Computing low-degree factors of lacunary polynomials: a Newton-Puiseux Approach

Bruno Grenet LIX — École Polytechnique

ISSAC 2014 — Kobe, Japan July 23., 2014

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

P

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.

Complexity: polynomial in deg(f)

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

= (X + Y - 1) × (X¹⁰¹Y¹⁰¹ - 1)

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1$$

= (X + Y - 1) × (X¹⁰¹Y¹⁰¹ - 1)
= (X + Y - 1) × (XY - 1) × (1 + XY + \dots + X^{100}Y^{100})

Lacunary factorization algorithms

Lacunary factorization algorithms

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- **low-degree** factors of $f \in \mathbb{Q}(\alpha)[X_1, \dots, X_n]$.

[Kaltofen-Koiran'06]

Lacunary factorization algorithms

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ► low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

Main result

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \dots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

Main result

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \dots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

▷ New algorithm for $\mathbb{K} = \mathbb{Q}(\alpha)$; some factors for $\mathbb{K} = \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$

Main result

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1, \ldots, X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorizations,

in poly(size(f), d) bit operations.

▷ New algorithm for $\mathbb{K} = \mathbb{Q}(\alpha)$; some factors for $\mathbb{K} = \overline{\mathbb{Q}}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$

Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\text{val}\left(\sum_{j=1}^\ell c_j X^{\alpha_j} (\mathfrak{u} X + \nu)^{\beta_j}\right) \leqslant \alpha_1 + \binom{\ell}{2} \text{ if nonzero and } \mathfrak{u} \nu \neq 0.$$

Linear factors of bivariate polynomials [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\text{val}\left(\sum_{j=1}^\ell c_j X^{\alpha_j} (uX+\nu)^{\beta_j}\right) \leqslant \alpha_1 + \binom{\ell}{2} \text{ if nonzero and } u\nu \neq 0.$$

Gap Theorem

Suppose that $f = f_1 + f_2$ with $val_X(f_2) > val_X(f_1) + {\#f_1 \choose 2}$. Then for all $uv \neq 0$, (Y - uX - v) divides f iff it divides both f_1 and f_2 .

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

g(X,Y) divides $f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_{0}(X) \prod_{i=1}^{\deg_{Y}(g)} (Y - \phi_{i}(X)) \in \overline{\mathbb{K}(X)}[Y]$$

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_{0}(X) \prod_{i=1}^{\deg_{Y}(g)} (Y - \varphi_{i}(X)) \in \overline{\mathbb{K}(X)}[Y]$$

$$\begin{array}{l} \flat \ g_0 \in \mathbb{K}[X] \\ \flat \ \varphi_1, \, \dots, \, \varphi_d \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle \text{ are Puiseux series:} \\ \hline \\ \hline \\ \varphi(X) = \sum_{t \geqslant t_0} a_t X^{t/n} \text{ with } a_t \in \overline{\mathbb{K}}, \, a_{t_0} \neq 0. \qquad (\text{val}(\varphi) = t_0/n) \end{array}$$

 $g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_{0}(X) \prod_{i=1}^{\deg_{Y}(g)} (Y - \varphi_{i}(X)) \in \overline{\mathbb{K}(X)}[Y]$$

▷
$$g_0 \in \mathbb{K}[X]$$

 $\vdash \varphi_1, \ldots, \varphi_d \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle \text{ are Puiseux series:}$

$$\varphi(X) = \sum_{t \geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0. \qquad (\text{val}(\varphi) = t_0/n)$$

▷ If g is irreducible, g divides f $\iff \exists i, f(X, \varphi_i) = 0 \iff \forall i, f(X, \varphi_i) = 0$

Valuation bound

Theorem

Let $f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$ and g a degree-d irreducible polynomial with a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

If the family $(X^{\alpha_j} \varphi^{\beta_j})_j$ is linearly independent,

$$\operatorname{val}(f_1(X, \phi)) \leq \min_j(\alpha_j + \nu\beta_j) + (2d(4d+1) - \nu)\binom{\ell}{2}.$$

Gap Theorem

Gap Theorem

Let

$$F = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leq \cdots \leq \alpha_k + \nu \beta_k$. Let g a degree-d irreducible polynomial, with a root of valuation ν . If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu\beta_{\ell+1} > (\alpha_1 + \nu\beta_1) + (2d(4d+1) - \nu)\binom{\ell}{2},$$

then g divides f iff it divides both f_1 and f_2 .

