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Introduction

The problem

(x + 3y)z = det


0 x 3 0 0
0 1 0 0 z
0 0 1 y 0
0 1 0 1 0
1 0 0 0 0


Formal polynomial

Smallest possible dimension of the matrix
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Introduction

Representations of polynomials
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Circuit of size 5
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Introduction

Valiant’s construction
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Invariant

ϕ = ±
∑

s-t-paths P

(−1)|P|w(P)
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Introduction

Toda-Malod’s construction
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Invariant
For each reusable gate α,
there exists tα s.t.
w(s → tα) = ϕα.
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Introduction

Motivation from Convex Geometry

Linear Matrix Expression (LME): for Ai symmetric in Rt×t

A0 + x1A1 + · · ·+ xnAn

Lax conjecture: express a real zero polynomial f as

f = detA

with A LME and A0 � 0.  disproved
Drop condition A0 � 0  exponential size matrices
What about polynomial size matrices?
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Universality of determinants of symmetric matrices

Outline

1 Universality of determinants of symmetric matrices

2 Characteristic 2
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Universality of determinants of symmetric matrices

Introduction

Symmetric matrices ⇐⇒ undirected graphs

Difficulty: no DAG anymore!
Solution: some changes in the construction, and new invariants

N.B.: char(K) 6= 2 in this section
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Universality of determinants of symmetric matrices for formulas

From formulas to symmetric determinants
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Invariants

ϕ =
∑
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(−1)|P|/2+1w(P)

and. . .
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Universality of determinants of symmetric matrices for formulas

Invariants for formula’s construction

ϕ =
∑

s-t-paths P

(−1)|P|/2+1w(P)

|G | is even, every cycle in G is
even, and every s-t-path is even
G \ {s, t} is either empty or has
a unique cycle cover

 Perfect matching of weight 1
For any s-t-path P , G \ P is
either empty or has a unique
cycle cover

 Perfect matching of weight 1
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Universality of determinants of symmetric matrices for formulas

From G to G ′

s

G

t
1/2

c
(−1)

|G |
2 +1

|G ′| is odd: Every odd cycle goes through c .
Cycle covers in G ′ ⇐⇒ s → t-paths in G

⇐⇒ t → s-paths in G

w(s → t) + w(t → s) = 2× ϕ

 char(K) 6= 2

Theorem
For a formula ϕ of size e, this construction yields a graph of size 2e + 3.
The determinant of its adjacency matrix equals ϕ.
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Universality of determinants of symmetric matrices for weakly-skew circuits

Case of weakly-skew circuits

Main difficulty:

Definition: A path P is acceptable if G \ P admits a cycle cover
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Universality of determinants of symmetric matrices for weakly-skew circuits

Constructions
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Universality of determinants of symmetric matrices for weakly-skew circuits

Invariants in the case of weakly-skew circuits

For each reusable α, there exists tα s.t.

I ϕα =
∑

acceptable
s-tα-paths P

(−1)
|P|−1

2 w(P)

I Every s-tα-path is odd
I For a s-tα-path P, G \ P is either

empty or has a unique cycle cover
 Perfect matching of weight 1

|G | is odd, every cycle in G is even
G \ {s} is either empty or has a unique
cycle cover

 Perfect matching of weight 1
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s-tα-paths P

(−1)
|P|−1

2 w(P)

I Every s-tα-path is odd
I For a s-tα-path P, G \ P is either

empty or has a unique cycle cover
 Perfect matching of weight 1

|G | is odd, every cycle in G is even

G \ {s} is either empty or has a unique
cycle cover
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Universality of determinants of symmetric matrices for weakly-skew circuits

From G to G ′

Add s
(1/2)·(−1)

|G |−1
2

←−−−−−−−−−→ t: new graph G ′.

|G ′ \ {s, t}| is odd, cycles are even: no cycle cover with s ↔ t.

Cycle covers of G ′ ⇐⇒ s → t-paths in G ⇐⇒ t → s-paths in G .

With some sign considerations, we get:

Theorem
For a weakly skew circuit of size e, with i input variables, computing a
polynomial ϕ, this construction yields a graph G ′ with 2(e + i) + 1 vertices.
The adjacency matrix of G ′ has its determinant equal to ϕ.
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Universality of determinants of symmetric matrices for weakly-skew circuits

Summary

Formula Weakly-skew circuit
Non symmetric e + 1 (e + i) + 1
Symmetric 2e + 1 2(e + i) + 1

e: size
i : number of input variables
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Characteristic 2

Outline

1 Universality of determinants of symmetric matrices

2 Characteristic 2
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Characteristic 2

Introduction

Scalar 1/2 in the constructions =⇒ not valid for characteristic 2

Very special case: cycles of length > 2 are counted twice
=⇒ permutations restricted to pairs and singleton
=⇒ cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric
matrices in characteristic 2?

F: (finite) field of characteristic 2
Here: Polynomials over F[x , y , z ]
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Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction

Undirected graph G ′:
I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i
input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p2 = detA.

x

3

y

z

Toda-Malod’s construction
Undirected graph G ′:

I v ∈ V  vs and vt .
I (u, v)  {us ,vt }.

