Symmetric Determinantal Representations of Polynomials

Bruno Grenet*†

Joint work with Erich L. Kaltofen[‡], Pascal Koiran^{*†} and Natacha Portier^{*†}

*MC2 – LIP, ÉNS Lyon [†]Theory Group – DCS, U. of Toronto [‡]Dept. of Mathematics – North Carolina State U.

Dagstuhl Seminar on Computational Counting - November 30, 2010

The problem

$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Formal polynomial

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Dagstuhl – 30/11/2010

2 / 31

The problem

$$(x+3y)z = \det \begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Formal polynomial
- Smallest possible dimension of the matrix

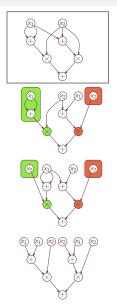
Bruno Grenet (LIP – ÉNS Lyon)

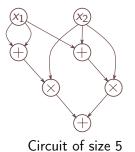
Symm. Det. Rep. of Polynomials

Dagstuhl – 30/11/2010

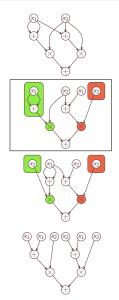
2 / 31

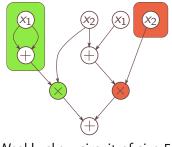
Representations of polynomials





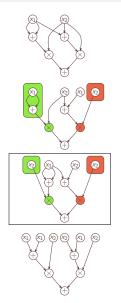
Representations of polynomials

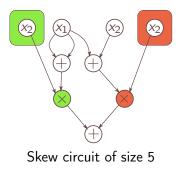




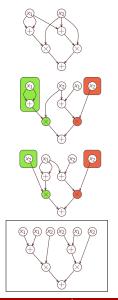
Weakly-skew circuit of size 5

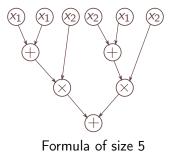
Representations of polynomials



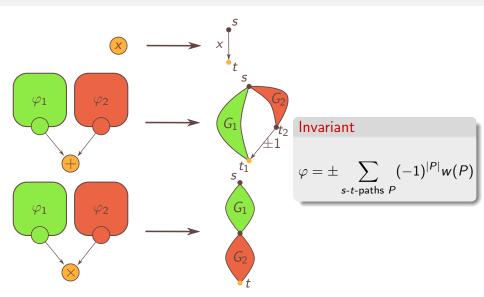


Representations of polynomials

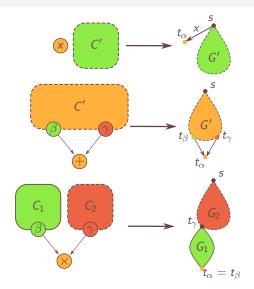


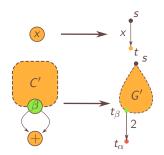


Valiant's construction



Toda-Malod's construction





Invariant

For each *reusable* gate α , there exists t_{α} s.t.

$$w(s
ightarrow t_{lpha}) = arphi_{lpha}.$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved • Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 6 / 31

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

Outline

Universality of determinants of symmetric matrices

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Dagstuhl - 30/11/2010

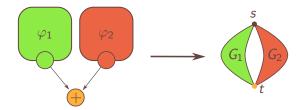
7 / 31

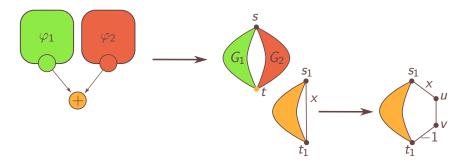
• Symmetric matrices \iff undirected graphs

- \bullet Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!

