The real τ-conjecture
 \&
 lower bounds for the permanent

Bruno Grenet
LIP - ÉNS de Lyon

Rencontres CoA - 22 novembre 2012

Arithmetic Circuits

$$
\begin{aligned}
f(x, y, z)=x^{4} & +4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+x^{2} z+2 x y z \\
& +y^{2} z+x^{2}+y^{4}+2 x y+y^{2}+z^{2}+2 z+1
\end{aligned}
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
f(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Complexity of a polynomial

 $\tau(f)=$ size of its smallest circuit representation
The τ-conjecture

Conjecture (Shub \& Smale, 1995)
The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \operatorname{poly}(\tau(f))$.

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \operatorname{poly}(\tau(f))$.
Theorem (Bürgisser, 2007)
τ-conjecture
\Longrightarrow super-polynomial lower bound for the permanent

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \operatorname{poly}(\tau(f))$.
Theorem (Bürgisser, 2007)
τ-conjecture
\Longrightarrow super-polynomial lower bound for the permanent

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \operatorname{poly}(\tau(f))$.
Theorem (Bürgisser, 2007)
τ-conjecture
\Longrightarrow super-polynomial lower bound for the permanent
$\Longrightarrow \tau\left(\mathrm{PER}_{n}\right)$ is not polynomially bounded in n

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \operatorname{poly}(\tau(f))$.
Theorem (Bürgisser, 2007)
τ-conjecture
\Longrightarrow super-polynomial lower bound for the permanent
$\Longrightarrow \tau\left(\mathrm{PER}_{n}\right)$ is not polynomially bounded in n
$\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

The τ-conjecture is hard

Theorem (Shub \& Smale, 1995)
 τ-conjecture $\Longrightarrow \mathrm{P}_{\mathbb{C}} \neq \mathrm{NP}_{\mathbb{C}}$

The τ-conjecture is hard

Theorem (Shub \& Smale, 1995)
 τ-conjecture $\Longrightarrow \mathrm{P}_{\mathbb{C}} \neq \mathrm{NP}_{\mathbb{C}}$

Theorem (Cheng, 2003)
Extended τ-conjecture \Longrightarrow Merel torsion theorem, \ldots

The τ-conjecture is hard

Theorem (Shub \& Smale, 1995)
 τ-conjecture $\Longrightarrow \mathrm{P}_{\mathbb{C}} \neq \mathrm{NP}_{\mathbb{C}}$

Theorem (Cheng, 2003)
Extended τ-conjecture \Longrightarrow Merel torsion theorem, \ldots

False for real roots (Shub-Smale 95, Borodin-Cook 76)
$T_{n}=n$-th Chebyshev polynomial

- $\tau\left(T_{n}\right)=\mathcal{O}(\log n)$
- n real roots

Let's make it real!

Real τ-conjecture (Koiran, 2011)
Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.

Let's make it real!

Real τ-conjecture (Koiran, 2011)
Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

Let's make it real!

Real τ-conjecture (Koiran, 2011)
Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

- Enough to bound the number of integer roots

Let's make it real!

Real τ-conjecture (Koiran, 2011)

Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

- Enough to bound the number of integer roots
\leadsto Adelic τ-conjecture [Phillipson \& Rojas, 2012]

Let's make it real!

Real τ-conjecture (Koiran, 2011)

Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

- Enough to bound the number of integer roots
\leadsto Adelic τ-conjecture [Phillipson \& Rojas, 2012]
- Case $k=1$: Follows from Descartes' rule.

Let's make it real!

Real τ-conjecture (Koiran, 2011)

Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

- Enough to bound the number of integer roots
\leadsto Adelic τ-conjecture [Phillipson \& Rojas, 2012]
- Case $k=1$: Follows from Descartes' rule.
- Case $k=2$: Open.

Let's make it real!

Real τ-conjecture (Koiran, 2011)
Let $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}$ where the $f_{i j}$'s are t-sparse polynomials.
Then f has $\leq \operatorname{poly}(k, m, t)$ real roots.
Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

- Enough to bound the number of integer roots
\leadsto Adelic τ-conjecture [Phillipson \& Rojas, 2012]
- Case $k=1$: Follows from Descartes' rule.
- Case $k=2$: Open.
> Toy question: Number of real roots of $f g+1$?

Descartes' rule without signs

Theorem
If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real
roots.

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.
> $t=1$: No positive real root

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.
> $t=1$: No positive real root
> $t>1$: Let $c_{\alpha} X^{\alpha}=$ lowest degree monomial.

