Factoring bivariate lacunary polynomials without heights

Bruno Grenet

ÉNS Lyon & U. Rennes 1

Joint work with

Arkadev Chattophyay

TIFR, Mumbai

Natacha Portier ÉNS Lyon Pascal Koiran

ÉNS Lyon

Yann Strozecki
U. Versailles

Séminaire de théorie des nombres du LMNO — Caen, le 1er février 2013

$$P(X) = X^{10} - 4X^8 + 8X^7 + 5X^3 + 1$$

Representations

► Dense:

$$[1,0,-4,8,0,0,0,5,0,0,1]$$

► Sparse:

$$\{(10:1),(8:-4),(7:8),(3:5),(0:1)\}$$

Representation of Multivariate Polynomials

$$P(X, Y, Z) = X^{2}Y^{3}Z^{5} - 4X^{3}Y^{3}Z^{2} + 8X^{5}Z^{2} + 5XYZ + 1$$

Representations

► Dense:

$$[1,\ldots,-4,\ldots,8,\ldots,5,\ldots,1]$$

Lacunary (supersparse):

$$\Big\{(2,3,5:1),(3,3,2:-4),(5,0,2:8),(1,1,1:5),(0:1)\Big\}$$

Size of the lacunary representation

Definition

$$P(X_1,\ldots,X_n)=\sum_{j=1}^k a_j X_1^{\alpha_{1j}}\cdots X_n^{\alpha_{nj}}$$

$$\implies$$
 size $(P) \simeq \sum_{i=1}^{k} \operatorname{size}(a_j) + \log(\alpha_{1j}) + \cdots + \log(\alpha_{nj})$

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $ight. \ \mathbb{F}_q[X]$: randomized polynomial time

[Berlekamp'67]

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $\mathbb{F}_a[X]$: randomized polynomial time

[Berlekamp'67]

$$\sim \mathbb{F}_q[X_1,\ldots,X_n]$$

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $hickspace \mathbb{F}_q[X]$: randomized polynomial time

[Berlekamp'67]

- $\sim \mathbb{F}_q[X_1,\ldots,X_n]$
- $\triangleright \mathbb{Z}[X]$: deterministic polynomial time
- [Lenstra-Lenstra-Lovász'82]

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $ight. \ \mathbb{F}_q[X]$: randomized polynomial time

[Berlekamp'67]

- $\rightarrow \mathbb{F}_q[X_1,\ldots,X_n]$
- $ightharpoonup \mathbb{Z}[X]$: deterministic polynomial time
- [Lenstra-Lenstra-Lovász'82]

 $\sim \mathbb{Q}(\alpha)[X]$

[A. Lenstra'83, Landau'83]

Factorization of a polynomial P

Find F_1, \ldots, F_t , irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $\mathbb{F}_a[X]$: randomized polynomial time

[Berlekamp'67]

- $\longrightarrow \mathbb{F}_a[X_1,\ldots,X_n]$
- $\triangleright \mathbb{Z}[X]$: deterministic polynomial time

[Lenstra-Lenstra-Lovász'82]

- $\sim \mathbb{Q}(\alpha)[X]$
- $\sim \mathbb{Q}(\alpha)[X_1,\ldots,X_n]$

[A. Lenstra'83, Landau'83] [Kaltofen'85, A. Lenstra'87]

Factorization of a polynomial P

Find
$$F_1, \ldots, F_t$$
, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $\mathbb{F}_{a}[X]$: randomized polynomial time

[Berlekamp'67]

$$\sim \mathbb{F}_a[X_1,\ldots,X_n]$$

 $\triangleright \mathbb{Z}[X]$: deterministic polynomial time

[Lenstra-Lenstra-Lovász'82]

$$\longrightarrow \mathbb{Q}(\alpha)[X]$$

 $\longrightarrow \mathbb{Q}(\alpha)[X_1,\ldots,X_n]$

[A. Lenstra'83, Landau'83] [Kaltofen'85, A. Lenstra'87]

Example

$$X^{p} - 1 = (X - 1)(1 + X + \dots + X^{p-1})$$

Factorization of a polynomial P

Find
$$F_1, \ldots, F_t$$
, irreducible, s.t. $P = F_1 \times \cdots \times F_t$

 $\mathbb{F}_a[X]$: randomized polynomial time

$$\sim \mathbb{F}_a[X_1,\ldots,X_n]$$

 $\triangleright \mathbb{Z}[X]$: deterministic polynomial time

[Lenstra-Lenstra-Lovász'82]

$$\qquad \mathbb{Q}(\alpha)[X] \\ \sim \mathbb{Q}(\alpha)[X_1, \dots, X_n]$$

[A. Lenstra'83, Landau'83] [Kaltofen'85, A. Lenstra'87]

Example

$$X^{p}-1=(X-1)(1+X+\cdots+X^{p-1})$$

→ restriction to finding some factors

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 $\operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}(a_j) + \log(\alpha_j)$

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 $\operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}(a_j) + \log(\alpha_j)$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_i \in \mathbb{Z}$.

