb{C}, \ldots ;$
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathrm{q}}, \mathbb{R}, \mathbb{C}, \ldots$;
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

$$
\begin{aligned}
& X^{102} Y^{101}+X^{101} Y^{102}-X^{101} Y^{101}-X-Y+1 \\
& \quad=(X+Y-1) \times\left(X^{101} Y^{101}-1\right)
\end{aligned}
$$

Classical factorization algorithms

Factorization of a polynomial f
Find f_{1}, \ldots, f_{t}, irreducible, s.t. $f=f_{1} \times \cdots \times f_{t}$.

- Many algorithms
- over $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{Q}_{p}, \mathbb{F}_{\mathbf{q}}, \mathbb{R}, \mathbb{C}, \ldots ;$
- in $1,2, \ldots, n$ variables.
- Complexity: polynomial in $\operatorname{deg}(f)$

$$
\begin{aligned}
& X^{102} Y^{101}+X^{101} Y^{102}-X^{101} Y^{101}-X-Y+1 \\
& \quad=(X+Y-1) \times\left(X^{101} Y^{101}-1\right) \\
& \quad=(X+Y-1) \times(X Y-1) \times\left(1+X Y+\cdots+X^{100} Y^{100}\right)
\end{aligned}
$$

Lacunary factorization algorithms

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$

Lacunary factorization algorithms

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $f \in \mathbb{Z}[X]$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[X$;
- low-degree factors of $f \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.
[Cucker-Koiran-Smale'98]
[H. Lenstra'99]
[Kaltofen-Koiran'06]

Lacunary factorization algorithms

Definition

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}
$$

$-\operatorname{size}(f) \simeq k\left(\max _{j}\left(\operatorname{size}\left(c_{j}\right)\right)+n \log (\operatorname{deg} f)\right)$

Theorems

There exist deterministic polynomial-time algorithms computing

- linear factors (integer roots) of $f \in \mathbb{Z}[X]$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)[X$;
- low-degree factors of $\mathrm{f} \in \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]$.

It is NP-hard to compute roots of $f \in \mathbb{F}_{p}[X]$.
[Cucker-Koiran-Smale'98]
[H. Lenstra'99]
[Kaltofen-Koiran'06]
[Bi-Cheng-Rojas'13]

Main result

Let \mathbb{K} be any field of characteristic 0 .

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations, in poly(size(f), d) bit operations.

Let \mathbb{K} be any field of characteristic 0 .

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations, in poly(size(f), d) bit operations.
- New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{\mathrm{p}}$

Let \mathbb{K} be any field of characteristic 0 .

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,
in poly(size(f), d) bit operations.
- New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{\mathrm{p}}$
- Case $\mathrm{d}=1$
[G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki ${ }_{r 3}$]

Observation

$(Y-u X-v)$ divides $f(X, Y) \Longleftrightarrow f(X, u X+v) \equiv 0$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki ${ }_{3}$]

Observation

$(Y-u X-v)$ divides $f(X, Y) \Longleftrightarrow f(X, u X+v) \equiv 0$
Theorem
$\operatorname{val}\left(\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leqslant \alpha_{1}+\binom{\ell}{2}$ if nonzero and $u v \neq 0$.

Linear factors of bivariate polynomials
 [Chattopadhyay-G.-Koiran-Portier-Strozecki' ${ }_{3}$]

Observation

$(\mathrm{Y}-\mathrm{uX}-v)$ divides $\mathrm{f}(\mathrm{X}, \mathrm{Y}) \Longleftrightarrow \mathrm{f}(\mathrm{X}, \mathrm{uX}+\boldsymbol{v}) \equiv 0$
Theorem
$\operatorname{val}\left(\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leqslant \alpha_{1}+\binom{\ell}{2}$ if nonzero and $u v \neq 0$.

