Factoring bivariate lacunary polynomials without heights

Bruno Grenet ÉNS Lyon \& U. Rennes 1 Joint work with	
Arkadev Chattophyay	
TIFR, Mumbai	Pascal Koiran
Natacha Portier	ÉNS Lyon
ÉNS Lyon	Yann Strozecki
U. Versailles	

Séminaire de théorie des nombres du LMNO - Caen, le $1^{\text {er }}$ février 2013

Representation of Univariate Polynomials

$$
P(X)=X^{10}-4 X^{8}+8 X^{7}+5 X^{3}+1
$$

Representations

- Dense:

$$
[1,0,-4,8,0,0,0,5,0,0,1]
$$

- Sparse:

$$
\{(10: 1),(8:-4),(7: 8),(3: 5),(0: 1)\}
$$

Representation of Multivariate Polynomials

$P(X, Y, Z)=X^{2} Y^{3} Z^{5}-4 X^{3} Y^{3} Z^{2}+8 X^{5} Z^{2}+5 X Y Z+1$

Representations

- Dense:

$$
[1, \ldots,-4, \ldots, 8, \ldots, 5, \ldots, 1]
$$

- Lacunary (supersparse):

$$
\{(2,3,5: 1),(3,3,2:-4),(5,0,2: 8),(1,1,1: 5),(0: 1)\}
$$

Size of the lacunary representation

Definition

$$
\begin{gathered}
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}} \\
\Longrightarrow \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{1 j}\right)+\cdots+\log \left(\alpha_{n j}\right)
\end{gathered}
$$

Factorization of polynomials

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

Factorization of polynomials

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

Factorization of polynomials

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

$$
\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]
$$

Factorization of polynomials

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time [Lenstra-Lenstra-Lovász' 82]

Factorization of polynomials

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]
$\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$
- $\mathbb{Z}[X]$: deterministic polynomial time
$\rightsquigarrow \mathbb{Q}(\alpha)[X]$
[A. Lenstra'83, Landau'83]

Factorization of polynomials

Factorization of a polynomial P
Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

$$
\sim \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]
$$

- $\mathbb{Z}[X]$: deterministic polynomial time

$$
\cdots \mathbb{Q}(\alpha)[X]
$$

[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]

Factorization of polynomials

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

$$
\sim \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]
$$

> $\mathbb{Z}[X]$: deterministic polynomial time

$$
\begin{aligned}
& \sim \mathbb{Q}(\alpha)[X] \\
& \sim \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

[Lenstra-Lenstra-Lovász' 82]
[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]
Example

$$
X^{p}-1=(X-1)\left(1+X+\cdots+X^{p-1}\right)
$$

Factorization of polynomials

Factorization of a polynomial P

Find F_{1}, \ldots, F_{t}, irreducible, s.t. $P=F_{1} \times \cdots \times F_{t}$

- $\mathbb{F}_{q}[X]$: randomized polynomial time
[Berlekamp'67]

$$
\leadsto \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]
$$

> $\mathbb{Z}[X]$: deterministic polynomial time

$$
\begin{aligned}
& \sim \mathbb{Q}(\alpha)[X] \\
& \sim \mathbb{Q}(\alpha)\left[X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

[Lenstra-Lenstra-Lovász' 82]
[A. Lenstra'83, Landau'83]
[Kaltofen'85, A. Lenstra'87]
Example

$$
X^{p}-1=(X-1)\left(1+X+\cdots+X^{p-1}\right)
$$

\Longrightarrow restriction to finding some factors

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P) \simeq \sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.
Theorem (H. Lenstra'99)
Polynomial-time algorithm to find factors of degree $\leq d$ if $a_{j} \in \mathbb{Q}(\alpha)$.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Theorem (Avendaño-Krick-Sombra'07)

Polynomial-time algorithm to find low-degree factors of bivariate lacunary polynomials over $\mathbb{Q}(\alpha)$.

Common ideas

Gap Theorem

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P)
$$

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P),
$$

then F divides P iff F divides both P_{0} and P_{1}.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}}_{P_{1}}
$$

with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{k}$. Suppose that

$$
\alpha_{\ell+1}-\alpha_{\ell}>\operatorname{gap}(P),
$$

then F divides P iff F divides both P_{0} and P_{1}.
$\operatorname{gap}(P)$: function of the algebraic height of P.