Cycle Covers in G ⇐⇒ Perfect Matching in G ′

 detMG =
∑

µ w(µ)

detMG ′ =
∑

µ w(µ)2 =
(∑

µ w(µ)
)2

Bruno Grenet (LIP – ÉNS Lyon) Symm. Det. Rep. of Polynomials Dagstuhl – 30/11/2010 19 / 31



Characteristic 2

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that p = detA, then
p mod 〈x2 + `x , y2 + `y , z2 + `z〉 is a product of degree-1 polynomials.

Conjecture
This is not sufficient.

Example: xy + z has no symmetric determinantal representation.
Conjecture: nor does xy2 + yz2 + zx2.
Characterization?
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Characteristic 2

Sketch of a proof

Modulo: no variable outside the diagonal

I If Aij = Aji = p(x , y , z), then “p2 ∈ detA” and “p /∈ detA”
I But p(x , y , z)2 ≡ λ mod 〈x2 + `x , y2 + `y , z2 + `z〉, λ ∈ F.

Operations on rows and columns:

I Determinant: unchanged
I Coefficients: linear polynomials
I The matrix becomes diagonal
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Characteristic 2

Application

These results raise the questions:

If p2 has a small (weakly-skew) circuit, what about p?

If f is a family of polynomials s.t. f 2 ∈ VP (VPws), does f belong to VP
(VPws)?

It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?
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Characteristic 2

Valiant’s classes

Complexity of a polynomial: size of the smallest circuit computing it.

Definition
A family (fn) of polynomials is in VP if for all n, the number of variables,
the degree, and the complexity of fn are polynomially bounded in n.

A family (fn) of polynomials is in VNP if there exists a family
(gn(y1, . . . , yv(n))) ∈ VP s.t.

fn(x1, . . . , xu(n)) =
∑

ε̄∈{0,1}v(n)−u(n)

gn(x1, . . . , xu(n), ε̄).

(DETn) ∈ VP, (PERn) ∈ VNP, . . .
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Characteristic 2

VNP-completeness

Definition
A family (gn) is a p-projection of a family (fn) is there exists a polynomial t
s.t. for all n, gn(x̄) = ft(n)(a1, . . . , am), with a1, . . . , am ∈ K∪ {x1, . . . , xn}.

A family (fn) ∈ VNP is VNP-complete if every family in VNP is a
p-projection of (fn).

(PERn) is VNP-complete in characteristic 6= 2
(HCn) is VNP-complete (in any characteristic)
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Characteristic 2

Boolean parts

Definition
The boolean part of (fn) is bpf : {0, 1}? → {0, 1} s.t. for x ∈ {0, 1}n,
bpf (x) = fn(x).

The boolean part of a class VC is BP(VC) =
⋃

f ∈VC
bpf .

Theorem (Bürgisser)

BP(VP) ⊆ NC2/poly
BP(VNP) = ⊕P/poly
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Characteristic 2

Partial Permanent

per∗M =
∑
π

∏
i∈def(π)

Mi ,π(i)

where π ranges over the injective partial maps from [n] to [n].

Lemma
Let G = Kn,n. Let A and B be the respective adjacency and biadjacency
matrices of G . Then in characteristic 2,

det(A + I2n) = (per∗ B)2

where I2n is the identity matrix.

Same kind of ideas as the previous proof.
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Characteristic 2

Partial permanents as family of polynomials

(PER∗n): family of polynomials defined as partial permanents of n × n
matrices of indeterminates.

((PER∗)2n): family of polynomials defined as square of partial permanents
of n × n matrices of indeterminates.

Theorem
((PER∗)2n) ∈ VP in characteristic 2.

Proof. ((PER∗)2n) is a p-projection of (DETn).
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Characteristic 2

Answer to Bürgisser’s problem

Problem
Is the partial permanent VNP-complete in characteristic 2?

Theorem
If it is the case, ⊕P/poly = NC2/poly, and PH = Σ2.

Proof sketch. If the case arises,
VNP2 ⊆ VP, thus BP(VP) = BP(VNP)

Bürgisser: ⊕P/poly = BP(VNP) BP(VP) ⊆ NC2/poly
Karp-Lipton Theorem
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Conclusion

We obtained Symmetric Determinantal Representations for Formulas
and Weakly-Skew Circuits of linear size

Improvement of Valiant’s and Malod’s constructions
By-product (in characteristic 6= 2):

Theorem
Let M be an n× n matrix. Then there exists a symmetric matrix M ′ of size
O(n5) s.t. detM = detM ′.

For characteristic 2:

I Answer to Bürgisser’s Open Problem
I Proof of a negative result
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Future work

Convex Geometry: K = R and real zero polynomials

 what can be done in that precise case?
Characteristic 2:

I Characterize polynomials with a symmetric determinantal
representation

I Explore graph polynomials

Symmetric matrices in Valiant’s theory?
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Thank you!
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