Gap Theorem

Suppose that $\mathrm{f}=\mathrm{f}_{1}+\mathrm{f}_{2}$ with $\operatorname{val}_{\mathrm{x}}\left(\mathrm{f}_{2}\right)>\operatorname{val}_{\mathrm{X}}\left(\mathrm{f}_{1}\right)+\binom{\# \mathrm{f}_{1}}{2}$. Then for all $u v \neq 0,(Y-u X-v)$ divides f iff it divides both f_{1} and f_{2}.

Observation for low-degree factors $g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

Observation for low-degree factors

$g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right) \in \overline{\mathbb{K}(X)}[Y]
$$

Puiseux series

Observation for low-degree factors

 $g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right) \in \overline{\mathbb{K}(X)}[Y]
$$

$g_{0} \in \mathbb{K}[X]$
> $\phi_{1}, \ldots, \phi_{\mathrm{d}} \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ are Puiseux series:

$$
\phi(X)=\sum_{t \geqslant t_{0}} a_{t} X^{t / n} \text { with } a_{t} \in \overline{\mathbb{K}}, a_{t_{0}} \neq 0 . \quad\left(\operatorname{val}(\phi)=t_{0} / n\right)
$$

Puiseux series

Observation for low-degree factors
$g(X, Y)$ divides $f(X, Y) \Longleftrightarrow f(X, \phi(X)) \equiv 0$

$$
g(X, Y)=g_{0}(X) \prod_{i=1}^{\operatorname{deg}_{Y}(g)}\left(Y-\phi_{i}(X)\right) \in \overline{\mathbb{K}(X)}[Y]
$$

$>g_{0} \in \mathbb{K}[X]$
> $\phi_{1}, \ldots, \phi_{\mathrm{d}} \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ are Puiseux series:

$$
\phi(X)=\sum_{t \geqslant t_{0}} a_{t} X^{t / n} \text { with } a_{t} \in \overline{\mathbb{K}}, a_{t_{0}} \neq 0 . \quad\left(\operatorname{val}(\phi)=t_{0} / n\right)
$$

- If g is irreducible, g divides $\mathrm{f} \Longleftrightarrow \exists \mathrm{i}, \mathrm{f}\left(\mathrm{X}, \phi_{\mathrm{i}}\right)=0 \Longleftrightarrow \forall \mathrm{i}, \mathrm{f}\left(\mathrm{X}, \phi_{\mathrm{i}}\right)=0$

Valuation bound

Theorem

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation ν.

If the family $\left(X^{\alpha_{j}} \phi^{\beta_{j}}\right)_{j}$ is linearly independent,

$$
\operatorname{val}\left(f_{1}(X, \phi)\right) \leqslant \min _{j}\left(\alpha_{j}+v \beta_{j}\right)+(2 d(4 d+1)-v)\binom{\ell}{2}
$$

Gap Theorem

Gap Theorem

Let

$$
f=\underbrace{\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{1}}+\underbrace{\sum_{j=\ell+1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{2}}
$$

with $\alpha_{1}+\nu \beta_{1} \leqslant \cdots \leqslant \alpha_{\mathrm{k}}+\nu \beta_{\mathrm{k}}$. Let g a degree- d irreducible polynomial, with a root of valuation ν.
If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}+v \beta_{\ell+1}>\left(\alpha_{1}+v \beta_{1}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

then g divides f iff it divides both f_{1} and f_{2}.

Gap Theorem

Let

$$
f=\underbrace{\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{1}}+\underbrace{\sum_{j=\ell+1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{f_{2}}
$$

with $\alpha_{1}+\nu \beta_{1} \leqslant \cdots \leqslant \alpha_{k}+\nu \beta_{\mathrm{k}}$. Let g a degree-d irreducible polynomial, with a root of valuation ν.
If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}+v \beta_{\ell+1}>\left(\alpha_{1}+v \beta_{1}\right)+(2 \mathrm{~d}(4 \mathrm{~d}+1)-v)\binom{\ell}{2}
$$

then g divides f iff it divides both f_{1} and f_{2}.
$>$ Depends (only) on v.
Bounds the growth of $\alpha_{j}+\nu \beta_{j}$ in f_{1} (neither α_{j} nor β_{j})

