Sparse interpolation over the integers

Bruno Grenet

Joint work with P. Giorgi, A. Perret du Cray and D. S. Roche

Dagstuhl seminar
From Sparse Interpolation to Signal Processing: New Synergies
July 11., 2025

General definition of the problem

Sparse interpolation

```
Inputs: A way to evaluate a sparse polynomial f \in R[x] Bounds \delta \geq f^\circ, \, \tau \geq f_\#, \, \text{and} \, \gamma \geq f_\infty (optional)
```

Output: The sparse representation of $f = \sum_{i=0}^{t-1} c_i x^{e_i}, c_i \in \mathbb{R}_{\neq 0}$

Notations

R: ring of coefficients

x: variable, or tuple of variables

 f° : degree of f

 $f_{\#}$: *sparsity* of f, that is number of non-zero terms

 f_{∞} : height of $f \simeq$ measure of the size of the coefficients (if this makes sense)

Many variants

Ring of coefficients

- ightharpoons \mathbb{Z} or \mathbb{Q}
- $ightharpoonup \mathbb{R}$ or \mathbb{C}
- Finite fields
- Modular rings

size growth \rightarrow modular techniques precision issues

large/small size/characteristic zero divisors

Number of variables

- Univariate polynomials
- Multivariate polynomials

Kronecker substitution \rightarrow univariate case

Input representation

- Fixed evaluations
- Black box
- Arithmetic circuit, *a.k.a* Straight-Line Program (SLP)

Many variants

Ring of coefficients

- $ightharpoonup \mathbb{Z}$ or \mathbb{Q}
- $ightharpoonup \mathbb{R}$ or \mathbb{C}
- Finite fields
- Modular rings

size growth \rightarrow modular techniques precision issues

large/small size/characteristic zero divisors

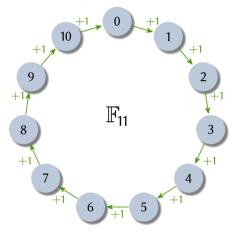
Number of variables

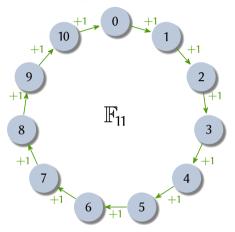
- Univariate polynomials
- Multivariate polynomials

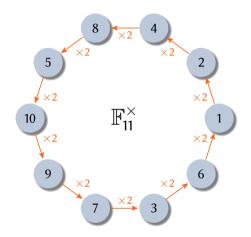
Kronecker substitution \rightarrow univariate case

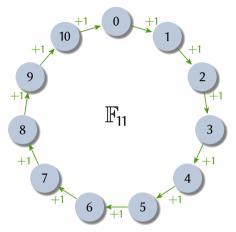
Input representation

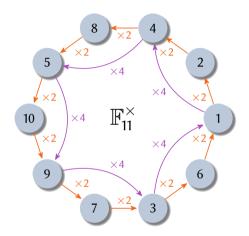
- Fixed evaluations
- ► Black box
- Arithmetic circuit, *a.k.a* Straight-Line Program (SLP)