Factorization of sparse univariate polynomials

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 $\operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}(a_j) + \log(\alpha_j)$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_i \in \mathbb{Z}$.

Theorem (H. Lenstra'99)

Polynomial-time algorithm to find factors of degree $\leq d$ if $a_i \in \mathbb{Q}(\alpha)$.

troduction Bound on the valuation Algorithms Positive characteristic Conclusion

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q} .

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q} .

Theorem (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q} .

Theorem (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Theorem (Avendaño-Krick-Sombra'07)

Polynomial-time algorithm to find low-degree factors of bivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Gap Theorem

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}}_{P_1}$$

with $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$.

Gap Theorem

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}}_{P_1}$$

with $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$. Suppose that

$$\alpha_{\ell+1} - \alpha_{\ell} > \operatorname{gap}(P)$$

Gap Theorem

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}}_{P_1}$$

with $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$. Suppose that

$$\alpha_{\ell+1} - \alpha_{\ell} > \operatorname{\mathsf{gap}}(P),$$

then F divides P iff F divides both P_0 and P_1 .

Gap Theorem

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} Y^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} Y^{\beta_j}}_{P_1}$$

with $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$. Suppose that

$$\alpha_{\ell+1} - \alpha_{\ell} > \operatorname{\mathsf{gap}}(P),$$

then F divides P iff F divides both P_0 and P_1 .

gap(P): function of the algebraic height of P.

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $\deg(P_t) \leq \gcd(P)$

Recursively apply the Gap Theorem:

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $deg(P_t) \leq gap(P)$

 \triangleright Factor out P_1, \ldots, P_s using a dense factorization algorithm

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $deg(P_t) \leq gap(P)$

- Factor out P_1, \ldots, P_s using a dense factorization algorithm
- Refinements:

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $deg(P_t) \leq gap(P)$

- \triangleright Factor out P_1, \ldots, P_s using a dense factorization algorithm
- Refinements:
 - Factor out $\gcd(P_1,\ldots,P_s)$

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $\deg(P_t) \leq \gcd(P)$

- Factor out P_1, \ldots, P_s using a dense factorization algorithm
- Refinements:
 - Factor out $gcd(P_1, \ldots, P_s)$
 - Factor out only P_1 & check which factors divide the other P_t 's

$$P = X^{\alpha_1}P_1 + \cdots + X^{\alpha_t}P_s$$
 with $\deg(P_t) \leq \gcd(P)$

- Factor out P_1, \ldots, P_s using a dense factorization algorithm
- Refinements:
 - Factor out $gcd(P_1, \ldots, P_s)$
 - Factor out only P_1 & check which factors divide the other P_t 's

roduction Bound on the valuation Algorithms Positive characteristic Conclusion

Results

Theorem

roduction Bound on the valuation Algorithms Positive characteristic Conclusion

Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]

Theorem

- Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap(P) independent of the height

Theorem

- Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap(P) independent of the height
 - -- More elementary algorithms

Theorem

- Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap(P) independent of the height
 - → More elementary algorithms
 - → Gap Theorem valid over any field of characteristic 0

Theorem

- Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap(P) independent of the height
 - → More elementary algorithms
 - Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors

Theorem

- Linear factors of bivariate lacunary polynomials
 [Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap(P) independent of the height
 - → More elementary algorithms
 - Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors
- Results in positive characteristics

Linear factors of bivariate polynomials

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Linear factors of bivariate polynomials

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Study of polynomials of the form $\sum_i a_j X^{\alpha_j} (uX + v)^{\beta_j}$

Linear factors of bivariate polynomials

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- For Study of polynomials of the form $\sum_i a_j X^{\alpha_j} (uX + v)^{\beta_j}$
- $ightharpoonup \mathbb{K}$: any field of characteristic 0

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Theorem

Let
$$P = \sum_{i=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Theorem

Let
$$P = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \le \max_{1 \le j \le k} \left(\alpha_j + \binom{k+1-j}{2} \right)$$