Combining two valuations

Technical proposition

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $v_{1} \neq \nu_{2}$ such that for all j

$$
\left\{\begin{array}{l}
\alpha_{j}+v_{1} \beta_{j} \leqslant \alpha_{1}+v_{1} \beta_{1}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{1}\right)\binom{\ell}{2} \\
\alpha_{j}+v_{2} \beta_{j} \leqslant \alpha_{2}+v_{2} \beta_{2}+\left(2 \mathrm{~d}(4 \mathrm{~d}+1)-v_{2}\right)\binom{\ell}{2} .
\end{array}\right.
$$

Then for all $p, q,\left|\alpha_{p}-\alpha_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$ and $\left|\beta_{p}-\beta_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$.

Combining two valuations

Technical proposition

Let $f_{1}=\sum_{j=1}^{\ell} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $v_{1} \neq \nu_{2}$ such that for all j

$$
\left\{\begin{array}{l}
\alpha_{j}+v_{1} \beta_{j} \leqslant \alpha_{1}+v_{1} \beta_{1}+\left(2 d(4 d+1)-v_{1}\right)\binom{\ell}{2} \\
\alpha_{j}+v_{2} \beta_{j} \leqslant \alpha_{2}+v_{2} \beta_{2}+\left(2 d(4 d+1)-v_{2}\right)\binom{(\ell)}{2} .
\end{array}\right.
$$

Then for all $p, q,\left|\alpha_{p}-\alpha_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$ and $\left|\beta_{p}-\beta_{q}\right| \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$.
Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}, d \in \mathbb{Z}_{+}$and $v_{1}, v_{2} \in \mathbb{Q}$
Output Degree- d factors of f , having roots of valuations ν_{1} and ν_{2}

1. Write $f=f_{1}+\cdots+f_{s}$, using the Gap Theorem w.r.t. v_{1} and v_{2};
2. Write each $f_{t}=X^{a} Y^{b} f_{t}^{\circ}$, where $\operatorname{deg}\left(f_{t}^{\circ}\right) \leqslant \mathcal{O}\left(\ell^{2} d^{4}\right)$;
3. Factor $\operatorname{gcd}\left(f_{1}^{\circ}, \ldots, f_{t}^{\circ}\right)$. \rightsquigarrow low-degree bivariate factorization

Newton polygon and Puiseux series

$$
\begin{aligned}
& f=X^{3}+2 Y X-Y^{2} X^{4}+Y^{3} X^{3}-2 Y^{2} X^{2}-4 Y^{3}+2 Y^{4} X^{3}-2 Y^{5} X^{2} \\
& +Y^{3} X^{6}+2 Y^{4} X^{4}-Y^{5} X^{7}+Y^{6} X^{6}
\end{aligned}
$$

Newton polygon and Puiseux series

Ostrowski Theorem
If $f=g h$, then
$\operatorname{Newt}(f)=\operatorname{Newt}(\mathrm{g})+\operatorname{Newt}(\mathrm{h})$.

$$
\begin{aligned}
f= & X^{3}+2 Y X-Y^{2} X^{4}+Y^{3} X^{3}-2 Y^{2} X^{2}-4 Y^{3}+2 Y^{4} X^{3}-2 Y^{5} X^{2} \\
& +Y^{3} X^{6}+2 Y^{4} X^{4}-Y^{5} X^{7}+Y^{6} X^{6} \\
= & \left(X-2 Y^{2}+Y^{3} X^{4}\right)\left(X^{2}+2 Y-Y^{2} X^{3}+Y^{3} X^{2}\right)
\end{aligned}
$$

Newton polygon and Puiseux series

Ostrowski Theorem
If $f=g h$, then
$\operatorname{Newt}(f)=\operatorname{Newt}(\mathrm{g})+\operatorname{Newt}(\mathrm{h})$.