Gap Theorem

Gap Theorem

Let

$$F = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu\beta_1 \leq \cdots \leq \alpha_k + \nu\beta_k$. Let g a degree-d irreducible polynomial, with a root of valuation ν . If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu\beta_{\ell+1} > (\alpha_1 + \nu\beta_1) + (2d(4d+1) - \nu)\binom{\ell}{2},$$

then g divides f iff it divides both f_1 and f_2 .

- > Depends (only) on v.
- Bounds the growth of $\alpha_j + \nu\beta_j$ in f_1 (neither α_j nor β_j)

Combining two valuations

Technical proposition

Let
$$f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $v_1 \neq v_2$ such that for all j

$$\begin{cases} \alpha_{j} + \nu_{1}\beta_{j} \leq \alpha_{1} + \nu_{1}\beta_{1} + (2d(4d+1) - \nu_{1})\binom{\ell}{2} \\ \alpha_{j} + \nu_{2}\beta_{j} \leq \alpha_{2} + \nu_{2}\beta_{2} + (2d(4d+1) - \nu_{2})\binom{\ell}{2}. \end{cases}$$

 $\text{Then for all } p,q \text{, } |\alpha_p-\alpha_q| \leqslant \mathbb{O}(\ell^2 d^4) \text{ and } |\beta_p-\beta_q| \leqslant \mathbb{O}(\ell^2 d^4).$

Combining two valuations

Technical proposition

Let
$$f_1 = \sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $v_1 \neq v_2$ such that for all j

$$\begin{cases} \alpha_j + v_1 \beta_j \leqslant \alpha_1 + v_1 \beta_1 + (2d(4d+1) - v_1) {\ell \choose 2} \\ \alpha_j + v_2 \beta_j \leqslant \alpha_2 + v_2 \beta_2 + (2d(4d+1) - v_2) {\ell \choose 2}. \end{cases}$$

 $\text{Then for all } p,q, |\alpha_p-\alpha_q|\leqslant \mathbb{O}(\ell^2d^4) \text{ and } |\beta_p-\beta_q|\leqslant \mathbb{O}(\ell^2d^4).$

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
, $d \in \mathbb{Z}_+$ and $v_1, v_2 \in \mathbb{Q}$

Output Degree-d factors of f, having roots of valuations v_1 and v_2

- 1. Write $f = f_1 + \cdots + f_s$, using the Gap Theorem w.r.t. v_1 and v_2 ;
- 2. Write each $f_t = X^a Y^b f_t^\circ$, where $deg(f_t^\circ) \leq O(\ell^2 d^4)$;
- 3. Factor $gcd(f_1^\circ, \dots, f_t^\circ)$. \rightsquigarrow low-degree bivariate factorization

Bruno Grenet – Computing low-degree factors of lacunary polynomials

$$\begin{split} f &= X^3 + 2\,YX - Y^2X^4 + Y^3X^3 - 2\,Y^2X^2 - 4\,Y^3 + 2\,Y^4X^3 - 2\,Y^5X^2 \\ &+ Y^3X^6 + 2\,Y^4X^4 - Y^5X^7 + Y^6X^6 \end{split}$$

Ostrowski Theorem If f = gh, then Newt(f) = Newt(g) + Newt(h).

 $f = X^{3} + 2YX - Y^{2}X^{4} + Y^{3}X^{3} - 2Y^{2}X^{2} - 4Y^{3} + 2Y^{4}X^{3} - 2Y^{5}X^{2}$ $+ Y^{3}X^{6} + 2Y^{4}X^{4} - Y^{5}X^{7} + Y^{6}X^{6}$

 $= (X - 2Y^{2} + Y^{3}X^{4})(X^{2} + 2Y - Y^{2}X^{3} + Y^{3}X^{2})$

Bruno Grenet – Computing low-degree factors of lacunary polynomials

Ostrowski Theorem If f = gh, then Newt(f) = Newt(g) + Newt(h).

Newton-Puiseux Theorem For each edge in the **lower hull** of slope $-\nu$, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

$$\begin{split} \mathsf{f} &= X^3 + 2\,\mathsf{Y}X - \mathsf{Y}^2X^4 + \mathsf{Y}^3X^3 - 2\,\mathsf{Y}^2X^2 - 4\,\mathsf{Y}^3 + 2\,\mathsf{Y}^4X^3 - 2\,\mathsf{Y}^5X^2 \\ &\quad + \mathsf{Y}^3X^6 + 2\,\mathsf{Y}^4X^4 - \mathsf{Y}^5X^7 + \mathsf{Y}^6X^6 \end{split}$$

Ostrowski Theorem If f = gh, then Newt(f) = Newt(g) + Newt(h).