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Theorem

Let
$$P = \sum_{j=1}^{n} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

Then

$$\operatorname{val}(P) \leq \alpha_1 + \binom{k}{2}$$

 $> X^{\alpha_j}(uX+v)^{\beta_j}$ linearly independent

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Theorem

Let
$$P = \sum_{j=1}^{n} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \leq \alpha_1 + \binom{k}{2}$$

- $> X^{\alpha_j}(uX+v)^{\beta_j}$ linearly independent
- ► Hajós' Lemma: if $\alpha_1 = \cdots = \alpha_k$, val $(P) \le \alpha_1 + (k-1)$

Gap Theorem

Theorem

Let

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{P_1}$$

with $uv \neq 0$, $\alpha_1 \leq \cdots \leq \alpha_k$. If

$$\alpha_{\ell+1} > \max_{1 \le j \le \ell} \left(\alpha_j + \binom{\ell+1-j}{2} \right),$$

then $P \equiv 0$ iff both $P_0 \equiv 0$ and $P_1 \equiv 0$.

Theorem

Let

$$P = \underbrace{\sum_{j=1}^{\ell} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{P_0} + \underbrace{\sum_{j=\ell+1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}}_{P_1}$$

with $uv \neq 0$, $\alpha_1 \leq \cdots \leq \alpha_k$. If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} > \alpha_1 + {\ell \choose 2},$$

then $P \equiv 0$ iff both $P_0 \equiv 0$ and $P_1 \equiv 0$.

The Wronskian

Definition

Let $f_1, \ldots, f_k \in \mathbb{K}[X]$. Then

$$wr(f_1, \dots, f_k) = \det \begin{bmatrix} f_1 & f_2 & \dots & f_k \\ f'_1 & f'_2 & \dots & f'_k \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \end{bmatrix}.$$

The Wronskian

Definition

Let $f_1, \ldots, f_k \in \mathbb{K}[X]$. Then

$$\mathsf{wr}(f_1,\ldots,f_k) = \mathsf{det} \begin{bmatrix} f_1 & f_2 & \ldots & f_k \\ f_1' & f_2' & \ldots & f_k' \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \ldots & f_k^{(k-1)} \end{bmatrix}.$$

Proposition (Bôcher, 1900)

 $wr(f_1, \ldots, f_k) \neq 0 \iff$ the f_i 's are linearly independent.

Wronskian & valuation

Lemma

$$\mathsf{val}(\mathsf{wr}(f_1,\ldots,f_k)) \geq \sum_{j=1}^k \mathsf{val}(f_j) - \binom{k}{2}$$

Wronskian & valuation

Lemma

$$\operatorname{\mathsf{val}}(\operatorname{\mathsf{wr}}(f_1,\ldots,f_k)) \geq \sum_{j=1}^k \operatorname{\mathsf{val}}(f_j) - \binom{k}{2}$$

Proof.

Upper bound for the valuation

Lemma

Let $f_i = X^{\alpha_j} (uX + v)^{\beta_j}$, $uv \neq 0$, linearly independent, and s.t. $\alpha_i, \beta_i \geq k-1$. Then

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_k)) \leq \sum_{j=1}^k \alpha_j.$$

Lemma

Let $f_j=X^{\alpha_j}(uX+v)^{\beta_j}$, $uv\neq 0$, linearly independent, and s.t. $\alpha_j,\beta_j\geq k-1$. Then

$$\mathsf{val}(\mathsf{wr}(\mathit{f}_1,\ldots,\mathit{f}_k)) \leq \sum_{j=1}^k \alpha_j.$$

Proof idea. Write

$$\operatorname{wr}(f_1,\ldots,f_k) = X^{\sum_j \alpha_j - \binom{k}{2}} (uX + v)^{\sum_j \beta_j - \binom{k}{2}} \times \det(M)$$

with $deg(M_{ij}) \leq i$.

Lemma

Let $f_j=X^{\alpha_j}(uX+v)^{\beta_j}$, $uv\neq 0$, linearly independent, and s.t. $\alpha_j,\beta_j\geq k-1$. Then

$$\operatorname{val}(\operatorname{wr}(f_1,\ldots,f_k)) \leq \sum_{j=1}^k \alpha_j.$$

Proof idea. Write

$$\operatorname{wr}(f_1,\ldots,f_k) = X^{\sum_j \alpha_j - \binom{k}{2}} (uX + v)^{\sum_j \beta_j - \binom{k}{2}} \times \det(M)$$

with $deg(M_{ij}) \le i$. Use $val(det M) \le deg(det M) \le {k \choose 2}$.