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$
- Factor out only P_{1} \& check which factors divide the other P_{t} 's

Common algorithmic idea

- Recursively apply the Gap Theorem:

$$
P=X^{\alpha_{1}} P_{1}+\cdots+X^{\alpha_{t}} P_{s} \text { with } \operatorname{deg}\left(P_{t}\right) \leq \operatorname{gap}(P)
$$

- Factor out P_{1}, \ldots, P_{s} using a dense factorization algorithm
- Refinements:
- Factor out $\operatorname{gcd}\left(P_{1}, \ldots, P_{s}\right)$
- Factor out only P_{1} \& check which factors divide the other P_{t}^{\prime} 's
- ...

Results

Theorem
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

Results

Theorem
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]

Results

Theorem
Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra’07]
> gap (P) independent of the height

Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap (P) independent of the height
\leadsto More elementary algorithms

Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
> gap (P) independent of the height
\leadsto More elementary algorithms
\leadsto Gap Theorem valid over any field of characteristic 0

Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
> gap (P) independent of the height
\leadsto More elementary algorithms
\leadsto Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors

Results

Theorem

Polynomial time algorithm to find multilinear factors of bivariate lacunary polynomials over algebraic number fields.

- Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendaño-Krick-Sombra'07]
- gap (P) independent of the height
\leadsto More elementary algorithms
\rightsquigarrow Gap Theorem valid over any field of characteristic 0
- Extension to multilinear factors
- Results in positive characteristics

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

- Study of polynomials of the form $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$

- Study of polynomials of the form $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$
- \mathbb{K} : any field of characteristic 0

Bound on the valuation

Bound on the valuation

Definition

$\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$$$
\text { Let } P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0 \text {, with } u v \neq 0 \text { and } \alpha_{1} \leq \cdots \leq \alpha_{k} .
$$

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$
Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$
Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

- $X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ linearly independent

Bound on the valuation

Definition

 $\operatorname{val}(P)=$ degree of the lowest degree monomial of $P \in \mathbb{K}[X]$
Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

- $X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ linearly independent
- Hajós' Lemma: if $\alpha_{1}=\cdots=\alpha_{k}, \operatorname{val}(P) \leq \alpha_{1}+(k-1)$

Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If

$$
\alpha_{\ell+1}>\max _{1 \leq j \leq \ell}\left(\alpha_{j}+\binom{\ell+1-j}{2}\right)
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}>\alpha_{1}+\binom{\ell}{2}
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
w r\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

Proposition (Bôcher, 1900)
$\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right) \neq 0 \Longleftrightarrow$ the f_{j} 's are linearly independent.

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Proof.

$$
\begin{gathered}
\\
0 \\
-1 \\
\vdots \\
-(k-1)
\end{gathered}\left[\begin{array}{cccc}
\operatorname{val}\left(f_{1}\right) & \operatorname{val}\left(f_{2}\right) & \ldots & \operatorname{val}\left(f_{k}\right) \\
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

Upper bound for the valuation

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Upper bound for the valuation

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Proof idea. Write

$$
\mathrm{wr}\left(f_{1}, \ldots, f_{k}\right)=X^{\sum_{j} \alpha_{j}-\binom{k}{2}}(u X+v)^{\sum_{j} \beta_{j}-\binom{k}{2}} \times \operatorname{det}(M)
$$

with $\operatorname{deg}\left(M_{i j}\right) \leq i$.

Upper bound for the valuation

Lemma

Let $f_{j}=X^{\alpha_{j}}(u X+v)^{\beta_{j}}, u v \neq 0$, linearly independent, and s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \leq \sum_{j=1}^{k} \alpha_{j}
$$

Proof idea. Write

$$
\mathrm{wr}\left(f_{1}, \ldots, f_{k}\right)=X^{\sum_{j} \alpha_{j}-\binom{k}{2}}(u X+v)^{\sum_{j} \beta_{j}-\binom{k}{2}} \times \operatorname{det}(M)
$$

with $\operatorname{deg}\left(M_{i j}\right) \leq i$. Use $\operatorname{val}(\operatorname{det} M) \leq \operatorname{deg}(\operatorname{det} M) \leq\binom{ k}{2}$.

Proof of the Theorem

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0 \text {, with } u v \neq 0 \text { and } \alpha_{1} \leq \cdots \leq \alpha_{k} \\
& \text { Then } \\
& \qquad \operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2} .
\end{aligned}
$$

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

Proof. $\mathrm{wr}\left(P, f_{2}, \ldots, f_{k}\right)=a_{1} \mathrm{wr}\left(f_{1}, \ldots, f_{k}\right)$

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

Proof. wr $\left(P, f_{2}, \ldots, f_{k}\right)=a_{1} \operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)$

$$
\sum_{j=1}^{k} \alpha_{j} \geq \operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \operatorname{val}(P)+\sum_{j=2}^{k} \alpha_{j}-\binom{k}{2}
$$

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \not \equiv 0$, with $u v \neq 0$ and $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

Proof. $\mathrm{wr}\left(P, f_{2}, \ldots, f_{k}\right)=a_{1} \operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)$

$$
\sum_{j=1}^{k} \alpha_{j} \geq \operatorname{val}\left(\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \operatorname{val}(P)+\sum_{j=2}^{k} \alpha_{j}-\binom{k}{2}
$$

How far from optimality?