- \bullet Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants

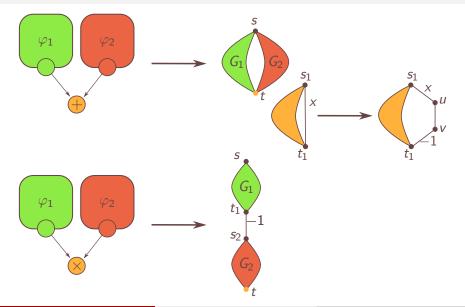
- Symmetric matrices \iff undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: char(\mathbb{K}) \neq 2 in this section

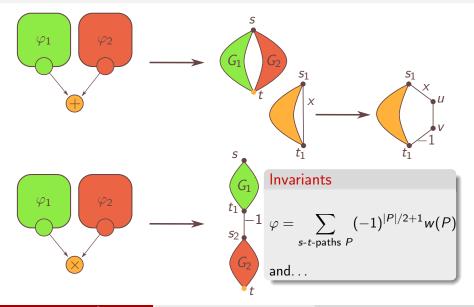




Bruno Grenet (LIP – ÉNS Lyon)

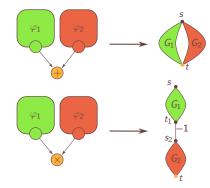
Symm. Det. Rep. of Polynomials





Symm. Det. Rep. of Polynomials

•
$$\varphi = \sum_{s-t-naths P} (-1)^{|P|/2+1} w(P)$$



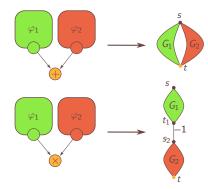
Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

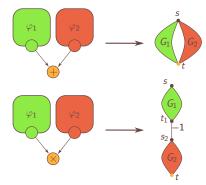
• $|G|$ is even, every cycle in G is

even, and every *s*-*t*-path is even



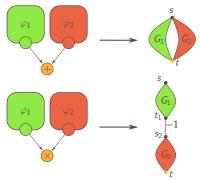
•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- *G* \ {*s*, *t*} is either empty or has a unique cycle cover



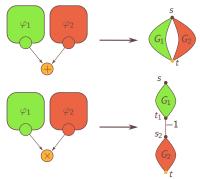
•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1



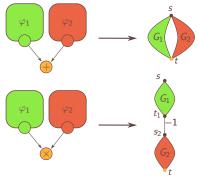
•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

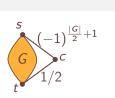
- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover

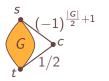


•
$$\varphi = \sum_{s-t\text{-paths }P} (-1)^{|P|/2+1} w(P)$$

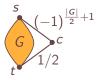
- |G| is even, every cycle in G is even, and every *s*-*t*-path is even
- G \ {s, t} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
 - For any s-t-path P, G \ P is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1



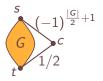




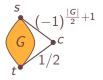
• |G'| is odd: Every odd cycle goes through c.



- |G'| is odd: Every odd cycle goes through c.
- Cycle covers in $G' \iff s \rightarrow t$ -paths in G

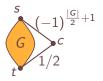


- |G'| is odd: Every odd cycle goes through c.
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G



- |G'| is odd: Every odd cycle goes through c.
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G

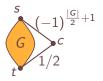
$$w(s
ightarrow t) + w(t
ightarrow s) = 2 imes arphi$$



- |G'| is odd: Every odd cycle goes through c.
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G

$$w(s
ightarrow t) + w(t
ightarrow s) = 2 imes \varphi$$

 \rightsquigarrow char(\mathbb{K}) $\neq 2$



- |G'| is odd: Every odd cycle goes through c.
- Cycle covers in $G'\iff s o t ext{-paths}$ in $G\iff t o s ext{-paths}$ in G

$$w(s
ightarrow t) + w(t
ightarrow s) = 2 imes arphi$$

 \rightsquigarrow char(\mathbb{K}) $\neq 2$

Theorem

For a formula φ of size e, this construction yields a graph of size 2e + 3. The determinant of its adjacency matrix equals φ .

