The real au-conjecture & lower bounds for the permanent

Bruno Grenet

LIP – ÉNS de Lyon

Rencontres CoA - 22 novembre 2012

$$f(x, y, z) = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + x^{2}z + 2xyz$$
$$+ y^{2}z + x^{2} + y^{4} + 2xy + y^{2} + z^{2} + 2z + 1$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)^2$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

$$f(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$$

Complexity of a polynomial

 $\tau(f) =$ size of its smallest circuit representation

Conjecture (Shub & Smale, 1995)

The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \text{poly}(\tau(f))$.

Conjecture (Shub & Smale, 1995)

The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \text{poly}(\tau(f))$.

Theorem (Bürgisser, 2007)

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

Conjecture (Shub & Smale, 1995)

The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \text{poly}(\tau(f))$.

Theorem (Bürgisser, 2007)

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

$$\mathsf{PER}_n(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Conjecture (Shub & Smale, 1995)

The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq \text{poly}(\tau(f))$.

Theorem (Bürgisser, 2007)

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

 $\implies \tau(\mathsf{Per}_n)$ is not polynomially bounded in n

$$\mathsf{P}_{\mathsf{ER}_n}(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Conjecture (Shub & Smale, 1995)

The number of integer roots of any $f \in \mathbb{Z}[X]$ is $\leq poly(\tau(f))$.

Theorem (Bürgisser, 2007)

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

$$\implies \tau(\mathsf{Per}_n)$$
 is not polynomially bounded in n

$$\implies VP^0 \neq VNP^0$$

$$\mathsf{PER}_n(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

The τ -conjecture is hard

Theorem (Shub & Smale, 1995)

 τ -conjecture \implies $\mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$

The τ -conjecture is hard

Theorem (Shub & Smale, 1995)

 $\tau\text{-conjecture} \implies \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$

Theorem (Cheng, 2003)

Extended τ -conjecture \implies Merel torsion theorem, ...

The τ -conjecture is hard

Theorem (Shub & Smale, 1995)

 $\tau\text{-conjecture} \implies \mathsf{P}_{\mathbb{C}} \neq \mathsf{NP}_{\mathbb{C}}$

Theorem (Cheng, 2003)

Extended τ -conjecture \implies Merel torsion theorem, ...

False for real roots (Shub-Smale 95, Borodin-Cook 76)

 $T_n = n$ -th Chebyshev polynomial

- $\blacktriangleright \tau(T_n) = \mathcal{O}(\log n)$
- n real roots

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

--- Adelic au-conjecture [Phillipson & Rojas, 2012]

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

 \rightsquigarrow Adelic au-conjecture [Phillipson & Rojas, 2012]

• Case k = 1: Follows from Descartes' rule.

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

 \rightsquigarrow Adelic τ -conjecture [Phillipson & Rojas, 2012]

Case k = 1: Follows from Descartes' rule.

▷ Case k = 2: Open.

Real τ -conjecture (Koiran, 2011)

Let $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$ where the f_{ij} 's are *t*-sparse polynomials.

Then f has $\leq poly(k, m, t)$ real roots.

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

 \rightarrow Adelic τ -conjecture [Phillipson & Rojas, 2012]

- ▷ Case k = 1: Follows from Descartes' rule.
- ▷ Case k = 2: Open.
- > Toy question: Number of real roots of fg + 1?

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

The real au-conjecture & lower bounds for the permanen

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on *t*.

> t = 1: No positive real root

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on *t*.

- > t = 1: No positive real root
- ► t > 1: Let $c_{\alpha} X^{\alpha}$ = lowest degree monomial.

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on *t*.

- > t = 1: No positive real root
- ▷ t > 1: Let $c_{\alpha} X^{\alpha}$ = lowest degree monomial.
 - $g = f/X^{lpha}$: same positive roots, nonzero constant coefficient

The real au-conjecture & lower bounds for the permanent

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on *t*.

- > t = 1: No positive real root
- ▷ t > 1: Let $c_{\alpha} X^{\alpha}$ = lowest degree monomial.
 - $g = f/X^{\alpha}$: same positive roots, nonzero constant coefficient
 - g' has (t-1) monomials $\Longrightarrow \leq (t-2)$ positive roots

The real au-conjecture & lower bounds for the permanent

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on *t*.