Theorem

Let
$$P = \sum_{i=1}^{n} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \leq \alpha_1 + \binom{k}{2}.$$

Theorem

Let
$$P = \sum_{j=1}^{n} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \leq \alpha_1 + \binom{k}{2}.$$

Proof.
$$wr(P, f_2, ..., f_k) = a_1 wr(f_1, ..., f_k)$$

Theorem

Let
$$P = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \leq \alpha_1 + \binom{k}{2}.$$

Proof.
$$wr(P, f_2, ..., f_k) = a_1 wr(f_1, ..., f_k)$$

$$\sum_{j=1}^k \alpha_j \geq \mathsf{val}(\mathsf{wr}(f_1,\ldots,f_k)) \geq \mathsf{val}(P) + \sum_{j=2}^k \alpha_j - \binom{k}{2}$$

Theorem

Let
$$P = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \not\equiv 0$$
, with $uv \neq 0$ and $\alpha_1 \leq \cdots \leq \alpha_k$.

$$\operatorname{val}(P) \leq \max_{1 \leq j \leq k} \left(\alpha_j + \binom{k+1-j}{2} \right).$$

Proof.
$$wr(P, f_2, ..., f_k) = a_1 wr(f_1, ..., f_k)$$

$$\sum_{j=1}^k \alpha_j \ge \mathsf{val}(\mathsf{wr}(f_1,\ldots,f_k)) \ge \mathsf{val}(P) + \sum_{j=2}^k \alpha_j - \binom{k}{2}$$

How far from optimality?

$$ightharpoonup$$
 Hajós' Lemma: val $\left(\sum_{i=1}^k a_j X^{lpha} (uX+v)^{eta_j}
ight) \leq lpha + (k-1)$

$$ightharpoonup$$
 Hajós' Lemma: val $\left(\sum_{j=1}^k a_j X^{lpha} (uX+v)^{eta_j}
ight) \leq lpha + (k-1)$

How far from optimality?

$$\geq$$
 Hajós' Lemma: val $\left(\sum_{j=1}^k a_j X^{m{lpha}} (uX+v)^{eta_j}
ight) \leq lpha + (k-1)$

Our result: val
$$\left(\sum_{j=1}^k a_j X^{\alpha_j} (uX+v)^{\beta_j}\right) \leq \alpha_1 + {k \choose 2}$$

▶ Lemmas: bounds attained, but not simultaneously → trade-off?

How far from optimality?

$$ightharpoonup ext{Haj\'os' Lemma: val} \left(\sum_{j=1}^k a_j X^{m{lpha}} (uX+v)^{eta_j}
ight) \leq lpha + (k-1)$$

Our result: val
$$\left(\sum_{j=1}^k a_j X^{\alpha_j} (uX + v)^{\beta_j}\right) \le \alpha_1 + {k \choose 2}$$

- Lemmas: bounds attained, but not simultaneously ↔ trade-off?
- Lower bound:

$$X^{2k-3} = (1+X)^{2k+3} - 1 - \sum_{j=3}^{k} \frac{2k-3}{2j-5} {k+j-5 \choose 2j-6} X^{2j-5} (1+X)^{k-1-j}$$

A generalization

Theorem

Let $(\alpha_{ii}) \in \mathbb{Z}_+^{k \times m}$ and

$$P = \sum_{i=1}^k a_i \prod_{j=1}^m f_i^{\alpha_{ij}},$$

where $f_i \in \mathbb{K}[X]$, $\deg(f_i) = d_i$ and $\operatorname{val}(f_i) = \mu_i$.

A generalization

Theorem

Let $(\alpha_{ii}) \in \mathbb{Z}_{+}^{k \times m}$ and

$$P = \sum_{j=1}^{K} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}},$$

where $f_i \in \mathbb{K}[X]$, $\deg(f_i) = d_i$ and $\operatorname{val}(f_i) = \mu_i$. Then

$$\operatorname{val}(P) \leq \max_{1 \leq j \leq k} \sum_{i=1}^{m} \left(\mu_{i} \alpha_{ij} + (d_{i} - \mu_{i}) {k+1-j \choose 2} \right).$$

A generalization

Theorem

Let $(\alpha_{ii}) \in \mathbb{R}^{k \times m}$ and

$$P = \sum_{j=1}^{K} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}},$$

where $f_i \in \mathbb{K}[X]$, $\deg(f_i) = d_i$ and $\operatorname{val}(f_i) = \mu_i$. Then

$$\operatorname{val}(P) \leq \max_{1 \leq j \leq k} \sum_{i=1}^{m} \left(\mu_{i} \alpha_{ij} + (d_{i} - \mu_{i}) {k+1-j \choose 2} \right).$$