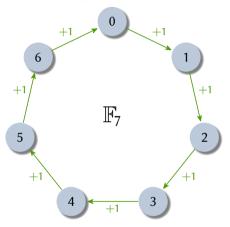


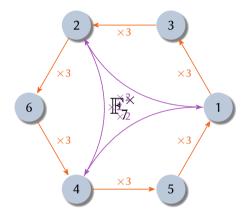


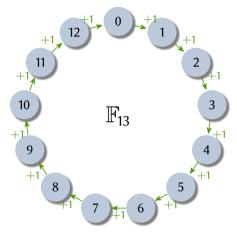


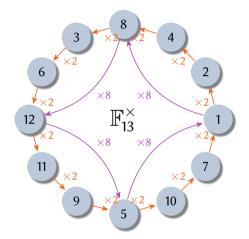


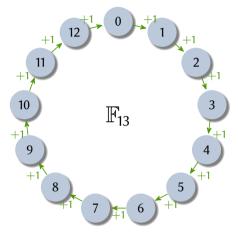


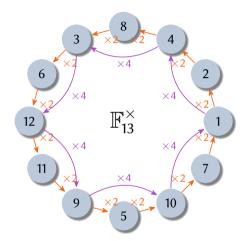


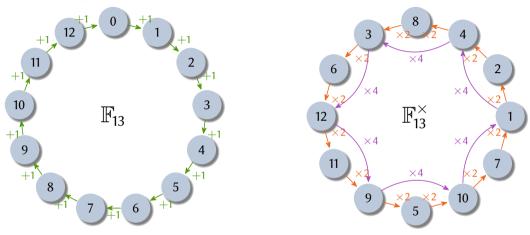












- lacktriangle All four operations +,-, imes and / are well-defined in \mathbb{F}_q
- ▶ Each $\alpha \neq 0$ is a *root of unity* of some order *k* that divides q-1

 $\alpha^k = 1$

Contents

1. Black box algorithm \grave{a} la Prony / Ben-Or-Tiwari

2. SLP algorithm *à la* Garg–Schost

3. A quasi-linear algorithm over the integers

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg-Schost

3. A quasi-linear algorithm over the integers

Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \to \begin{pmatrix} f(1) \\ f(\omega) \\ \vdots \\ f(\omega^n) \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \omega^{e_0} & \cdots & \omega^{e_{t-1}} \\ \vdots & & \vdots \\ \omega^{ne_0} & \cdots & \omega^{ne_{t-1}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{t-1} \end{pmatrix}$$

Theorem [Blahut (1979)]

If ω has order $> f^{\circ}$, the minimal polynomial of $(f(\omega^{j}))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Algorithm

1. Evaluate f at 1, ω , ..., $\omega^{2\tau-1}$

black box

2. Compute the minimal polynomial Λ of $(f(\omega^i))_i$

Prony polynomial

- **3.** Compute the roots $\rho_0, ..., \rho_{t-1}$ of Λ
- **4.** Compute their discrete logarithms e_0, \ldots, e_{t-1}

 $\rho_i = \omega^{e_i}$

5. Compute $c_0, ..., c_{t-1}$ by transposed Vandermonde system solving

Complexity analysis over \mathbb{F}_q : fast steps

Minimal polynomial computation

Given $(f(\omega^i))_{0 \le i < 2\tau}$, compute its minimal polynomial

- ► LFSR synthesis, error correcting codes
- Padé approximant, Euclid algorithm
- Hankel system solving

[Berlekamp (1968), Massey (1969)]

[Brent-Gustavson-Yun (1980)]

[Lanczos (1952)]

$$ilde{\mathcal{O}}(au)$$
 operations in $\mathbb{F}_q = ilde{\mathcal{O}}(t\log q)$ bit operations

Coefficients computation

Given $(f(\omega^i))_{0 \le i < t}$ and $(\omega^{e_i})_{0 \le i < t}$, compute $c_0, ..., c_{t-1}$

ightharpoonup Vandermonde system solving \Leftrightarrow (dense) interpolation

- [Borodin-Moenck (1974)]
- ► Transposed Vandermonde syst. solv. [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003)]

$$ilde{\mathcal{O}}(t)$$
 operations in $\mathbb{F}_q = ilde{\mathcal{O}}(t\log q)$ bit operations

Complexity analysis over \mathbb{F}_q : not-so-fast steps

Root finding

Given $\Lambda = \sum_{i=0}^{t-1} \lambda_i x^i$, compute its t non-zero distinct roots $\rho_0, \ldots, \rho_{t-1} \in \mathbb{F}_q$

 $ightharpoonup \Gamma \leftarrow \operatorname{GCD}\left(\Lambda, (x+\alpha)^{\frac{q-1}{2}}\right)$ for random α

[Rabin (1980)]

► Recursion with Γ and Λ/Γ

[Berlekamp (1970)]

$$ilde{\mathcal{O}}(t\log(q))$$
 operations in $\mathbb{F}_q = ilde{\mathcal{O}}(t\log^2q)$ bit operations

Discrete logarithms

Given $\rho_0, \ldots, \rho_{t-1}$, compute $e_i \in [0, \ldots, \delta]$ s.t. $\rho_i = \omega^{e_i}$ for $0 \le i < t$

Baby steps/giant steps algorithm

[Shanks (1971)]