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Dagstuhl – 30/11/2010 11 / 31

Case of weakly-skew circuits

• Main difficulty:

Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Dagstuhl – 30/11/2010

12 / 31

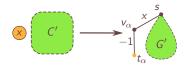
Case of weakly-skew circuits

• Main difficulty:

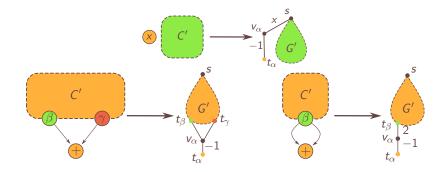
• Definition: A path P is acceptable if $G \setminus P$ admits a cycle cover

13 / 31

Constructions

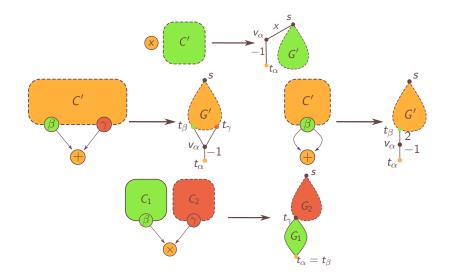


Constructions



Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 13 / 31

Constructions



Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

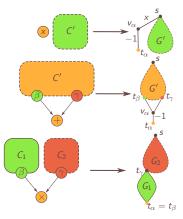
Dagstuhl – 30/11/2010

13 / 31

for weakly-skew circuits

Invariants in the case of weakly-skew circuits

• For each reusable α , there exists t_{α} s.t.



Bruno Grenet (LIP – ÉNS Lyon)

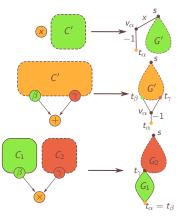
Symm. Det. Rep. of Polynomials

Dagstuhl - 30/11/2010 14 / 31

• For each reusable α , there exists t_{α} s.t.

$$\varphi_{\alpha} = \sum (-1)^{\frac{|P|-1}{2}} w(P)$$

acceptable $s-t_{\alpha}$ -paths P



Bruno Grenet (LIP – ÉNS Lyon)

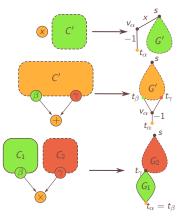
Symm. Det. Rep. of Polynomials

• For each reusable α , there exists t_{α} s.t.

•
$$\varphi_{\alpha} = \sum_{(-1)^{\frac{|P|-1}{2}}} w(P)$$

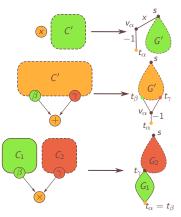
acceptable $s-t_{\alpha}$ -paths P

• Every *s*- t_{α} -path is odd



•
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable} \\ s - t_{\alpha} - \text{paths } P}} (-1)^{\frac{|P| - 1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover

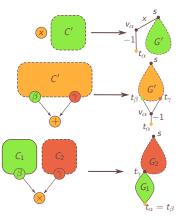


• For each reusable α , there exists t_{α} s.t.

•
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

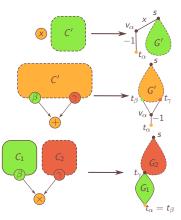
- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover

 \rightsquigarrow Perfect matching of weight 1



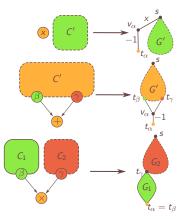
•
$$\varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1
- |G| is odd, every cycle in G is even



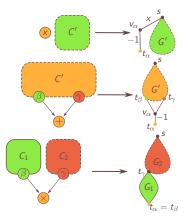
$$\blacktriangleright \varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover
 → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- *G* \ {*s*} is either empty or has a unique cycle cover



$$\blacktriangleright \varphi_{\alpha} = \sum_{\substack{\text{acceptable}\\s-t_{\alpha}-\text{paths }P}} (-1)^{\frac{|P|-1}{2}} w(P)$$

- Every *s*- t_{α} -path is odd
- For a s-t_α-path P, G \ P is either empty or has a unique cycle cover
 → Perfect matching of weight 1
- |G| is odd, every cycle in G is even
- *G* \ {*s*} is either empty or has a unique cycle cover
- \rightsquigarrow Perfect matching of weight 1



• Add
$$s \xleftarrow{(1/2)\cdot(-1)^{\frac{|\mathcal{G}|-1}{2}}} t$$
: new graph \mathcal{G}' .