- 1. Polynomial Identity Testing
- 2. Finding (multi)linear factors

- 1. Polynomial Identity Testing
- 2. Finding (multi)linear factors

$$\mathbb{K} = \mathbb{Q}[\xi]/\langle \varphi \rangle, \qquad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta$$

- 1. Polynomial Identity Testing
- 2. Finding (multi)linear factors

$$\mathbb{K} = \mathbb{Q}[\xi]/\langle \varphi \rangle, \qquad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_0}{d_0}, \dots, \frac{n_{\delta-1}}{d_{\delta-1}}\right)$
- $ightharpoonup \operatorname{size}(x) \simeq \log(n_0 d_0) + \cdots + \log(n_{\delta-1} d_{\delta-1})$

- Polynomial Identity Testing
- 2. Finding (multi)linear factors

$$\mathbb{K} = \mathbb{Q}[\xi]/\langle \varphi \rangle, \qquad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta$$

- $x \in \mathbb{K}$ represented as $(\frac{n_0}{d_0}, \dots, \frac{n_{\delta-1}}{d_{\delta-1}})$
- ${\mathbb K}$ is part of the input, given by ${arphi}$ in dense representation

- 1. Polynomial Identity Testing
- 2. Finding (multi)linear factors

$$\mathbb{K} = \mathbb{Q}[\xi]/\langle \varphi \rangle, \qquad \varphi \in \mathbb{Z}[\xi] \text{ irreducible of degree } \delta$$

- $x \in \mathbb{K}$ represented as $(\frac{n_0}{d_0}, \dots, \frac{n_{\delta-1}}{d_{\delta-1}})$
- ${f f \mathbb{K}}$ is part of the input, given by arphi in dense representation
- N.B.: Algorithms are from [Kaltofen-Koiran'05]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

$$P = \sum_{i=1}^{n} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 vanishes.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

$$P = \sum_{i=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \text{ vanishes.}$$

Proof.

$$\blacktriangleright \text{ If } u = 0: \text{ test } \sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0$$

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

$$P = \sum_{i=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \text{ vanishes.}$$

Proof.

[Lenstra'99]

If
$$v = 0$$
: similar

Theorem

There exists a deterministic polynomial-time algorithm to test if

$$P = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 vanishes.

Proof.

$$\blacktriangleright \text{ If } u = 0: \text{ test } \sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0$$

[Lenstra'99]

If
$$v = 0$$
: similar

► If
$$u, v \neq 0$$
: $P = P_1 + \cdots + P_s$ s.t.

$$P=0 \iff P_1=\cdots=P_s=0$$

where
$$P_t = \sum_i a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 with $\alpha_{\text{max}} \leq \alpha_{\text{min}} + {k \choose 2}$

Polynomial Identity Testing (2)

$$Q(X) = \sum_{i=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
, with $\alpha_k \le \alpha_1 + {k \choose 2}$

$$Q(X) = \sum_{i=1}^{k} a_i X^{\alpha_i} (uX + v)^{\beta_i}, \text{ with } \alpha_k \leq \binom{k}{2}$$

Polynomial Identity Testing (2)

$$Q(X) = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \le {k \choose 2}$$

Let Y = uX + v. Then

$$Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j}$$

$$Q(X) = \sum_{i=1}^k a_j X^{\alpha_j} (uX + v)^{\beta_j}, \text{ with } \alpha_k \leq {k \choose 2}$$

Let $Y = \mu X + \nu$. Then

$$Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j}$$

$$= \sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_j} a_j u^{-\alpha_j} {\alpha_j \choose \ell} (-v)^{\ell} Y^{\alpha_j + \beta_j - \ell}$$

$$Q(X) = \sum_{i=1}^{k} a_{i} X^{\alpha_{j}} (uX + v)^{\beta_{j}}, \text{ with } \alpha_{k} \leq \binom{k}{2}$$

Let $Y = \mu X + \nu$. Then

$$Q(Y) = \sum_{j=1}^{k} a_j u^{-\alpha_j} (Y - v)^{\alpha_j} Y^{\beta_j}$$

$$= \sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_j} a_j u^{-\alpha_j} {\alpha_j \choose \ell} (-v)^{\ell} Y^{\alpha_j + \beta_j - \ell}$$

number of monomials, exponents $\leq poly(size(Q))$

Theorem

Let

$$P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}}$$

where $f_1, \ldots, f_m \in \mathbb{K}[X]$ are given in **dense** representation, $(\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}$ and $(a_j) \in \mathbb{K}^k$. Then one can test if P vanishes in deterministic polynomial time.