Newton-Puiseux Theorem
For each edge in the lower hull of slope $-v, f$ has a root $\phi \in \overline{\mathbb{K}}\langle\langle X\rangle\rangle$ of valuation ν.

$$
\begin{aligned}
f=X^{3}+2 Y X-Y^{2} X^{4}+Y^{3} X^{3}-2 & Y^{2} X^{2}-4 Y^{3}+2 Y^{4} X^{3}-2 Y^{5} X^{2} \\
+ & Y^{3} X^{6}+2 Y^{4} X^{4}-Y^{5} X^{7}+Y^{6} X^{6}
\end{aligned}
$$

Newton polygon and Puiseux series

Ostrowski Theorem

If $\mathrm{f}=\mathrm{gh}$, then
$\operatorname{Newt}(f)=\operatorname{Newt}(\mathrm{g})+\operatorname{Newt}(\mathrm{h})$.

Newton-Puiseux Theorem
For each edge in the lower hull of slope $-v, \mathrm{f}$ has a root $\phi \in \overline{\mathbb{K}}\langle\langle\mathrm{X}\rangle\rangle$ of valuation v.

Corollary

For $f \in \mathbb{K}[X, Y]$ to have a factor g with a root of valuation v, its Newton polygon needs to have an edge of slope $-v$.

Weighted-bomogeneous factors

Weighted-bomogeneous factors

Weighted-homogeneity
 A polynomial $g=\sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order
 ω if $p \gamma_{j}+q \delta_{j}=\omega$ for all j.

If f, g are (p, q)-homogeneous:
g divides f
$g\left(X^{1 / q}, 1\right)$ divides $f\left(X^{1 / q}, 1\right)$

Weighted-bomogeneous factors

Weighted-homogeneity
 A polynomial $g=\sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $\mathrm{p} \gamma_{j}+\mathrm{q} \delta_{j}=\omega$ for all j.

If f, g are (p, q)-homogeneous:
g divides f
$g\left(X^{1 / q}, 1\right)$ divides $f\left(X^{1 / q}, 1\right)$

Input: $\mathrm{f}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} X^{\alpha_{j}} Y^{\beta_{j}}, \mathrm{~d} \in \mathbb{Z}_{+}$and $v=\mathrm{p} / \mathrm{q} \in \mathbb{Q}$
Output Degree-d (p, q)-homogeneous factors of f

1. Write $f=f_{1}+\cdots+f_{s}$ as a sum of (p, q)-hom. polynomials;
2. Compute the common degree- (d / q) factors of the $f_{t}\left(X^{1 / q}, 1\right)^{\prime} s$;
\rightsquigarrow univariate lacunary factorization
3. Return $Y^{p \operatorname{deg}(g)} g\left(X^{q} / Y^{p}\right)$ for each factor g.

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+} ;$
Output: The irreducible degree-d factors of f, with multiplicity.

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+} ;$
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute $\operatorname{Newt}(f)$, and the possible valuations $v=p / q$ of its roots, with $p, q \leqslant d$;

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+} ;$
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute $\operatorname{Newt}(f)$, and the possible valuations $v=p / q$ of its roots, with $p, q \leqslant d$;
2. For each $v=p / q$, compute the (p, q)-homogeneous factors;

- Lacunary univariate polynomials
- Known polytime algorithm for $\mathbb{Q}(\alpha)$ only; exponential for $\overline{\mathbb{Q}}, \mathbb{C}$

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+} ;$
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute $\operatorname{Newt}(f)$, and the possible valuations $v=p / q$ of its roots, with $p, q \leqslant d$;
2. For each $v=p / q$, compute the (p, q)-homogeneous factors;

- Lacunary univariate polynomials
- Known polytime algorithm for $\mathbb{Q}(\alpha)$ only; exponential for $\overline{\mathbb{Q}}, \mathbb{C}$

3. For each pair $\left(v_{1}, v_{2}\right)$, compute the non-homogeneous factors with roots of valuations ν_{1} and ν_{2};

- Low-degree bivariate polynomials
- Known polytime algorithms for $\mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}$, etc.