Newton-Puiseux Theorem For each edge in the lower hull of slope $-\nu$, f has a root $\phi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν .

Corollary

For $f \in \mathbb{K}[X, Y]$ to have a factor g with a root of valuation v, its Newton polygon needs to have an edge of slope -v.

Weighted-homogeneous factors

Weighted-homogeneity

A polynomial $g = \sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $p\gamma_{j} + q\delta_{j} = \omega$ for all j.

Weighted-homogeneous factors

Weighted-homogeneity

A polynomial $g = \sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $p\gamma_{j} + q\delta_{j} = \omega$ for all j.

If f, g are
$$(p,q)$$
-homogeneous:

g divides f
$$\iff$$

g(X^{1/q}, 1) divides f(X^{1/q}, 1)

Weighted-homogeneous factors

Weighted-homogeneity

A polynomial $g = \sum_{j} b_{j} X^{\gamma_{j}} Y^{\delta_{j}}$ is (p, q)-homogeneous of order ω if $p\gamma_{j} + q\delta_{j} = \omega$ for all j.

If f, g are (p,q)-homogeneous:

g divides f
$$\iff$$

g(X^{1/q}, 1) divides f(X^{1/q}, 1)

Input: $f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$, $d \in \mathbb{Z}_+$ and $\nu = p/q \in \mathbb{Q}$ Output Degree-d (p, q)-homogeneous factors of f

- 1. Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-hom. polynomials;
- 2. Compute the common degree-(d/q) factors of the $f_t(X^{1/q}, 1)$'s; \rightsquigarrow univariate lacunary factorization
- 3. Return $Y^{p \deg(g)}g(X^q/Y^p)$ for each factor g.

Input:
$$f = \sum_{j=1}^{\kappa} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;
Output: The irreducible degree-d factors of f, with multiplicity.

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;
Output: The irreducible degree-d factors of f, with multiplicity.

1. Compute Newt(f), and the possible valuations $\nu=p/q$ of its roots, with $p,q\leqslant d;$

Algorithm

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;
Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute Newt(f), and the possible valuations $\nu=p/q$ of its roots, with $p,q\leqslant d;$
- 2. For each v = p/q, compute the (p, q)-homogeneous factors;
 - Lacunary univariate polynomials
 - Known polytime algorithm for $\mathbb{Q}(\alpha)$ only; exponential for $\overline{\mathbb{Q}}, \mathbb{C}$

Algorithm

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;
Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute Newt(f), and the possible valuations $\nu=p/q$ of its roots, with $p,q\leqslant d;$
- 2. For each v = p/q, compute the (p, q)-homogeneous factors;
 - Lacunary univariate polynomials
 - Known polytime algorithm for $\mathbb{Q}(lpha)$ only; exponential for $\overline{\mathbb{Q}},\,\mathbb{C}$
- 3. For each pair (v_1, v_2) , compute the non-homogeneous factors with roots of valuations v_1 and v_2 ;
 - Low-degree bivariate polynomials
 - Known polytime algorithms for $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{R} , \mathbb{C} , \mathbb{Q}_p , etc.

Algorithm

Input:
$$f = \sum_{j=1}^{k} c_j X^{\alpha_j} Y^{\beta_j}$$
 and $d \in \mathbb{Z}_+$;
Output: The irreducible degree-d factors of f, with multiplicity.

- 1. Compute Newt(f), and the possible valuations $\nu=p/q$ of its roots, with $p,q\leqslant d;$
- 2. For each v = p/q, compute the (p, q)-homogeneous factors;
 - Lacunary univariate polynomials
 - Known polytime algorithm for $\mathbb{Q}(lpha)$ only; exponential for $\overline{\mathbb{Q}},\,\mathbb{C}$
- 3. For each pair (v_1, v_2) , compute the non-homogeneous factors with roots of valuations v_1 and v_2 ;
 - Low-degree bivariate polynomials
 - Known polytime algorithms for $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{R} , \mathbb{C} , \mathbb{Q}_p , etc.
- 4. Return the union of the sets of factors, with multiplicity.