 \triangleright Use bound δ and combine t computations

[Pollard (1978), Kuhn-Struik (2001)]

 $O(\sqrt{\delta t})$ operations in $\mathbb{F}_q = \tilde{\mathcal{O}}(\sqrt{\delta t}\log q)$ bit operations

Conclusion on Prony / Ben-Or-Tiwari algorithm

Theorem

Given black box access to $f \in \mathbb{F}_q[x]$ and bounds $\tau \geq f_\#$ and $\delta \geq f^\circ$, one can compute the sparse representation of f in $\mathcal{O}(\sqrt{\tau\delta}\log q + \tau\log^2 q)$ bit operations

Good and bad news

- ightharpoonup Quasi-linear in au, linear (optimal) number of evaluations
- ▶ Bound $\tau \ge f_\#$ not required \to early termination [Kaltofen-Lee (2003)]
- ▶ Polynomial in δ , rather than $\log \delta \rightarrow$ not polynomial in the output size

Other rings

- ightharpoons \mathbb{Z}/\mathbb{Q} :
 - large evaluations (bit size $O(\delta)$)

- [Ben-Or-Tiwari (1988)]
- ► Compute modulo p where p-1 is smooth \rightarrow fast discrete log. [Kaltofen (1988/2010)]
- lacktriangle Modular rings: works as long as ω is a *principal* root of unity of large order

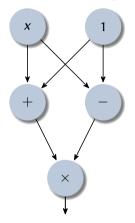
Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwar

2. SLP algorithm à la Garg-Schost

3. A quasi-linear algorithm over the integers

Arithmetic circuit / Straight-line program



Input: $r_0 := x$

Constant: $r_1 := 1$

- 2. $r_2 := r_0 + r_1$
- 3. $r_3 := r_0 r_1$
- 4. $r_4 := r_2 \times r_3$

$$f(x) = x^2 - 1$$

Given an SLP for $f \in R[x]$ (and bounds), compute its sparse representation

Folding the polynomials

From an SLP, f can be computed explicitly in time $O(\delta)$

expression swell

► Compute $f \mod x^p - 1 = \sum_i c_i x^{e_i \mod p}$ for some prime p

[Garg-Schost (2009)]

- Exponents known only *modulo p*
- Possible *collisions* between monomials

Exponent embedding

 $If f = \sum_{i} c_i x^{e_i}, xf' = \sum_{i} c_i e_i x^{e_i}$

[Huang (2019)]

- lacktriangleq requires ${\sf char}(\mathbb{F}_q) \geq f^\circ$
- $f((1+q)x) = \sum_i c_i (1+e_i q) x^{e_i} = f + q \cdot (xf') \text{ in } \mathbb{Z}/q^2 \mathbb{Z}[x]$

[Arnold-Roche (2015)]

Deal with collisions

Avoid collisions with random primes or many primes

[Garg-Schost (2009)]

- ► If $p = Ω(τ^2 \log δ)$ is random, no collision *w.h.p.*
- ► Accept some collisions and correct errors [Arnold-Giesbrecht-Roche (2013), Huang (2019)]
 - If $p = \Omega(\tau \log \delta)$ is random, $\leq \frac{1}{6}\tau$ collisions w.h.p
 - Compute an approximation f_* such that $(f f_*)_\# \leq \frac{1}{2} f_\#$ w.h.p.

Algorithm

Inputs: SLP for
$$f \in \mathbb{F}_q[x]$$
, char $(\mathbb{F}_q) \ge f^{\circ}$, and bounds $\tau \ge f_{\#}$, $\delta \ge f^{\circ}$

- 1. $f_* \leftarrow 0$
- **2.** Repeat $\log(\tau)$ times:
- 3. $p \leftarrow \text{random prime in } [\lambda, 2\lambda] \text{ for } \lambda = \tilde{\mathcal{O}}(\tau \log \delta)$
- $4. f_{p}^{(0)} \leftarrow f \bmod x^p 1$
- 5. $f_p^{(1)} \leftarrow (xf') \mod x^p 1$ $from f((1+q)x) \mod x^p 1$
- 6. For each pair $cx^d \in f_p^{(0)}$, $c'x^d \in f_p^{(1)}$: add $c \cdot x^{c'/c}$ to f_* if $c'/c \in \{0, \dots, \delta\}$
- 7. Return f_*

Complexity analysis

 $lackbox{O}(\log au) \ probes = \tilde{\mathcal{O}}(sp \log au) \ operations \ in \ \mathbb{F}_q = \tilde{\mathcal{O}}(s au \log \delta \log q) \ bit \ operations \ s: \ SLP \ size$

Remarks on Garg-Schost algorithm

Huang's variant is almost quasi-linear!