Input: $f=\sum_{j=1}^{k} c_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ and $d \in \mathbb{Z}_{+} ;$
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute $\operatorname{Newt}(f)$, and the possible valuations $v=p / q$ of its roots, with $p, q \leqslant d$;
2. For each $v=\mathrm{p} / \mathrm{q}$, compute the (p, q)-homogeneous factors;

- Lacunary univariate polynomials
- Known polytime algorithm for $\mathbb{Q}(\alpha)$ only; exponential for $\overline{\mathbb{Q}}, \mathbb{C}$

3. For each pair $\left(v_{1}, v_{2}\right)$, compute the non-homogeneous factors with roots of valuations ν_{1} and ν_{2};

- Low-degree bivariate polynomials
- Known polytime algorithms for $\mathbb{Q}(\alpha), \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}$, etc.

4. Return the union of the sets of factors, with multiplicity.

Multivariate polynomials

$$
\text { Degree-d factors of } \mathrm{f}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

Multivariate polynomials

$$
\text { Degree-d factors of } \mathrm{f}=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $N_{i, j}$ of $f \in \mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]$;

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ of $\mathrm{f} \in \mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]$;
- Weighted homogeneous factors $\rightsquigarrow 1$-dimensional factors
- Every $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is 1 -dimensional (or 0 -dimensional)
- Univariate lacunary factorization

Multivariate polynomials

$$
\text { Degree-d factors of } \mathrm{f}=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $N_{i, j}$ of $f \in \mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]$;
- Weighted homogeneous factors $\rightsquigarrow 1$-dimensional factors
- Every $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is 1 -dimensional (or 0 -dimensional)
- Univariate lacunary factorization
- Non-homogeneous factors \rightsquigarrow multidimensional factors
- At least one $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is 2-dimensional
- Multivariate low-degree factorization

Multivariate polynomials

$$
\text { Degree-d factors of } f=\sum_{j=1}^{k} c_{j} X_{1}^{\alpha_{1, j}} \cdots X_{n}^{\alpha_{n, j}}
$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $N_{i, j}$ of $f \in \mathbb{K}\left[\mathbf{X} \backslash X_{i}, X_{j}\right]\left[X_{i}, X_{j}\right]$;
- Weighted homogeneous factors $\rightsquigarrow 1$-dimensional factors
- Every $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is 1 -dimensional (or 0 -dimensional)
- Univariate lacunary factorization
- Non-homogeneous factors \rightsquigarrow multidimensional factors
- At least one $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is 2-dimensional
- Multivariate low-degree factorization
- New ingredient: Merge the partitions of f , to avoid exponential growth in the number of low-degree polynomials

Implementation

http://www.mathemagix.org/ > Packages > Lacunaryx
Factorization-related algorithms for lacunary polynomials

- Integer roots of lacunary univariate polynomials
- Linear factors of lacunary univariate and bivariate polynomials
- Very large degree polynomials (G. Lecerf)
- Example: Integer roots of p with $\operatorname{deg}(p) \simeq 2^{185}$ and $\# p \simeq 100000$ in <10 seconds

