Symmetric Determinantal Representations of Polynomials

Bruno Grenet ${ }^{* \dagger}$

Joint work with Erich L. Kaltofen ${ }^{\ddagger}$, Pascal Koiran* ${ }^{\dagger}$ and Natacha Portier* \dagger

$$
\begin{aligned}
& \text { *MC2 - LIP, ÉNS Lyon } \\
& \dagger \text { Theory Group - DCS, U. of Toronto } \\
& \ddagger \text { Dept. of Mathematics - North Carolina State U. }
\end{aligned}
$$

Dagstuhl Seminar on Computational Counting - November 30, 2010

The problem

$$
(x+3 y) z=\operatorname{det}\left(\begin{array}{ccccc}
0 & x & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & z \\
0 & 0 & 1 & y & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Formal polynomial

The problem

$$
(x+3 y) z=\operatorname{det}\left(\begin{array}{ccccc}
0 & x & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & z \\
0 & 0 & 1 & y & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Formal polynomial
- Smallest possible dimension of the matrix

Representations of polynomials

Circuit of size 5

Representations of polynomials

Weakly-skew circuit of size 5

Representations of polynomials

Representations of polynomials

Formula of size 5

Valiant's construction

Toda-Malod's construction

Invariant

For each reusable gate α, there exists t_{α} s.t.
$w\left(s \rightarrow t_{\alpha}\right)=\varphi_{\alpha}$.

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0$.

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \quad \rightsquigarrow$ disproved

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \quad \rightsquigarrow$ disproved

- Drop condition $A_{0} \succeq 0 \rightsquigarrow$ exponential size matrices

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \quad \rightsquigarrow$ disproved

- Drop condition $A_{0} \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

Outline

(1) Universality of determinants of symmetric matrices

(2) Characteristic 2

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: $\operatorname{char}(\mathbb{K}) \neq 2$ in this section

From formulas to symmetric determinants

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every s - t-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every s - t-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- For any s-t-path $P, G \backslash P$ is either empty or has a unique cycle cover

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every s - t-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- For any s-t-path $P, G \backslash P$ is either empty or has a unique cycle cover

cycle cover!

Edge $=$ Length -2 cycle!

\rightsquigarrow Perfect matching of weight 1

From G to G^{\prime}

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in G

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G

$$
w(s \rightarrow t)+w(t \rightarrow s)=2 \times \varphi
$$

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G

$$
w(s \rightarrow t)+w(t \rightarrow s)=2 \times \varphi
$$

$\rightsquigarrow \operatorname{char}(\mathbb{K}) \neq 2$

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd: Every odd cycle goes through c.
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G

$$
w(s \rightarrow t)+w(t \rightarrow s)=2 \times \varphi
$$

$\rightsquigarrow \operatorname{char}(\mathbb{K}) \neq 2$

Theorem

For a formula φ of size e, this construction yields a graph of size $2 e+3$. The determinant of its adjacency matrix equals φ.

Case of weakly-skew circuits

- Main difficulty:

Case of weakly-skew circuits

- Main difficulty:

- Definition: A path P is acceptable if $G \backslash P$ admits a cycle cover

Constructions

Constructions

Constructions

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- $|G|$ is odd, every cycle in G is even

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- $|G|$ is odd, every cycle in G is even
- $G \backslash\{s\}$ is either empty or has a unique cycle cover

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- $|G|$ is odd, every cycle in G is even
- $G \backslash\{s\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

From G to G^{\prime}

- Add $s \stackrel{(1 / 2) \cdot(-1)^{\frac{|G|-1}{2}}}{\longleftrightarrow} t$: new graph G^{\prime}.