- Output size: $O(\tau(\log \delta + \log q))$, complexity: $\tilde{\mathcal{O}}(\tau \log \delta \log q)$
- ► Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

- ► Smaller characteristic
 - No exponent embedding anymore
 - Several techniques, such as diversification
 - ▶ Best complexity: $O(s\tau \log^2 \delta(\log \delta + \log q))$

[Arnold-Giesbrecht-Roche (2014)]

- Over the integers
 - ightharpoonup Coefficient growth \rightarrow modular techniques
 - ▶ Best complexity: $O(s\tau \log^3 \delta \log \gamma)$ where $\gamma \ge f_{\infty}$

[Perret du Cray (2023)]

Contents

1. Black box algorithm à la Prony / Ben-Or-Tiwar

2. SLP algorithm à la Garg-Schost

3. A quasi-linear algorithm over the integers

Result

Inputs: Modular black box for $f \in \mathbb{Z}[x]$

Bounds $\tau \geq f_{\#}, \, \delta \geq f^{\circ}, \, \gamma \geq f_{\infty}$

Complexity: $\tilde{\mathcal{O}}(\tau(\log \delta + \log \gamma))$ bit operations

Modular black box

- Given α and m, compute $f(\alpha)$ mod m
- Can be implemented given an arithmetic circuit / SLP
- lacksquare Pure black box: evaluations on $\mathbb{Z}\setminus\{0,\pm 1\}$ have size $\Omega(\delta)$

The strategy

- ► General structure: à la Garg-Schost
- Computing $f \mod x^p 1$: $\grave{a} \ln Prony / Ben-Or-Tiwari$
- Work over several rings of different sizes to make it efficient

Details on the strategy

- 1. Compute the exponents of $f \mod x^p 1$
 - lackbox Work in a small field $\mathbb{F}_q o$ no coefficient should vanish modulo q
- 2. Compute the coefficients of $f \mod x^p 1$
 - lacktriangle Work in a larger $ring\ \mathbb{Z}/q^k\mathbb{Z} o ext{the coefficients must be exactly representable}$
- 3. Compute the (non-colliding) exponents of f
 - lacktriangle Embed the exponents into the coefficients o work with both f(x) and $f((1+q^k)x)$
- 4. Recurse
 - ► Steps 1-3 compute an *approximation* f_* of f
 - Restart with f replaced by $(f f_*)$

First ingredient: compute exponents of $f \mod x^p - 1$

Evaluations in a small field \mathbb{F}_q

- If ω has order p in \mathbb{F}_q , $f(\omega^j) = (f \mod x^p 1)(\omega^j)$
- ► Small random *q* for efficiency reasons
 - Only require coefficients to be nonzero mod q
- ► Random *p* to prevent too many collisions
 - ightharpoonup p must divide q-1 to have $\omega\in\mathbb{F}_q^ imes$ of order p

$q = \operatorname{poly}(\tau \log \gamma)$

$p = O(\tau \log \delta)$

Algorithm: first part of Prony's method

Inputs: f and $\omega \in \mathbb{F}_q^{\times}$ of order p

- 1. Evaluate f at $1, \omega, \ldots, \omega^{2\tau-1}$
- **2.** Compute the minimal polynomial of $(f(\omega^j))_j$
- 3. Compute its roots and get the exponents

to be computed

- 2 au queries
- $\mathcal{O}(au \log q)$
- $\mathcal{O}(p \log q)$

Complexity analysis

$$\mathcal{\tilde{O}}(au \log q + p \log q) = \mathcal{\tilde{O}}(au \log \delta \log \log \gamma)$$