Mmx] use "lacunaryx"; x : LPolynomial Integer == lpolynomial(1,1);
$\mathrm{p}==\mathrm{x}-3 *(\mathrm{x}-2) *(2 * \mathrm{x}+3)-2 *(-\mathrm{x}+3) *(2 * \mathrm{x}+7) *(\mathrm{x}-2+\mathrm{x}+1) *(3 * \mathrm{x}+5)$;
$\mathrm{q}==\mathrm{x}^{\wedge} 3-6-2 * \mathrm{x}^{\wedge} 4+12 * \mathrm{x}+\mathrm{x}^{\wedge} 5-6 * \mathrm{x}^{\wedge} 2+3 * \mathrm{x}^{\wedge} 1345-6 * \mathrm{x}^{\wedge} 1346+3 * \mathrm{x}^{\wedge} 1347+$ $8 * x^{\wedge} 432534-18 * x^{\wedge} 432535+12 * x^{\wedge} 432536-2 * x^{\wedge} 432537+1-2 * x+x^{\wedge} 2$;
e : Integer $==35154014504040115230143514$;
$\mathrm{r}==1+3 * \mathrm{x}^{\wedge} 1345-2 *(\mathrm{x}-4) * \mathrm{x}^{\wedge} \mathrm{e}+\left(\mathrm{x}^{\wedge} 3-6\right) * \mathrm{x}^{\wedge}(2 * \mathrm{e})$;
pqr $==\mathrm{p} * \mathrm{q} * \mathrm{r}$; ($\log \operatorname{deg} \mathrm{pqr} / \log 2, \# \mathrm{pqr})$
$(85.861891823199,149)$
49 msec
Mmx] roots pqr

$$
[[2,1],[3,1],[0,3],[1,2]]
$$

```
Mmx] X == coordinate ('x); x : LMVPolynomial Integer == lmvpolynomial(1, X);
    Y == coordinate ('y); y : LMVPolynomial Integer == lmvpolynomial(1, Y);
    f == x^2*y*(x-2)*(2*y+3) ~ 2*(y-x+3)*(2*x+7*y)*(x*y+x+1)*(3*x-6*y+5);
    g == x^3*y^54354165 - 6*y^54354165 - 2*x^4*y^54354164 + 12*x*y^54354164
    + x^5*y^54354163 - 6*x^2*y^54354163 + 3*x^1345*y^54336 - 6*x^1346*y^54335
    + 3*x^1347*y^54334 + 8*x^432534*y^5 - 18*x^432535*y^4 + 12*x^432536*y^3 -
    2*x^432537*y^2 + y^2 - 2*x*y + x^2;
    h == 1 + 3*x^1345*y^54334 - 2*(x-4*y)*x^e*y^2 + (x^3-6)*y^(2*e);
    fgh == f*g*h; (log deg fgh/log 2, #fgh)
```

$(85.861891823199,1028)$
60 msec
Mmx] linear_factors fgh

$$
[[x, 2],[-x+2,1],[y, 1],[2 y+3,2],[-y+x, 2],[-7 y-2 x, 1],[-y+x-3,1],[-6 y+3 x+5,1]]
$$

Conclusion

- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to $\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.$

Conclusion

- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to $\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.$
- "Field-independent"
- Simpler and more general than previous algorithms
- Partial results in large positive characteristic
- Implementation within Mathemagix: work in progress

Conclusion

- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to $\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.$
- "Field-independent"
- Simpler and more general than previous algorithms
- Partial results in large positive characteristic
[CGKPS'13]
- Implementation within Mathemagix: work in progress
- Open questions:
- Lacunary factors in polynomial time?
- More general settings: SLP/arithmetic circuits

Conclusion

- Computing low-degree factors of lacunary multivariate polynomials
- Reduction to $\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low-degree multivariate polynomials }\end{array}\right.$
- "Field-independent"
- Simpler and more general than previous algorithms
- Partial results in large positive characteristic
[CGKPS'13]
- Implementation within Mathemagix: work in progress
- Open questions:
- Lacunary factors in polynomial time?
- More general settings: SLP/arithmetic circuits
- Degree-d factors in positive characteristic?
- Small positive characteristic?

Conclusion

－Computing low－degree factors of lacunary multivariate polynomials
－Reduction to $\left\{\begin{array}{l}\text { univariate lacunary polynomials } \\ \text { low－degree multivariate polynomials }\end{array}\right.$
－＂Field－independent＂
－Simpler and more general than previous algorithms
－Partial results in large positive characteristic
［CGKPS＇13］
－Implementation within Mathemagix：work in progress
－Open questions：
－Lacunary factors in polynomial time？
－More general settings：SLP／arithmetic circuits
－Degree－d factors in positive characteristic？
－Small positive characteristic？
ありがとう