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

Bruno Grenet – Computing low-degree factors of lacunary polynomials

13 / 16

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- ▷ Compute the Newton polygons $N_{i,j}$ of $f \in \mathbb{K}[X \setminus X_i, X_j][X_i, X_j]$;

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $N_{i,j}$ of $f \in \mathbb{K}[X \setminus X_i, X_j][X_i, X_j];$
- Weighted homogeneous factors ~> 1-dimensional factors
 - Every N_{i,j} is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- Compute the Newton polygons $N_{i,j}$ of $f \in \mathbb{K}[X \setminus X_i, X_j][X_i, X_j];$
- Weighted homogeneous factors ~> 1-dimensional factors
 - Every N_{i,j} is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors ~> multidimensional factors
 - At least one N_{i,i} is 2-dimensional
 - Multivariate low-degree factorization

Degree-d factors of
$$f = \sum_{j=1}^{k} c_j X_1^{\alpha_{1,j}} \cdots X_n^{\alpha_{n,j}}$$

- Do not compute the n-dimensional Newton polytope!
- ▷ Compute the Newton polygons $N_{i,j}$ of $f \in \mathbb{K}[X \setminus X_i, X_j][X_i, X_j]$;
- ▶ Weighted homogeneous factors ~→ 1-dimensional factors
 - Every N_{i,j} is 1-dimensional (or 0-dimensional)
 - Univariate lacunary factorization
- Non-homogeneous factors ~> multidimensional factors
 - At least one N_{i,j} is 2-dimensional
 - Multivariate low-degree factorization
- New ingredient: *Merge* the partitions of f, to avoid exponential growth in the number of low-degree polynomials

Implementation

http://www.mathemagix.org/ > Packages > Lacunaryx

Factorization-related algorithms for lacunary polynomials

- Integer roots of lacunary univariate polynomials
- Linear factors of lacunary univariate and bivariate polynomials
- Very large degree polynomials (G. Lecerf)
- Example: Integer roots of p with $deg(p)\simeq 2^{185}$ and $\#p\simeq 100\,000$ in <10 seconds

```
[[2, 1], [3, 1], [0, 3], [1, 2]]
```

Mmx] X == coordinate ('x); x : LMVPolynomial Integer == lmvpolynomial(1, X); Y == coordinate ('y); y : LMVPolynomial Integer == lmvpolynomial(1, Y); f == x^2*y*(x-2)*(2*y+3)^2*(y-x+3)*(2*x+7*y)*(x*y+x+1)*(3*x-6*y+5); g == x^3*y^54354165 - 6*y^54354165 - 2*x^4*y^54354164 + 12*x*y^54354164 + x^5*y^54354163 - 6*x^2*y^54354163 + 3*x^1345*y^54336 - 6*x^1346*y^54335 + 3*x^1347*y^54334 + 8*x^432534*y^5 - 18*x^432535*y^4 + 12*x^432536*y^3 -2*x^432537*y^2 + y^2 - 2*x*y + x^2; h == 1 + 3*x^1345*y^54334 - 2*(x-4*y)*x^e*y^2 + (x^3-6)*y^(2*e); fgh == f*g*h; (log deg fgh/log 2, #fgh) (85.861891823199,1028)

60 msec

43 msec

 Reduction to low-degree multivariate polynomials

- Reduction to {univariate lacunary polynomials low-degree multivariate polynomials
- "Field-independent"
- Simpler and more general than previous algorithms
- Partial results in large positive characteristic

[CGKPS'13]

Implementation within Mathemagix: work in progress

- Reduction to { univariate lacunary polynomials low-degree multivariate polynomials
- "Field-independent"
- **Simpler** and **more general** than previous algorithms
- Partial results in large positive characteristic

[CGKPS'13]

- Implementation within Mathemagix: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits

- Reduction to { univariate lacunary polynomials low-degree multivariate polynomials
- "Field-independent"
- **Simpler** and **more general** than previous algorithms
- Partial results in large positive characteristic

[CGKPS'13]

- Implementation within Mathemagix: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits
 - Degree-d factors in **positive characteristic**?
 - Small positive characteristic?

- Reduction to {univariate lacunary polynomials low-degree multivariate polynomials
- "Field-independent"
- Simpler and more general than previous algorithms
- Partial results in large positive characteristic

[CGKPS'13]

- Implementation within Mathemagix: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits
 - Degree-d factors in **positive characteristic**?
 - Small positive characteristic?

ありがとう