Second ingredient: compute $f \mod x^p - 1$

Evaluations in a larger ring

- $ightharpoonup \mathbb{F}_q$ is too small \to coefficients known modulo q
 - Use larger ring where coefficients can be represented
 - Using large finite field is too costly (primality/irreducibility testing)
- ightharpoonup Ring $\mathbb{Z}/a^k\mathbb{Z}$ where $a^k > 2\gamma$

 $k = O(\log \gamma / \log q)$

Algorithm: second part of Prony's method

Inputs: f and $\omega_k \in (\mathbb{Z}/q^k\mathbb{Z})^{\times}$ of order pthe exponents e_0, \ldots, e_{t-1} of $f \mod x^p - 1$ to be computed

1. Evaluate f at 1, $\omega_k, \ldots, \omega_k^{t-1}$

au queries

 $\mathcal{O}(\tau k \log q)$

2. Solve the system
$$\begin{pmatrix} 1 & \dots & 1 \\ \omega_k^{e_0} & \dots & \omega_k^{e_{t-1}} \\ \vdots & \ddots & \vdots \\ \omega_k^{(t-1)e_0} & \dots & \omega_k^{(t-1)e_{t-1}} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{t-1} \end{pmatrix} = \begin{pmatrix} f(1) \\ f(\omega_k) \\ \vdots \\ f(\omega_k^{t-1}) \end{pmatrix}$$

Complexity analysis

$$\mathcal{\tilde{O}}(\tau k \log q) = \mathcal{\tilde{O}}(\tau \log \gamma)$$

Third ingredient: Embed exponents into coefficients

An even slightly larger ring

Consider $f((1+q^k)x)$ in $\mathbb{Z}/q^{2k}\mathbb{Z}[x]$:

$$f((1+q^k)x) \mod x^p - 1 = (f(x) + q^k \cdot (xf')(x)) \mod x^p - 1$$

Modified algorithm

Inputs f and $\omega_{2k} \in (\mathbb{Z}/q^{2k}\mathbb{Z})^{\times}$ of order p the exponents e_0, \ldots, e_{t-1} of $f \mod x^p - 1$

1. Evaluate f at 1, $\omega_{2k}, \ldots, \omega_{2k}^{t-1}$

2. Evaluate f at $1 + q^k$, $(1 + q^k)\omega_{2k}$, ..., $(1 + q^k)\omega_{k}^{t-1}$

Obtain evaluations $(xf')(1), (xf')(\omega_{2k}), ..., (xf')(\omega_{2k}^{t-1})$ 3. Solve the two transposed Vandermonde systems

► Get *non-colliding* terms of *f*

to be computed

.

au queries

au queries

 $\mathcal{O}(\tau k \log q)$

 $\mathcal{O}(\tau k \log q)$

Complexity analysis

$$\mathcal{\tilde{O}}(\tau k \log q) = \mathcal{\tilde{O}}(\tau \log \gamma)$$

Fourth ingredient: $\omega \in \mathbb{F}_q$ and $\omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$ of multiplicative order p

Compute p, q, ω and ω_{2k} together

ightharpoonup p must divide q-1: take q=kp+1 for some k

- effective Dirichlet theorem
- lacktriangledown has order p \Leftrightarrow $\omega = \alpha^{(q-1)/p} \neq 1$ for some α
- $lackbox{}\omega_{2i}$ has order p modulo $q^{2i}\Rightarrow\omega_{2i}$ has order p modulo q^i

Hensel lifting

 $O(\text{poly}(\log \lambda))$

 $O(\text{poly}(\log \lambda))$

Algorithm

- 1. Sample a random prime $p \in [\lambda, 2\lambda]$ with $\lambda = O(\tau \log \delta)$
- 2. Sample a random prime $q \in \{kp+1 : 1 \le k \le \lambda^5\}$
- 3. Sample a random $\alpha \in \mathbb{F}_q$ until $\omega = \alpha^{(q-1)/p} \neq 1$
- 4. Lift ω to $\omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$ of same order

 $O(\mathsf{poly}(\log q/p))$ $\mathcal{\tilde{O}}(k\log p\log q)$

Complexity analysis

5. Return $(p, q, \omega, \omega_{2k})$

$$\tilde{\mathcal{O}}(\operatorname{poly}(\log \lambda) + k \log p \log q) = \tilde{\mathcal{O}}(\operatorname{poly}(\log(\tau \log \delta)) + \log(\gamma) \log(\tau \log \delta))$$