- > t = 1: No positive real root
- ▷ t > 1: Let $c_{\alpha}X^{\alpha} =$ lowest degree monomial.
 - $g = f/X^{lpha}$: same positive roots, nonzero constant coefficient
 - g' has (t-1) monomials $\Longrightarrow \leq (t-2)$ positive roots
 - There is a root of g' between two consecutive roots of g (Rolle's theorem)

Theorem

If $f \in \mathbb{R}[X]$ has t monomials, then it has $\leq (t-1)$ positive real roots.

Proof. Induction on t.

- > t = 1: No positive real root
- ▷ t > 1: Let $c_{\alpha}X^{\alpha} =$ lowest degree monomial.
 - $g = f/X^{lpha}$: same positive roots, nonzero constant coefficient
 - g' has (t-1) monomials $\Longrightarrow \leq (t-2)$ positive roots
 - There is a root of g' between two consecutive roots of g (Rolle's theorem)
- $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}$: $\leq 2kt^m 1$ real roots

Real au-conjecture \implies Permanent is hard

$$\mathsf{SPS}(k,m,t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}$$
's are *t*-sparse
ight\}

The real au-conjecture & lower bounds for the permanent

Real τ -conjecture \implies Permanent is hard

$$\mathsf{SPS}(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}$$
's are *t*-sparse
ight\}

Incorrect proof. Assume the permanent is easy.

The real au-conjecture & lower bounds for the permanent

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}$$
's are t-sparse $\right\}$

$$\prod_{i=1}^{2^n} (X - i)$$
 has circuits of size poly(n) [Bürgisser, 2007-09]

The real au-conjecture & lower bounds for the permanent

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}$$
's are t-sparse $\right\}$

- $\prod_{i=1}^{2^n} (X i)$ has circuits of size poly(*n*) [Bürgisser, 2007-09]
- Reduction to depth 4 \rightsquigarrow SPS polynomial of size $2^{o(n)}$

[Agrawal-Vinay, 2008]

. The real au -conjecture & lower bounds for the permanent

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}'s \text{ are } t\text{-sparse} \right\}$$

- $\prod_{i=1}^{2^n} (X i)$ has circuits of size poly(*n*) [Bürgisser, 2007-09]
- Reduction to depth 4 \rightsquigarrow SPS polynomial of size $2^{o(n)}$

[Agrawal-Vinay, 2008]

Example Contradiction with real τ -conjecture

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}' \text{s are } t \text{-sparse} \right\}$$

- $\prod_{i=1}^{2^n} (X i)$ has circuits of size poly(*n*) [Bürgisser, 2007-09]
- Reduction to depth 4 \rightsquigarrow SPS polynomial of size $2^{o(n)}$

[Agrawal-Vinay, 2008]

Example Contradiction with real τ -conjecture

$$SPS(k, m, t) = \left\{ f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij} : f_{ij}' \text{s are } t \text{-sparse} \right\}$$

- $\prod_{i=1}^{2^n} (X i)$ has circuits of size poly(*n*) [Bürgisser, 2007-09]
- Reduction to depth 4 \rightsquigarrow SPS polynomial of size $2^{o(n)}$

[Koiran, 2011]

E Contradiction with real au-conjecture

+ other details...

Theorem (Koiran, 2011)

Circuit of size t and degree d

 \rightsquigarrow **Depth-4** circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Theorem (Koiran, 2011)

Circuit of size t and degree d

```
\rightsquigarrow Depth-4 circuit of size t^{\mathcal{O}(\sqrt{d} \log d)}
```

Proof idea.

Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2d} + 1$, depth $\delta = 3d - 1$ [Malod-Portier, 2008]

Theorem (Koiran, 2011)

Circuit of size t and degree d

```
\rightsquigarrow Depth-4 circuit of size t^{\mathcal{O}(\sqrt{d} \log d)}
```

Proof idea.

Construct an equivalent Arithmetic Branching Program \rightsquigarrow size $t^{\log 2d} + 1$, depth $\delta = 3d - 1$ [Malod-Portier, 2008]

 $ightarrow ABP \equiv Matrix powering$

Theorem (Koiran, 2011)

Circuit of size t and degree d

 \rightsquigarrow **Depth-4** circuit of size $t^{\mathcal{O}(\sqrt{d} \log d)}$

Proof idea.