• Add
$$s \xleftarrow{(1/2)\cdot(-1)^{\frac{|G|-1}{2}}} t$$
: new graph G' .

• $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

• Add
$$s \xleftarrow{(1/2)\cdot(-1)}{t} \xrightarrow{|G|-1}{t} t$$
: new graph G' .

• $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G' \iff s \rightarrow t$ -paths in $G \iff t \rightarrow s$ -paths in G.

• Add
$$s \xleftarrow{(1/2)\cdot(-1)^{\frac{|G|-1}{2}}} t$$
: new graph G' .

• $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G' \iff s \rightarrow t$ -paths in $G \iff t \rightarrow s$ -paths in G.

• With some sign considerations, we get:

• Add
$$s \xleftarrow{(1/2)\cdot(-1)^{\frac{|G|-1}{2}}} t$$
: new graph G' .

• $|G' \setminus \{s,t\}|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G' \iff s \rightarrow t$ -paths in $G \iff t \rightarrow s$ -paths in G.

• With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ , this construction yields a graph G' with 2(e + i) + 1 vertices. The adjacency matrix of G' has its determinant equal to φ .

Summary

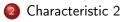
	Formula	Weakly-skew circuit
Non symmetric	e + 1	(e+i) + 1
Symmetric	2e + 1	2(e+i) + 1

e: size

i: number of input variables

Outline

Universality of determinants of symmetric matrices



Bruno Grenet (LIP – ÉNS Lyon)

Symm. Det. Rep. of Polynomials

Dagstuhl – 30/11/2010

17 / 31

• Scalar 1/2 in the constructions \implies not valid for characteristic 2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010

18 / 31

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

• \mathbb{F} : (finite) field of characteristic 2

- Scalar 1/2 in the constructions \implies not valid for characteristic 2
- Very special case: cycles of length > 2 are counted twice
 - \implies permutations restricted to pairs and singleton
 - \implies cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

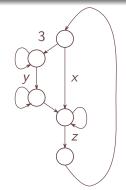
- \mathbb{F} : (finite) field of characteristic 2
- Here: Polynomials over $\mathbb{F}[x, y, z]$

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.

Theorem

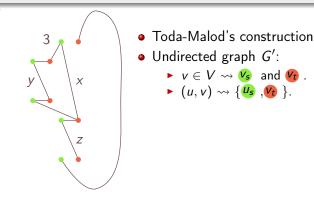
Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.



Toda-Malod's construction

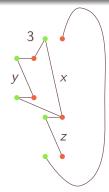
Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.



Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.



- Toda-Malod's construction
- Undirected graph G':

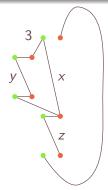
$$\bullet \ v \in V \rightsquigarrow V_s \text{ and } V_t$$

$$\bullet (u, v) \rightsquigarrow \{ \underbrace{u_s}, \underbrace{v_t} \}.$$

• Cycle Covers in $G \iff$ Perfect Matching in G'

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.



- Toda-Malod's construction
- Undirected graph G':

$$v \in V \rightsquigarrow V_s \text{ and } V_t \\ (u, v) \rightsquigarrow \{ U_s, V_t \}.$$

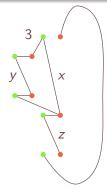
• Cycle Covers in $G \iff$ Perfect Matching in G'

$$\leadsto$$
 det $M_G = \sum_{\mu} w(\mu)$

Dagstuhl - 30/11/2010

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2 such that $p^2 = \det A$.