Theorem

Let

$$P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}}$$

where $f_1, \ldots, f_m \in \mathbb{K}[X]$ are given in **dense** representation, $(\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}$ and $(a_j) \in \mathbb{K}^k$. Then one can test if P vanishes in deterministic polynomial time.

Proof sketch.

Factor out each f_i and rewrite $P = \sum_{j=1}^{\kappa} b_j \prod_{i=1}^{M} g_i^{\beta_{ij}}$.

Theorem

Let

$$P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}}$$

where $f_1, \ldots, f_m \in \mathbb{K}[X]$ are given in **dense** representation, $(\alpha_{ii}) \in \mathbb{Z}_{+}^{k \times m}$ and $(a_i) \in \mathbb{K}^k$. Then one can test if P vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each f_i and rewrite $P = \sum b_j \prod g_i^{\beta_{ij}}$.
- $\qquad \text{Then } \mu_{g_i}(P) \leq \max_{1 \leq j \leq k} \left(\beta_{ij} + \sum_{\ell \neq i} \frac{\deg(g_\ell)}{\deg(g_i)} \binom{k+1-j}{2} \right) \text{ for each } g_i.$

Theorem

Let

$$P = \sum_{j=1}^{k} a_j \prod_{i=1}^{m} f_i^{\alpha_{ij}}$$

where $f_1, \ldots, f_m \in \mathbb{K}[X]$ are given in **dense** representation, $(\alpha_{ij}) \in \mathbb{Z}_+^{k \times m}$ and $(a_j) \in \mathbb{K}^k$. Then one can test if P vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each f_i and rewrite $P = \sum_{j=1}^k b_j \prod_{i=1}^M g_i^{\beta_{ij}}$.
- $\qquad \text{Then } \mu_{g_i}(P) \leq \max_{1 \leq j \leq k} \left(\beta_{ij} + \sum_{\ell \neq j} \frac{\deg(g_\ell)}{\deg(g_i)} \binom{k+1-j}{2} \right) \text{ for each } g_i.$
- ightharpoonup Gap Theorem ightharpoonup write P as a sum of low-degree polynomials.

Finding linear factors

Observation + Gap Theorem

$$(Y - uX - v)$$
 divides $P(X, Y)$
 $\iff P(X, uX + v) \equiv 0$

Observation + Gap Theorem

$$(Y - uX - v)$$
 divides $P(X, Y)$
 $\iff P(X, uX + v) \equiv 0$
 $\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$

Finding linear factors

Observation + Gap Theorem

$$(Y - uX - v)$$
 divides $P(X, Y)$
 $\iff P(X, uX + v) \equiv 0$
 $\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$
 $\iff (Y - uX - v)$ divides each $P_t(X, Y)$

Observation + Gap Theorem

$$(Y - uX - v)$$
 divides $P(X, Y)$
 $\iff P(X, uX + v) \equiv 0$
 $\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$
 $\iff (Y - uX - v)$ divides each $P_t(X, Y)$

→ find linear factors of low-degree polynomials

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{N} a_j X^{\alpha_j} Y^{\beta_j}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{N} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u = 0: Factors of polynomials $\sum_i a_i Y^{\beta_i}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u=0: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{n} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u=0: Factors of polynomials $\sum_j a_j Y^{\beta_j}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{i} a_{i} u^{\beta_{i}} X^{\alpha_{i} + \beta_{i}}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u = 0: Factors of polynomials $\sum_{i} a_{i} Y^{\beta_{i}}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{i} a_{i} u^{\beta_{i}} X^{\alpha_{i} + \beta_{i}}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{n} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u=0: Factors of polynomials $\sum_i a_j Y^{\beta_j}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{j} a_j u^{\beta_j} X^{\alpha_j + \beta_j}$

[Lenstra'99]

3. If $u, v \neq 0$:

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{n} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u=0: Factors of polynomials $\sum_j a_j Y^{\beta_j}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{j} a_j u^{\beta_j} X^{\alpha_j + \beta_j}$

- 3. If $u, v \neq 0$:
 - Compute $P=P_1+\cdots+P_s$ where $P_t=\sum_j a_j X^{\alpha_j} Y^{\beta_j}$ with $\alpha_{\sf max} \leq \alpha_{\sf min} + {k \choose 2}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u = 0: Factors of polynomials $\sum_i a_i Y^{\beta_i}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{i} a_{i} u^{\beta_{i}} X^{\alpha_{i} + \beta_{i}}$