From G to G^{\prime}

- Add $s \stackrel{(1 / 2) \cdot(-1) \stackrel{|G|-1}{2}}{\longleftrightarrow} t$: new graph G^{\prime}.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

From G to G^{\prime}

- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

From G to G^{\prime}

- Add $s \stackrel{(1 / 2) \cdot(-1) \stackrel{|G|-1}{2}}{\longleftrightarrow} t:$ new graph G^{\prime}.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

- With some sign considerations, we get:

From G to G^{\prime}

- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

- With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ, this construction yields a graph G^{\prime} with $2(e+i)+1$ vertices. The adjacency matrix of G^{\prime} has its determinant equal to φ.

Summary

	Formula	Weakly-skew circuit
Non symmetric	$e+1$	$(e+i)+1$
Symmetric	$2 e+1$	$2(e+i)+1$

e: size
i : number of input variables

Outline

(1) Universality of determinants of symmetric matrices

(2) Characteristic 2

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton
\Longrightarrow cycle covers replaced by monomer-dimer covers

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton
\Longrightarrow cycle covers replaced by monomer-dimer covers
Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton
\Longrightarrow cycle covers replaced by monomer-dimer covers
Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?
- \mathbb{F} : (finite) field of characteristic 2

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton
\Longrightarrow cycle covers replaced by monomer-dimer covers
Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?
- \mathbb{F} : (finite) field of characteristic 2
- Here: Polynomials over $\mathbb{F}[x, y, z]$

A positive result

Theorem
Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Toda-Malod's construction

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Toda-Malod's construction
- Undirected graph G^{\prime} :
- $v \in V \rightsquigarrow V_{s}$ and V_{t}.
- $(u, v) \rightsquigarrow\left\{u_{s}, V_{t}\right\}$.

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Toda-Malod's construction
- Undirected graph G^{\prime} :
- $v \in V \rightsquigarrow V_{s}$ and V_{t}.
- $(u, v) \rightsquigarrow\left\{u_{s}, V_{t}\right\}$.
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime}

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Toda-Malod's construction
- Undirected graph G^{\prime} :
- $v \in V \rightsquigarrow V_{s}$ and V_{t}.
- $(u, v) \rightsquigarrow\left\{u_{s}, V_{t}\right\}$.
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime} $\rightsquigarrow \operatorname{det} M_{G}=\sum_{\mu} w(\mu)$

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Toda-Malod's construction
- Undirected graph G^{\prime} :
- $v \in V \rightsquigarrow V_{s}$ and V_{t}.
- $(u, v) \rightsquigarrow\left\{u_{s}, V_{t}\right\}$.
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime} $\rightsquigarrow \operatorname{det} M_{G}=\sum_{\mu} w(\mu)$
- $\operatorname{det} M_{G^{\prime}}=\sum_{\mu} w(\mu)^{2}=\left(\sum_{\mu} w(\mu)\right)^{2}$

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that $p=\operatorname{det} A$, then $p \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle$ is a product of degree-1 polynomials.

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that $p=\operatorname{det} A$, then $p \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that $p=\operatorname{det} A$, then $p \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: $x y+z$ has no symmetric determinantal representation.

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that $p=\operatorname{det} A$, then $p \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: $x y+z$ has no symmetric determinantal representation.
- Conjecture: nor does $x y^{2}+y z^{2}+z x^{2}$.

A negative result

Theorem (G., Monteil, Thomassé)
If there exists a symmetric matrix A such that $p=\operatorname{det} A$, then $p \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle$ is a product of degree-1 polynomials.

Conjecture

This is not sufficient.

- Example: $x y+z$ has no symmetric determinantal representation.
- Conjecture: nor does $x y^{2}+y z^{2}+z x^{2}$.
- Characterization?

Sketch of a proof

- Modulo: no variable outside the diagonal

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and $" p \notin \operatorname{det} A$ "

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and " $p \notin \operatorname{det} A$ "
- But $p(x, y, z)^{2} \equiv \lambda \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle, \lambda \in \mathbb{F}$.