- Hajós' Lemma: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha}(u X+v)^{\beta_{j}}\right) \leq \alpha+(k-1)$

How far from optimality?

- Hajós' Lemma: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha}(u X+v)^{\beta_{j}}\right) \leq \alpha+(k-1)$
- Our result: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leq \alpha_{1}+\binom{k}{2}$

How far from optimality?

- Hajós' Lemma: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha}(u X+v)^{\beta_{j}}\right) \leq \alpha+(k-1)$
- Our result: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leq \alpha_{1}+\binom{k}{2}$
- Lemmas: bounds attained, but not simultaneously \rightsquigarrow trade-off?

How far from optimality?

- Hajós' Lemma: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha}(u X+v)^{\beta_{j}}\right) \leq \alpha+(k-1)$
- Our result: val $\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}\right) \leq \alpha_{1}+\binom{k}{2}$
- Lemmas: bounds attained, but not simultaneously \rightsquigarrow trade-off?
- Lower bound:

$$
X^{2 k-3}=(1+X)^{2 k+3}-1-\sum_{j=3}^{k} \frac{2 k-3}{2 j-5}\binom{k+j-5}{2 j-6} X^{2 j-5}(1+X)^{k-1-j}
$$

A generalization

Theorem
Let $\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{i} \in \mathbb{K}[X], \operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\operatorname{val}\left(f_{i}\right)=\mu_{i}$.

A generalization

Theorem

Let $\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{i} \in \mathbb{K}[X], \operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\operatorname{val}\left(f_{i}\right)=\mu_{i}$. Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k} \sum_{i=1}^{m}\left(\mu_{i} \alpha_{i j}+\left(d_{i}-\mu_{i}\right)\binom{k+1-j}{2}\right)
$$

A generalization

Theorem

Let $\left(\alpha_{i j}\right) \in \mathbb{R}^{k \times m}$ and

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{i} \in \mathbb{K}[X], \operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\operatorname{val}\left(f_{i}\right)=\mu_{i}$. Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k} \sum_{i=1}^{m}\left(\mu_{i} \alpha_{i j}+\left(d_{i}-\mu_{i}\right)\binom{k+1-j}{2}\right)
$$

Algorithms

Algorithms

1. Polynomial Identity Testing
 2. Finding (multi)linear factors

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_{0}}{d_{0}}, \ldots, \frac{n_{\delta-1}}{d_{\delta-1}}\right)$
$-\operatorname{size}(x) \simeq \log \left(n_{0} d_{0}\right)+\cdots+\log \left(n_{\delta-1} d_{\delta-1}\right)$

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_{0}}{d_{0}}, \ldots, \frac{n_{\delta-1}}{d_{\delta-1}}\right)$
$-\operatorname{size}(x) \simeq \log \left(n_{0} d_{0}\right)+\cdots+\log \left(n_{\delta-1} d_{\delta-1}\right)$
- \mathbb{K} is part of the input, given by φ in dense representation

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_{0}}{d_{0}}, \ldots, \frac{n_{\delta-1}}{d_{\delta-1}}\right)$
$-\operatorname{size}(x) \simeq \log \left(n_{0} d_{0}\right)+\cdots+\log \left(n_{\delta-1} d_{\delta-1}\right)$
- \mathbb{K} is part of the input, given by φ in dense representation
- N.B.: Algorithms are from [Kaltofen-Koiran'05]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if
$P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if
$P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Proof.

> If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0$
[Lenstra'99]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if
$P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Proof.

> If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0$
[Lenstra'99]

- If $v=0$: similar
[Lenstra'99]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if
$P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Proof.