- If $u, v \neq 0$:
 - Compute $P = P_1 + \cdots + P_s$ where $P_t = \sum_i a_i X^{\alpha_i} Y^{\beta_i}$ with $\alpha_{\text{max}} \leq \alpha_{\text{min}} + \binom{k}{2}$
 - Invert the roles of X and Y, to get $\beta_{\text{max}} \leq \beta_{\text{min}} + {k \choose 2}$

Find linear factors
$$(Y - uX - v)$$
 of $P(X, Y) = \sum_{j=1}^{\kappa} a_j X^{\alpha_j} Y^{\beta_j}$

1. If u = 0: Factors of polynomials $\sum_{i} a_{i} Y^{\beta_{i}}$

[Lenstra'99]

2. If v = 0: $P(X, uX) = \sum_{j} a_j u^{\beta_j} X^{\alpha_j + \beta_j}$

- 3. If $u, v \neq 0$:
 - Compute $P=P_1+\cdots+P_s$ where $P_t=\sum_j a_j X^{\alpha_j} Y^{\beta_j}$ with $\alpha_{\sf max} \leq \alpha_{\sf min} + {k \choose 2}$
 - Invert the roles of X and Y, to get $\beta_{\max} \leq \beta_{\min} + {k \choose 2}$
 - Apply some dense factorization algorithm [Kaltofen'82, ..., Lecerf'07]

Main computational task: Factorization of dense polynomials

Main computational task: Factorization of dense polynomials \implies Complexity in terms of gap(P)

[Kaltofen-Koiran'05]: $gap(P) = \mathcal{O}(k \log k + k \log h_P)$

[Kaltofen-Koiran'05]:
$$gap(P) = \mathcal{O}(k \log k + k \log h_P)$$

$$h_P = \max_i |a_i| \text{ if } P \in \mathbb{Z}[X, Y]$$

- [Kaltofen-Koiran'05]: $gap(P) = \mathcal{O}(k \log k + k \log h_P)$ $h_P = \max_j |a_j| \text{ if } P \in \mathbb{Z}[X, Y]$
- $\vdash \mathsf{Here: gap}(P) = \mathcal{O}(k^2)$

- igwedge [Kaltofen-Koiran'05]: $extstyle{\mathsf{gap}}(P) = \mathcal{O}(k \log k + k \log h_P)$ $h_P = \mathsf{max}_j |a_j| ext{ if } P \in \mathbb{Z}[X,Y]$
- $\vdash \mathsf{Here: gap}(P) = \mathcal{O}(k^2)$
- Algebraic number field: only for Lenstra's algorithm

Finding multilinear factors

Lemma

Let
$$P=\sum_j a_j X^{\alpha_j} (uX+v)^{\beta_j} (wX+t)^{\gamma_j} \not\equiv 0$$
, $uvwt \not= 0$. Then $\operatorname{val}(P) \leq \max_j \left(\alpha_j + 2 {k+1-j \choose 2} \right)$.

Finding multilinear factors

Lemma

Let
$$P=\sum_j a_j X^{\alpha_j} (uX+v)^{\beta_j} (wX+t)^{\gamma_j} \not\equiv 0$$
, $uvwt \not\equiv 0$. Then
$$\operatorname{val}(P) \leq \max_j \left(\alpha_j + 2 \binom{k+1-j}{2}\right).$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_i a_j X^{\alpha_j} Y^{\beta_j}$.

Finding multilinear factors

Lemma

Let
$$P=\sum_j a_j X^{\alpha_j} (uX+v)^{\beta_j} (wX+t)^{\gamma_j} \not\equiv 0$$
, $uvwt \not\equiv 0$. Then
$$\operatorname{val}(P) \leq \max_j \left(\alpha_j + 2 \binom{k+1-j}{2}\right).$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_i a_i X^{\alpha_j} Y^{\beta_j}$.

Proof.

$$YY - (uX - vY + w) \text{ divides } P \iff P(X, \frac{uX + w}{X + v}) \equiv 0.$$

Lemma

Let
$$P=\sum_j a_j X^{\alpha_j} (uX+v)^{\beta_j} (wX+t)^{\gamma_j} \not\equiv 0$$
, $uvwt \not= 0$. Then $\operatorname{val}(P) \leq \max_j \left(\alpha_j + 2 {k+1-j \choose 2} \right)$.

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_i a_j X^{\alpha_j} Y^{\beta_j}$.

Proof.

$$YY - (uX - vY + w)$$
 divides $P \iff P(X, \frac{uX+w}{X+v}) \equiv 0$.