- Construct an equivalent Arithmetic Branching Program \Rightarrow size $t^{\log 2d} + 1$, depth $\delta = 3d - 1$ [Malod-Portier, 2008]
- ightarrow ABP \equiv Matrix powering

$$M^{\delta} = (M^{\sqrt{\delta}})^{\sqrt{\delta}}$$

Theorem (Koiran, 2011)

Circuit of size t and degree d

```
\rightsquigarrow Depth-4 circuit of size t^{\mathcal{O}(\sqrt{d} \log d)}
```

Proof idea.

- Construct an equivalent Arithmetic Branching Program \Rightarrow size $t^{\log 2d} + 1$, depth $\delta = 3d - 1$ [Malod-Portier, 2008]
- ightarrow ABP \equiv Matrix powering
- $\succ M^{\delta} = (M^{\sqrt{\delta}})^{\sqrt{\delta}}$

Consequence. Replace poly(k, m, t) by $2^{polylog(k, m, t)}$.

$$SPS(k, m, t, A) = \left\{ \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} : f_{j}' \text{s are } t \text{-sparse, } \alpha_{ij} \leq A \right\}$$

$$SPS(k, m, t, A) = \left\{ \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} : f_{j}'s \text{ are } t\text{-sparse, } \alpha_{ij} \leq A \right\}$$

Theorem (G.-Koiran-Portier-Strozecki, 2011)

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

$$C \cdot \left[e \cdot \left(1 + \frac{t^m}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}$$
 for some C .

$$SPS(k, m, t, A) = \left\{ \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} : f_{j}'s \text{ are } t\text{-sparse, } \alpha_{ij} \leq A \right\}$$

Theorem (G.-Koiran-Portier-Strozecki, 2011)

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

$$C \cdot \left[e \cdot \left(1 + \frac{t^m}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}$$
 for some C .

Independent of A.

$$\mathsf{SPS}(k, m, t, A) = \left\{ \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} : f_{j}' \text{s are } t \text{-sparse, } \alpha_{ij} \leq A \right\}$$

Theorem (G.-Koiran-Portier-Strozecki, 2011)

If $f \in SPS(k, m, t, A)$, its number of real roots is at most

$$C \cdot \left[e \cdot \left(1 + \frac{t^m}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}$$
 for some C .

- Independent of A.
- ▶ If *k* and *m* are fixed, this is polynomial in *t*.

Case k = 2

Proposition

The polynomial

$$f=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Case k = 2

Proposition

The polynomial

$$c=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Proof sketch. Let
$$F = f / \prod_j f_j^{\alpha_j} = 1 + \prod_j f_j^{\beta_j - \alpha_j}$$
.

Case k = 2

Proposition

The polynomial

$$f=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Proof sketch. Let $F = f / \prod_j f_j^{\alpha_j} = 1 + \prod_j f_j^{\beta_j - \alpha_j}$. Then

▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰

11 / 11

- ▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰
- > Use your favorite real analysis tools!

- ▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:

- Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:
 - Adelic formulation: number of *p*-adic roots

[Phillipson-Rojas]

- ▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:
 - Adelic formulation: number of *p*-adic roots
 - Random f_{ij}: Work in progress

[Phillipson-Rojas] [Briquel-Bürgisser]

- Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:
 - Adelic formulation: number of *p*-adic roots
 - Random *f*_{ij}: Work in progress
 - Consequences on repartition of complex roots

[Phillipson-Rojas] [Briquel-Bürgisser] [Hrubes]

- ▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:
 - Adelic formulation: number of *p*-adic roots
 - Random f_{ij}: Work in progress
 - Consequences on repartition of complex roots

[Phillipson-Rojas] [Briquel-Bürgisser] [Hrubes]

Embarrassing Open Problem

Let f, g be t-sparse polynomials. \rightsquigarrow What is the maximum number real of roots of fg + 1?

11 / 11

- ▷ Real τ -conjecture \implies VP⁰ \neq VNP⁰
- Use your favorite real analysis tools!
- Related:
 - Adelic formulation: number of *p*-adic roots
 - Random f_{ij}: Work in progress
 - Consequences on repartition of complex roots

[Phillipson-Rojas] [Briquel-Bürgisser] [Hrubes]

Embarrassing Open Problem

Let f, g be t-sparse polynomials. \rightsquigarrow What is the maximum number real of roots of fg + 1?

Thank you for your attention!