- Toda-Malod's construction
- Undirected graph G':

$$v \in V \rightsquigarrow V_s \text{ and } V_t$$
$$(u, v) \rightsquigarrow \{ U_s, V_t \}.$$

• Cycle Covers in $G \iff$ Perfect Matching in G'

$$\leadsto$$
 det $M_{G} = \sum_{\mu} w(\mu)$

• det
$$M_{G'} = \sum_{\mu} w(\mu)^2 = \left(\sum_{\mu} w(\mu)\right)^2$$

A negative result

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ is a product of degree-1 polynomials.

A negative result

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

A negative result

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

• Example: xy + z has no symmetric determinantal representation.

A negative result

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.

A negative result

Theorem (G., Monteil, Thomassé)

If there exists a symmetric matrix A such that $p = \det A$, then $p \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: xy + z has no symmetric determinantal representation.
- Conjecture: nor does $xy^2 + yz^2 + zx^2$.
- Characterization?

• Modulo: no variable outside the diagonal

- Modulo: no variable outside the diagonal
 - If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "

- Modulo: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.

- Modulo: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.

• Operations on rows and columns:

- Modulo: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant: unchanged

- Modulo: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant: unchanged
 - Coefficients: linear polynomials

- Modulo: no variable outside the diagonal
 - ▶ If $A_{ij} = A_{ji} = p(x, y, z)$, then " $p^2 \in \det A$ " and " $p \notin \det A$ "
 - But $p(x, y, z)^2 \equiv \lambda \mod \langle x^2 + \ell_x, y^2 + \ell_y, z^2 + \ell_z \rangle$, $\lambda \in \mathbb{F}$.
- Operations on rows and columns:
 - Determinant: unchanged
 - Coefficients: linear polynomials
 - The matrix becomes diagonal

• These results raise the questions:

22 / 31

• These results raise the questions:

If p^2 has a small (weakly-skew) circuit, what about p?

• These results raise the questions:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP$ (VP_{ws}), does f belong to VP (VP_{ws})?

• These results raise the questions:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP$ (VP_{ws}), does f belong to VP (VP_{ws})?

• It appears to be related to an open problem of Bürgisser:

• These results raise the questions:

If p^2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. $f^2 \in VP (VP_{ws})$, does f belong to VP (VP_{ws}) ?

• It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?

Valiant's classes

• Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family (f_n) of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_n are polynomially bounded in n.

A family (f_n) of polynomials is in VNP if there exists a family $(g_n(y_1, \ldots, y_{v(n)})) \in VP$ s.t.

$$f_n(x_1,\ldots,x_{u(n)})=\sum_{\overline{\epsilon}\in\{0,1\}^{\nu(n)-u(n)}}g_n(x_1,\ldots,x_{u(n)},\overline{\epsilon}).$$

23 / 31

•
$$(\mathsf{DET}_n) \in \mathsf{VP}, (\mathsf{PER}_n) \in \mathsf{VNP}, \ldots$$

VNP-completeness

Definition

A family (g_n) is a *p*-projection of a family (f_n) is there exists a polynomial *t* s.t. for all $n, g_n(\bar{x}) = f_{t(n)}(a_1, \ldots, a_m)$, with $a_1, \ldots, a_m \in \mathbb{K} \cup \{x_1, \ldots, x_n\}$.

A family $(f_n) \in \text{VNP}$ is VNP-complete if every family in VNP is a *p*-projection of (f_n) .

- (PER_n) is VNP-complete in characteristic $\neq 2$
- (HC_n) is VNP-complete (in any characteristic)

Boolean parts

Definition

The boolean part of (f_n) is $bp_f : \{0,1\}^* \to \{0,1\}$ s.t. for $x \in \{0,1\}^n$, $bp_f(x) = f_n(x)$.

Boolean parts

Definition

The boolean part of (f_n) is $bp_f : \{0,1\}^* \to \{0,1\}$ s.t. for $x \in \{0,1\}^n$, $bp_f(x) = f_n(x)$.