► Gap Theorem for
$$Q(X) = (X + v)^{\max_j \beta_j} P(X, \frac{uX+w}{X+v})$$
.

Positive characteristic

Valuation

$$(1+X)^{2^n}+(1+X)^{2^{n+1}}=X^{2^n}(X+1)\mod 2$$

Valuation

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1) \mod 2$$

Theorem

Let
$$P = \sum_{j=1}^k a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$$
, where $p > \max_j (\alpha_j + \beta_j)$.

Then $val(P) \le max_i(\alpha_i + \binom{k+1-j}{2})$, provided $P \not\equiv 0$.

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1) \mod 2$$

Theorem

Let
$$P = \sum_{i=1}^{\kappa} a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$$
, where $p > \max_j (\alpha_j + \beta_j)$.

Then $val(P) \le max_j(\alpha_j + {k+1-j \choose 2})$, provided $P \not\equiv 0$.

Proposition

 $\operatorname{wr}(f_1,\ldots,f_k)\neq 0 \iff f_j$'s linearly independent over $\mathbb{F}_{p^s}[X^p]$.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_i a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$, where $p > \max_j (\alpha_j + \beta_j)$, vanishes.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{i} a_{j} X^{\alpha_{j}} (uX + v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p > \max_{j} (\alpha_{j} + \beta_{j})$, vanishes.

Proof.

If $uv \neq 0$: as in characteristic 0, using a Gap Theorem.

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_i a_i X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$, where $p > \max_i (\alpha_i + \beta_i)$, vanishes.

Proof.

- If $uv \neq 0$: as in characteristic 0, using a Gap Theorem.
- If u = 0: Evaluate $\sum_{i} a_{j} v^{\beta_{j}}$ using **repeated squaring**.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_j a_j X^{\alpha_j} (uX + v)^{\beta_j} \in \mathbb{F}_{p^s}[X]$, where $p > \max_j (\alpha_j + \beta_j)$, vanishes.

Proof.

- If $uv \neq 0$: as in characteristic 0, using a Gap Theorem.
- > If u=0: Evaluate $\sum_i a_j v^{eta_j}$ using **repeated squaring**.
- \triangleright The case v=0 is similar.

Finding linear factors

Theorem

Let $P = \sum_{i} a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_{j} (\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

▶ doable in randomized polynomial time if $uvw \neq 0$;

Finding linear factors

Theorem

Let $P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_j (\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

- ▶ doable in randomized polynomial time if $uvw \neq 0$;
- ▶ NP-hard under randomized reductions otherwise.

Finding linear factors

Theorem

Let $P = \sum_j a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_j (\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

- ▶ doable in randomized polynomial time if $uvw \neq 0$;
- ▶ NP-hard under randomized reductions otherwise.
- ightharpoonup Only randomized dense factorization algorithms over \mathbb{F}_{p^s}

Theorem

Let $P = \sum_{j} a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_{j} (\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

- ▶ doable in randomized polynomial time if $uvw \neq 0$;
- ▶ NP-hard under randomized reductions otherwise.
- hd Only randomized dense factorization algorithms over \mathbb{F}_{p^s}
- NP-hardness: reduction from root detection over \mathbb{F}_{p^s} [Kipnis-Shamir'99, Bi-Cheng-Rojas'12]

 Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- Gap Theorem independent of the height

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- + Gap Theorem independent of the height
 - Large coefficients

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- + Gap Theorem independent of the height
 - Large coefficients
 - Valid to some extent for other fields

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- + Gap Theorem independent of the height
 - Large coefficients
 - Valid to some extent for other fields
- Results in large positive characteristic

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- + Gap Theorem independent of the height
 - Large coefficients
 - Valid to some extent for other fields
- Results in large positive characteristic
- Still relies on [Lenstra'99]

- + Elementary proofs & algorithms for the factorization of lacunary bivariate polynomials
 - Easier to implement
 - Two Gap Theorems: mix both!
- + Gap Theorem independent of the height
 - Large coefficients
 - Valid to some extent for other fields
- Results in large positive characteristic
- Still relies on [Lenstra'99]
 - Number fields

Can we find low-degree factors of multivariate polynomials?

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - → Impossibility results in positive characteristic

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - → Impossibility results in positive characteristic
- Can we find lacunary factors?

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - $\rightsquigarrow \mbox{Impossibility results in positive characteristic}$
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - → Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
- Is the correct bound for the valuation quadratic or linear?

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
 - \leadsto Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
- Is the correct bound for the valuation quadratic or linear?

Thank you!

arXiv:1206.4224