> If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0$
[Lenstra'99]

- If $v=0$: similar
[Lenstra'99]
- If $u, v \neq 0: P=P_{1}+\cdots+P_{s}$ s.t.

$$
P=0 \Longleftrightarrow P_{1}=\cdots=P_{s}=0
$$

where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \alpha_{1}+\binom{k}{2}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y-v)^{\alpha_{j}} Y^{\beta_{j}}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
\begin{aligned}
& Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y-v)^{\alpha_{j}} Y^{\beta_{j}} \\
&=\sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_{j}} a_{j} u^{-\alpha_{j}}\binom{\alpha_{j}}{\ell}(-v)^{\ell} Y^{\alpha_{j}+\beta_{j}-\ell}
\end{aligned}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
\begin{aligned}
Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y- & v)^{\alpha_{j}} Y^{\beta_{j}} \\
& =\sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_{j}} a_{j} u^{-\alpha_{j}}\binom{\alpha_{j}}{\ell}(-v)^{\ell} Y^{\alpha_{j}+\beta_{j}-\ell}
\end{aligned}
$$

number of monomials, exponents $\leq \operatorname{poly}(\operatorname{size}(Q))$

Generalization of PIT

Theorem

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

Let
where $f_{1}, \ldots, f_{m} \in \mathbb{K}[X]$ are given in dense representation,
$\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and $\left(a_{j}\right) \in \mathbb{K}^{k}$. Then one can test if P vanishes
in deterministic polynomial time.

Generalization of PIT

Theorem

Let

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{K}[X]$ are given in dense representation, $\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and $\left(a_{j}\right) \in \mathbb{K}^{k}$. Then one can test if P vanishes in deterministic polynomial time.
Proof sketch.

- Factor out each f_{i} and rewrite $P=\sum_{j=1}^{k} b_{j} \prod_{i=1}^{M} g_{i}^{\beta_{i j}}$.

Generalization of PIT

Theorem

Let

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{K}[X]$ are given in dense representation, $\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and $\left(a_{j}\right) \in \mathbb{K}^{k}$. Then one can test if P vanishes in deterministic polynomial time.
Proof sketch.

- Factor out each f_{i} and rewrite $P=\sum_{j=1}^{k} b_{j} \prod_{i=1}^{M} g_{i}^{\beta_{i j}}$.
- Then $\mu_{g_{i}}(P) \leq \max _{1 \leq j \leq k}\left(\beta_{i j}+\sum_{\ell \neq i} \frac{\operatorname{deg}\left(g_{\ell}\right)}{\operatorname{deg}\left(g_{i}\right)}\binom{k+1-j}{2}\right)$ for each g_{i}.

Generalization of PIT

Theorem

Let

$$
P=\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}
$$

where $f_{1}, \ldots, f_{m} \in \mathbb{K}[X]$ are given in dense representation, $\left(\alpha_{i j}\right) \in \mathbb{Z}_{+}^{k \times m}$ and $\left(a_{j}\right) \in \mathbb{K}^{k}$. Then one can test if P vanishes in deterministic polynomial time.

Proof sketch.

- Factor out each f_{i} and rewrite $P=\sum_{j=1}^{k} b_{j} \prod_{i=1}^{M} g_{i}^{\beta_{i j}}$.
- Then $\mu_{g_{i}}(P) \leq \max _{1 \leq j \leq k}\left(\beta_{i j}+\sum_{\ell \neq i} \frac{\operatorname{deg}\left(g_{\ell}\right)}{\operatorname{deg}\left(g_{i}\right)}\binom{k+1-j}{2}\right)$ for each g_{i}.
- Gap Theorem \rightsquigarrow write P as a sum of low-degree polynomials.

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$

$$
\Longleftrightarrow P(X, u X+v) \equiv 0
$$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$
$\Longleftrightarrow P(X, u X+v) \equiv 0$
$\Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0$

Finding linear factors

Observation + Gap Theorem

$(Y-u X-v)$ divides $P(X, Y)$
$\Longleftrightarrow P(X, u X+v) \equiv 0$
$\Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0$
$\Longleftrightarrow(Y-u X-v)$ divides each $P_{t}(X, Y)$

Finding linear factors

Observation + Gap Theorem

$$
\begin{aligned}
(Y-u X-v) & \text { divides } P(X, Y) \\
& \Longleftrightarrow P(X, u X+v) \equiv 0 \\
& \Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0 \\
& \Longleftrightarrow(Y-u X-v) \text { divides each } P_{t}(X, Y)
\end{aligned}
$$

\rightsquigarrow find linear factors of low-degree polynomials

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[Lenstra'99]
3. If $u, v \neq 0$:

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with

$$
\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}
$$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
[Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
[Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$
- Apply some dense factorization algorithm [Kaltofen'82, ..., Lecerf'07]

Comments

Main computational task: Factorization of dense polynomials

Comments

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

Comments

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen-Koiran'05]: gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

Comments

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen-Koiran'05]: gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

$$
h_{P}=\max _{j}\left|a_{j}\right| \text { if } P \in \mathbb{Z}[X, Y]
$$

Comments

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen-Koiran'05]: gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

$$
h_{P}=\max _{j}\left|a_{j}\right| \text { if } P \in \mathbb{Z}[X, Y]
$$

- Here: $\operatorname{gap}(P)=\mathcal{O}\left(k^{2}\right)$

Comments

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen-Koiran'05]: gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

$$
h_{P}=\max _{j}\left|a_{j}\right| \text { if } P \in \mathbb{Z}[X, Y]
$$

- Here: $\operatorname{gap}(P)=\mathcal{O}\left(k^{2}\right)$
- Algebraic number field: only for Lenstra's algorithm

Finding multilinear factors

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0, u v w t \neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Finding multilinear factors

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0, u v w t \neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.