The boolean part of a class VC is $BP(VC) = \bigcup_{f \in VC} bp_f$.

Boolean parts

Definition

The boolean part of (f_n) is $bp_f : \{0,1\}^* \to \{0,1\}$ s.t. for $x \in \{0,1\}^n$, $bp_f(x) = f_n(x)$.

The boolean part of a class VC is $BP(VC) = \bigcup_{f \in VC} bp_f$.

Theorem (Bürgisser)

- $BP(VP) \subseteq NC^2/poly$
- $BP(VNP) = \oplus P/poly$

Partial Permanent

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 26 / 31

Partial Permanent

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Lemma

Let $G = K_{n,n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2,

$$\det(A+I_{2n})=(\operatorname{per}^*B)^2$$

where I_{2n} is the identity matrix.

Partial Permanent

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

where π ranges over the injective partial maps from [n] to [n].

Lemma

Let $G = K_{n,n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2,

$$\det(A+I_{2n})=(\operatorname{per}^*B)^2$$

where I_{2n} is the identity matrix.

Same kind of ideas as the previous proof.

Dagstuhl – 30/11/2010 26 / 31

(PER^{*}_n): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

(PER^{*}_n): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((\text{PER}^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

(PER^{*}_n): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((\text{PER}^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem $((\text{PER}^*)_n^2) \in \text{VP}$ in characteristic 2.

(PER^{*}_n): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

 $((\text{PER}^*)_n^2)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem

 $((\mathsf{PER}^*)^2_n) \in \mathsf{VP}$ in characteristic 2.

Proof. $((\text{PER}^*)_n^2)$ is a *p*-projection of (DET_n) .

Problem

Is the partial permanent VNP-complete in characteristic 2?

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 28 / 31

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case, $\oplus P/poly = NC^2/poly$, and $PH = \Sigma_2$.

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case,
$$\oplus P/poly = NC^2/poly$$
, and $PH = \Sigma_2$.

Proof sketch. If the case arises,

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case,
$$\oplus \mathsf{P}/\mathsf{poly} = \mathsf{NC}^2/\mathsf{poly}$$
, and $\mathsf{PH} = \Sigma_2$.

Proof sketch. If the case arises,

• $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP)

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 28 / 31

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case,
$$\oplus \mathsf{P}/\mathsf{poly} = \mathsf{NC}^2/\mathsf{poly}$$
, and $\mathsf{PH} = \Sigma_2$.

Proof sketch. If the case arises,

- $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP)
- Bürgisser: $\oplus P/poly = BP(VNP)$ $BP(VP) \subseteq NC^2/poly$

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem

If it is the case,
$$\oplus \mathsf{P}/\mathsf{poly} = \mathsf{NC}^2/\mathsf{poly},$$
 and $\mathsf{PH} = \Sigma_2.$

Proof sketch. If the case arises,

- $VNP^2 \subseteq VP$, thus BP(VP) = BP(VNP)
- Bürgisser: $\oplus P/poly = BP(VNP)$ $BP(VP) \subseteq NC^2/poly$
- Karp-Lipton Theorem

• We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

• For characteristic 2:

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic \neq 2):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^5)$ s.t. det $M = \det M'$.

- For characteristic 2:
 - Answer to Bürgisser's Open Problem
 - Proof of a negative result

29 / 31

\bullet Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials

Convex Geometry: K = R and real zero polynomials
 → what can be done in that precise case?

- Convex Geometry: K = R and real zero polynomials
 → what can be done in that precise case?
- Characteristic 2:

- Convex Geometry: K = R and real zero polynomials
 → what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a symmetric determinantal representation

- Convex Geometry: K = R and real zero polynomials
 → what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a symmetric determinantal representation
 - Explore graph polynomials

- Convex Geometry: K = R and real zero polynomials
 → what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a symmetric determinantal representation
 - Explore graph polynomials
- Symmetric matrices in Valiant's theory?

Thank you!