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and " $p \notin \operatorname{det} A$ "
- But $p(x, y, z)^{2} \equiv \lambda \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle, \lambda \in \mathbb{F}$.
- Operations on rows and columns:

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and " $p \notin \operatorname{det} A$ "
- But $p(x, y, z)^{2} \equiv \lambda \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle, \lambda \in \mathbb{F}$.
- Operations on rows and columns:
- Determinant: unchanged

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and " $p \notin \operatorname{det} A$ "
- But $p(x, y, z)^{2} \equiv \lambda \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle, \lambda \in \mathbb{F}$.
- Operations on rows and columns:
- Determinant: unchanged
- Coefficients: linear polynomials

Sketch of a proof

- Modulo: no variable outside the diagonal
- If $A_{i j}=A_{j i}=p(x, y, z)$, then " $p^{2} \in \operatorname{det} A$ " and " $p \notin \operatorname{det} A$ "
- But $p(x, y, z)^{2} \equiv \lambda \bmod \left\langle x^{2}+\ell_{x}, y^{2}+\ell_{y}, z^{2}+\ell_{z}\right\rangle, \lambda \in \mathbb{F}$.
- Operations on rows and columns:
- Determinant: unchanged
- Coefficients: linear polynomials
- The matrix becomes diagonal

Application

- These results raise the questions:

Application

- These results raise the questions:

If p^{2} has a small (weakly-skew) circuit, what about p ?

Application

- These results raise the questions:

If p^{2} has a small (weakly-skew) circuit, what about p ?

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}\left(\mathrm{VP}_{\mathrm{ws}}\right)$, does f belong to VP ($\mathrm{VP}_{\mathrm{ws}}$)?

Application

- These results raise the questions:

If p^{2} has a small (weakly-skew) circuit, what about p ?

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}\left(\mathrm{VP}_{\mathrm{ws}}\right)$, does f belong to VP ($\mathrm{VP}_{\mathrm{ws}}$)?

- It appears to be related to an open problem of Bürgisser:

Application

- These results raise the questions:

If p^{2} has a small (weakly-skew) circuit, what about p ?

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}\left(\mathrm{VP}_{\mathrm{ws}}\right)$, does f belong to VP ($\mathrm{VP}_{\mathrm{ws}}$)?

- It appears to be related to an open problem of Bürgisser: Is the partial permanent VNP-complete in characteristic 2?

Valiant's classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family $\left(f_{n}\right)$ of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_{n} are polynomially bounded in n.

A family $\left(f_{n}\right)$ of polynomials is in VNP if there exists a family $\left(g_{n}\left(y_{1}, \ldots, y_{v(n)}\right)\right) \in \mathrm{VP}$ s.t.

$$
f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)=\sum_{\bar{\epsilon} \in\{0,1\}^{\vee(n)-u(n)}} g_{n}\left(x_{1}, \ldots, x_{u(n)}, \bar{\epsilon}\right) .
$$

- $\left(\mathrm{DET}_{n}\right) \in \mathrm{VP},\left(\mathrm{PER}_{n}\right) \in \mathrm{VNP}, \ldots$

VNP-completeness

Definition

A family $\left(g_{n}\right)$ is a p-projection of a family $\left(f_{n}\right)$ is there exists a polynomial t s.t. for all $n, g_{n}(\bar{x})=f_{t(n)}\left(a_{1}, \ldots, a_{m}\right)$, with $a_{1}, \ldots, a_{m} \in \mathbb{K} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

A family $\left(f_{n}\right) \in$ VNP is VNP-complete if every family in VNP is a p-projection of $\left(f_{n}\right)$.

- (PER_{n}) is VNP-complete in characteristic $\neq 2$
- $\left(\mathrm{HC}_{n}\right)$ is VNP-complete (in any characteristic)

Boolean parts

Definition

The boolean part of $\left(f_{n}\right)$ is $b p_{f}:\{0,1\}^{\star} \rightarrow\{0,1\}$ s.t. for $x \in\{0,1\}^{n}$, $b p_{f}(x)=f_{n}(x)$.