Finding multilinear factors

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0, u v w t \neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.
Proof.
> $X Y-(u X-v Y+w)$ divides $P \Longleftrightarrow P\left(X, \frac{u X+w}{X+v}\right) \equiv 0$.

Finding multilinear factors

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0, u v w t \neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.

Proof.

> $X Y-(u X-v Y+w)$ divides $P \Longleftrightarrow P\left(X, \frac{u X+w}{X+v}\right) \equiv 0$.

- Gap Theorem for $Q(X)=(X+v)^{\text {max }_{j} \beta_{j}} P\left(X, \frac{u X+w}{X+v}\right)$.

Positive characteristic

Valuation

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \quad \bmod 2
$$

Valuation

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \quad \bmod 2
$$

Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.
Then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$, provided $P \not \equiv 0$.

Valuation

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1) \bmod 2
$$

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.
Then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$, provided $P \not \equiv 0$.

Proposition $\operatorname{wr}\left(f_{1}, \ldots, f_{k}\right) \neq 0 \Longleftrightarrow f_{j}^{\prime}$ s linearly independent over $\mathbb{F}_{p^{s}}\left[X^{p}\right]$.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.
Proof.

- If $u v \neq 0$: as in characteristic 0 , using a Gap Theorem.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.
Proof.

- If $u v \neq 0$: as in characteristic 0 , using a Gap Theorem.
- If $u=0$: Evaluate $\sum_{j} a_{j} v^{\beta_{j}}$ using repeated squaring.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.
Proof.

- If $u v \neq 0$: as in characteristic 0 , using a Gap Theorem.
- If $u=0$: Evaluate $\sum_{j} a_{j} v^{\beta_{j}}$ using repeated squaring.
- The case $v=0$ is similar.

Finding linear factors

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u v w \neq 0$;

Finding linear factors

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u v w \neq 0$;
- NP-hard under randomized reductions otherwise.

Finding linear factors

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u v w \neq 0$;
- NP-hard under randomized reductions otherwise.
- Only randomized dense factorization algorithms over $\mathbb{F}_{p^{s}}$

Finding linear factors

Theorem

Let $P=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}} \in \mathbb{F}_{p^{s}}[X, Y]$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$. Finding factors of the form $(u X+v Y+w)$ is

- doable in randomized polynomial time if $u v w \neq 0$;
- NP-hard under randomized reductions otherwise.
- Only randomized dense factorization algorithms over $\mathbb{F}_{p^{s}}$
- NP-hardness: reduction from root detection over $\mathbb{F}_{p^{s}}$
[Kipnis-Shamir'99, Bi-Cheng-Rojas'12]

Conclusion

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height
- Large coefficients

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height
- Large coefficients
- Valid to some extent for other fields

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height
- Large coefficients
- Valid to some extent for other fields
+ Results in large positive characteristic

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height
- Large coefficients
- Valid to some extent for other fields
+ Results in large positive characteristic
- Still relies on [Lenstra'99]

Summary

+ Elementary proofs \& algorithms for the factorization of lacunary bivariate polynomials
- Easier to implement
- Two Gap Theorems: mix both!
+ Gap Theorem independent of the height
- Large coefficients
- Valid to some extent for other fields
+ Results in large positive characteristic
- Still relies on [Lenstra'99]
- Number fields

Open questions

- Can we find low-degree factors of multivariate polynomials?

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
\rightsquigarrow Impossibility results in positive characteristic

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
\rightsquigarrow Impossibility results in positive characteristic
- Can we find lacunary factors?

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
\rightsquigarrow Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
\rightsquigarrow Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
- Is the correct bound for the valuation quadratic or linear?

Open questions

- Can we find low-degree factors of multivariate polynomials?
- And low-degree factors of univariate polynomials?
\rightsquigarrow Impossibility results in positive characteristic
- Can we find lacunary factors?
- Can we handle polynomials in small characteristic?
- Is the correct bound for the valuation quadratic or linear?

Thank you!
arXiv:1206.4224