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.
> $t=1$: No positive real root
> $t>1$: Let $c_{\alpha} X^{\alpha}=$ lowest degree monomial.

- $g=f / X^{\alpha}$: same positive roots, nonzero constant coefficient

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.
> $t=1$: No positive real root
> $t>1$: Let $c_{\alpha} X^{\alpha}=$ lowest degree monomial.

- $g=f / X^{\alpha}$: same positive roots, nonzero constant coefficient
- g^{\prime} has $(t-1)$ monomials $\Longrightarrow \leq(t-2)$ positive roots

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.

> $t=1$: No positive real root
> $t>1$: Let $c_{\alpha} X^{\alpha}=$ lowest degree monomial.

- $g=f / X^{\alpha}$: same positive roots, nonzero constant coefficient
- g^{\prime} has $(t-1)$ monomials $\Longrightarrow \leq(t-2)$ positive roots
- There is a root of g^{\prime} between two consecutive roots of g (Rolle's theorem)

Descartes' rule without signs

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq(t-1)$ positive real roots.

Proof. Induction on t.

> $t=1$: No positive real root
> $t>1$: Let $c_{\alpha} X^{\alpha}=$ lowest degree monomial.

- $g=f / X^{\alpha}$: same positive roots, nonzero constant coefficient
- g^{\prime} has $(t-1)$ monomials $\Longrightarrow \leq(t-2)$ positive roots
- There is a root of g^{\prime} between two consecutive roots of g (Rolle's theorem)
$f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: \leq 2 k t^{m}-1$ real roots

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Incorrect proof. Assume the permanent is easy.

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Incorrect proof. Assume the permanent is easy.
$>\prod_{i=1}^{2^{n}}(X-i)$ has circuits of size poly(n) [Bürgisser, 2007-09]

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Incorrect proof. Assume the permanent is easy.
$>\prod_{i=1}^{2^{n}}(X-i)$ has circuits of size $\operatorname{poly}(n)$
[Bürgisser, 2007-09]

- Reduction to depth $4 \rightsquigarrow$ SPS polynomial of size $2^{\circ(n)}$
[Agrawal-Vinay, 2008]

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Incorrect proof. Assume the permanent is easy.

- $\prod_{i=1}^{2^{n}}(X-i)$ has circuits of size poly (n)
[Bürgisser, 2007-09]
- Reduction to depth $4 \rightsquigarrow$ SPS polynomial of size $2^{\circ(n)}$
[Agrawal-Vinay, 2008]
- Contradiction with real τ-conjecture

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

Incorrect proof. Assume the permanent is easy.

- $\prod_{i=1}^{2^{n}}(X-i)$ has circuits of size poly (n)
[Bürgisser, 2007-09]
- Reduction to depth $4 \rightsquigarrow$ SPS polynomial of size $2^{\circ(n)}$ [Agrawal-Vinay, 2008]
- Contradiction with real τ-conjecture

Real τ-conjecture \Longrightarrow Permanent is hard

$$
\operatorname{SPS}(k, m, t)=\left\{f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i j}: f_{i j}{ }^{\prime} \text { s are } t \text {-sparse }\right\}
$$

correct proof. Assume the permanent is easy.
> $\prod_{i=1}^{2^{n}}(X-i)$ has circuits of size $\operatorname{poly}(n)$
[Bürgisser, 2007-09]

- Reduction to depth $4 \rightsquigarrow$ SPS polynomial of size $2^{\circ(n)}$
[Koiran, 2011]
- Contradiction with real τ-conjecture
+ other details...

Reduction to depth 4

> Theorem (Koiran, 2011)
> Circuit of size t and degree d
> \rightsquigarrow Depth-4 circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Reduction to depth 4

Theorem (Koiran, 2011)
Circuit of size t and degree d \rightsquigarrow Depth-4 circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Proof idea.

- Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2 d}+1$, depth $\delta=3 d-1$
[Malod-Portier, 2008]

Reduction to depth 4

Theorem (Koiran, 2011)
Circuit of size t and degree d \rightsquigarrow Depth-4 circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Proof idea.

- Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2 d}+1$, depth $\delta=3 d-1 \quad$ [Malod-Portier, 2008]
- $\mathrm{ABP} \equiv$ Matrix powering

Reduction to depth 4

Theorem (Koiran, 2011)
Circuit of size t and degree d

```
\rightsquigarrow Depth-4 circuit of size to(\sqrt{}{d}\operatorname{log}d)
```


Proof idea.

- Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2 d}+1$, depth $\delta=3 d-1 \quad$ [Malod-Portier, 2008]
- $\mathrm{ABP} \equiv$ Matrix powering
- $M^{\delta}=\left(M^{\sqrt{\delta}}\right)^{\sqrt{\delta}}$

Reduction to depth 4

Theorem (Koiran, 2011)
Circuit of size t and degree d
\rightsquigarrow Depth-4 circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Proof idea.

- Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2 d}+1$, depth $\delta=3 d-1 \quad$ [Malod-Portier, 2008]
- $\mathrm{ABP} \equiv$ Matrix powering
- $M^{\delta}=\left(M^{\sqrt{\delta}}\right)^{\sqrt{\delta}}$

Consequence. Replace $\operatorname{poly}(k, m, t)$ by $2^{\operatorname{polylog}(k, m, t)}$.

The limited power of powering

$\operatorname{SPS}(k, m, t, A)=\left\{\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}}: f_{j}^{\prime}\right.$ s are t-sparse, $\left.\alpha_{i j} \leq A\right\}$

The limited power of powering

$\operatorname{SPS}(k, m, t, A)=\left\{\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}}: f_{j}^{\prime}\right.$ s are t-sparse, $\left.\alpha_{i j} \leq A\right\}$

Theorem (G.-Koiran-Portier-Strozecki, 2011)
If $f \in \operatorname{SPS}(k, m, t, A)$, its number of real roots is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1} \quad \text { for some } C
$$

The limited power of powering

$\operatorname{SPS}(k, m, t, A)=\left\{\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}}: f_{j}^{\prime}\right.$ s are t-sparse, $\left.\alpha_{i j} \leq A\right\}$

Theorem (G.-Koiran-Portier-Strozecki, 2011)
If $f \in \operatorname{SPS}(k, m, t, A)$, its number of real roots is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1} \quad \text { for some } C
$$

$>$ Independent of A.

The limited power of powering

$\operatorname{SPS}(k, m, t, A)=\left\{\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}}: f_{j}^{\prime}\right.$ s are t-sparse, $\left.\alpha_{i j} \leq A\right\}$

Theorem (G.-Koiran-Portier-Strozecki, 2011)
If $f \in \operatorname{SPS}(k, m, t, A)$, its number of real roots is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1} \quad \text { for some } C
$$

- Independent of A.
- If k and m are fixed, this is polynomial in t.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most $2 m t^{m}+4 m(t-1)$ real roots.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most $2 m t^{m}+4 m(t-1)$ real roots.

Proof sketch. Let $F=f / \prod_{j} f_{j}^{\alpha_{j}}=1+\prod_{j} f_{j}^{\beta_{j}-\alpha_{j}}$.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most $2 m t^{m}+4 m(t-1)$ real roots.

Proof sketch. Let $F=f / \prod_{j} f_{j}^{\alpha_{j}}=1+\prod_{j} f_{j}^{\beta_{j}-\alpha_{j}}$. Then

$$
F^{\prime}=\underbrace{\prod_{j=1}^{m} f_{j}^{\beta_{j}-\alpha_{j}-1}}_{\leq 2 m(t-1) \text { roots and poles }} \times \underbrace{\sum_{j=1}^{m}\left(\beta_{j}-\alpha_{j}\right) f_{j}^{\prime} \prod_{l \neq j} f_{l}}_{\leq 2 m t^{m}-1 \text { roots }}
$$

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:
- Adelic formulation: number of p-adic roots
[Phillipson-Rojas]

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:
- Adelic formulation: number of p-adic roots
- Random $f_{i j}$: Work in progress

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:
- Adelic formulation: number of p-adic roots
- Random $f_{i j}$: Work in progress
- Consequences on repartition of complex roots
[Phillipson-Rojas]
[Briquel-Bürgisser]
[Hrubes]

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:
- Adelic formulation: number of p-adic roots
- Random $f_{i j}$: Work in progress
- Consequences on repartition of complex roots
[Phillipson-Rojas] [Briquel-Bürgisser] [Hrubes]

Embarrassing Open Problem

Let f, g be t-sparse polynomials.
\rightsquigarrow What is the maximum number real of roots of $f g+1$?

Conclusion

- Real τ-conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Use your favorite real analysis tools!
- Related:
- Adelic formulation: number of p-adic roots
- Random $f_{i j}$: Work in progress
- Consequences on repartition of complex roots
[Phillipson-Rojas]
[Briquel-Bürgisser]
[Hrubes]

Embarrassing Open Problem

Let f, g be t-sparse polynomials.
\rightsquigarrow What is the maximum number real of roots of $f g+1$?

Thank you for your attention!