Add recursion: full algorithm

Algorithm

- 1. $f_* \leftarrow 0$
- 2. Repeat $\log \tau$ times:
- 3. Compute $p, q, \omega \in \mathbb{F}_q, \omega_{2k} \in \mathbb{Z}/q^{2k}\mathbb{Z}$
- 4. Compute the exponents of $(f f_*) \mod x^p 1$ in \mathbb{F}_q
- 5. Compute the coefficients of $(f f_*)$ mod $x^p 1$ in $\mathbb{Z}/q^{2k}\mathbb{Z}$
- 6. Compute the collision-free exponents of $(f f_*)$ (+ some noise)
- 7. Update f_*
- 8. Return f_*

Theorem

[Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds τ , δ , γ , the algorithm returns the sparse representation of f w.h.p. in $O(\tau)$ evaluations and $\mathcal{O}(\tau(\log \delta + \log \gamma))$ bit operations

Fourth ingredient

First ingredient Second ingredient

Third ingredient

Tillia ingredient

Extensions

Remove sparsity bound

- ightharpoonup Given $(\alpha_i)_{i>0}$, find its minimal polynomial without any bound on its degree
 - Berlekamp-Massey with early termination

[Kaltofen-Lee (2003)] 2t eval. and $\tilde{\mathcal{O}}(t \log q)$

- ightharpoonup Works over \mathbb{F}_q with $q=\Omega(\delta^4)$
- Over \mathbb{Z} : early termination modulo $q = \Omega(\delta^4)$
 - Too costly to generate such a prime
 - Random primes without primality testing

 $O(\log^3 \delta)$

[Giorgi-G.-Perret du Cray-Roche (2022)]

The multivariate case

 $f \in \mathbb{Z}[x_0,\ldots,x_{n-1}] \mapsto f_u = f(x,x^{\delta},x^{\delta^2},\ldots,x^{\delta^{n-1}}) \in \mathbb{Z}[x]$

Kronecker (1882)

- Invertible map
- $f_u^{\circ} < \delta^n, (f_u)_{\#} = f_{\#}, (f_u)_{\infty} = f_{\infty}$
- ightharpoonup Evaluation $f_u(\alpha)$: compute $\alpha^{\delta}, ..., \alpha^{\delta^{n-1}}$ and $f(\alpha, ..., \alpha^{\delta^{n-1}})$

Main result

[Giorgi-G.-Perret du Cray-Roche (2024)]

Given a modular black box $f \in \mathbb{Z}[x_0, \dots, x_{n-1}], \delta > f^{\circ}$ and $\gamma > f_{\infty}$, one can compute the sparse representation of f in $O(f_{\#})$ evaluations and $\tilde{O}(f_{\#}(n \log \delta + \log \gamma))$ bit operations

Conclusion

Sparse interpolation over the integers

- Interpolate f from a modular black box in quasi-linear time
- Corollaries for sparse polynomials:
 - Quasi-linear multiplication algorithm
 - Quasi-linear exact division algorithm

[Giorgi-G.-Perret du Cray (2020)]

[Giorgi-G.-Perret du Cray-Roche (2021-22)]

Open problem: sparse interpolation over finite fields

Best algorithms: $\mathcal{O}(\tau \log \delta \log q)$

[Huang (2019)]

- requires char(\mathbb{F}_q) > f°
- not quasi-linear
- Smaller characteristics: no exponent embedding

Conclusion

Sparse interpolation over the integers

- lacktriangle Interpolate f from a modular black box in quasi-linear time
- Corollaries for sparse polynomials:
 - Quasi-linear multiplication algorithm
 - Quasi-linear exact division algorithm

[Giorgi-G.-Perret du Cray (2020)]

[Giorgi-G.-Perret du Cray-Roche (2021-22)]

Open problem: sparse interpolation over finite fields

- ▶ Best algorithms: $\tilde{\mathcal{O}}(\tau \log \delta \log q)$
 - requires char(\mathbb{F}_q) > f°
 - not quasi-linear
- Smaller characteristics: no exponent embedding

[Huang (2019)]

Thank you!