Boolean parts

Definition

The boolean part of $\left(f_{n}\right)$ is $b p_{f}:\{0,1\}^{\star} \rightarrow\{0,1\}$ s.t. for $x \in\{0,1\}^{n}$, $b p_{f}(x)=f_{n}(x)$.

The boolean part of a class VC is $B P(\mathrm{VC})=\bigcup_{f \in \mathrm{VC}} b p_{f}$.

Boolean parts

Definition

The boolean part of $\left(f_{n}\right)$ is $b p_{f}:\{0,1\}^{\star} \rightarrow\{0,1\}$ s.t. for $x \in\{0,1\}^{n}$, $b p_{f}(x)=f_{n}(x)$.

The boolean part of a class VC is $B P(\mathrm{VC})=\bigcup_{f \in \mathrm{VC}} b p_{f}$.
Theorem (Bürgisser)

- $B P(\mathrm{VP}) \subseteq \mathrm{NC}^{2} /$ poly
- $B P(\mathrm{VNP})=\oplus \mathrm{P} /$ poly

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Lemma

Let $G=K_{n, n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2 ,

$$
\operatorname{det}\left(A+I_{2 n}\right)=\left(\operatorname{per}^{*} B\right)^{2}
$$

where $I_{2 n}$ is the identity matrix.

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Lemma

Let $G=K_{n, n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2 ,

$$
\operatorname{det}\left(A+I_{2 n}\right)=\left(\operatorname{per}^{*} B\right)^{2}
$$

where $I_{2 n}$ is the identity matrix.
Same kind of ideas as the previous proof.

Partial permanents as family of polynomials

(PER ${ }_{n}^{*}$): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER_{n}^{*}): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER ${ }_{n}^{*}$): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\operatorname{PER}^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right) \in \mathrm{VP}$ in characteristic 2.

Partial permanents as family of polynomials

(PER_{n}^{*}): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right) \in \mathrm{VP}$ in characteristic 2.
Proof. (($\left.\left.\mathrm{PER}^{*}\right)_{n}^{2}\right)$ is a p-projection of $\left(\mathrm{DET}_{n}\right)$.

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.
Proof sketch. If the case arises,

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.
Proof sketch. If the case arises,

- $\mathrm{VNP}^{2} \subseteq \mathrm{VP}$, thus $B P(\mathrm{VP})=B P(\mathrm{VNP})$

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.
Proof sketch. If the case arises,

- $\mathrm{VNP}^{2} \subseteq \mathrm{VP}$, thus $B P(\mathrm{VP})=B P(\mathrm{VNP})$
- Bürgisser: $\oplus \mathrm{P} /$ poly $=B P(\mathrm{VNP}) \quad B P(V P) \subseteq \mathrm{NC}^{2} /$ poly

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.
Proof sketch. If the case arises,

- $\mathrm{VNP}^{2} \subseteq \mathrm{VP}$, thus $B P(\mathrm{VP})=B P(\mathrm{VNP})$
- Bürgisser: $\oplus \mathrm{P} /$ poly $=B P(\mathrm{VNP}) \quad B P(V P) \subseteq \mathrm{NC}^{2} /$ poly
- Karp-Lipton Theorem

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic $\neq 2$):

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2 :

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2:
- Answer to Bürgisser's Open Problem

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2:
- Answer to Bürgisser's Open Problem
- Proof of a negative result

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials \rightsquigarrow what can be done in that precise case?

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials \rightsquigarrow what can be done in that precise case?
- Characteristic 2 :

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials \rightsquigarrow what can be done in that precise case?
- Characteristic 2:
- Characterize polynomials with a symmetric determinantal representation

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials \rightsquigarrow what can be done in that precise case?
- Characteristic 2:
- Characterize polynomials with a symmetric determinantal representation
- Explore graph polynomials

Future work

- Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials \rightsquigarrow what can be done in that precise case?
- Characteristic 2:
- Characterize polynomials with a symmetric determinantal representation
- Explore graph polynomials
- Symmetric matrices in Valiant's theory?

Thank you!

