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Introduction

Representation of Univariate Polynomials

P(X)=X0—-4x8+8X"+5Xx3+1

Representations

» Dense:
[1,0,-4,8,0,0,0,5,0,0,1]

> Sparse:

{(10 :1),(8: —4),(7:8),(3:5),(0: 1)}
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Introduction

Representation of Multivariate Polynomials

P(X,Y,Z)=X2Y3Z5 —4X3Y322 4+ 8 X522 + 5 XYZ + 1

Representations

» Dense:

> Lacunary (supersparse):

{(2,3,5 :1),(3,3,2: —4),(5,0,2: 8),(1,1,1:5),(0 : 1)}
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Introduction

Size of the lacunary representation

Definition

al zx-
P(X1,...,Xn E Xy Xp?

Jj=1
k

= size(P) ~ Zsize(aj) + log(ayj) + - - - + log(ay))
j=1
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Introduction

Factorization of polynomials

Factorization of a polynomial P

Find Fy,..., F;, irreducible, st. P=F; X --- X F;
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Factorization of a polynomial P

Find F4,..., F;, irreducible, st. P=F; x --- X F;

IF,;[X]: randomized polynomial time [Berlekamp'67]
Fy[Xi,. .., X0]
Z|X]: deterministic polynomial time  [Lenstra-Lenstra-Lovasz'82]
Q(a)[X] [A. Lenstra’83, Landau'83]
Q(a)[ X1, ..., Xn] [Kaltofen'85, A. Lenstra’87]
Example

XP—1=(X—-1)1+X+---+XPh

—> restriction to finding some factors



Introduction

Factorization of sparse univariate polynomials

k k
P(X) = Z aj X size(P) ~ Z size(aj) + log(a;))

j=t =i
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Introduction

Factorization of sparse univariate polynomials

k k
P(X) = Z aj X size(P) ~ Z size(aj) + log(a;))
j=1 j=1

Theorem (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if a; € Z.
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Introduction

Factorization of sparse univariate polynomials

k k
P(X) = Z aj X size(P) ~ Z size(aj) + log(a;))
j=1 j=1

Theorem (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if a; € Z.

Theorem (H. Lenstra’99)

Polynomial-time algorithm to find factors of degree < d if

aj € Q(a).
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Introduction

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.
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Introduction

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.

Theorem (Kaltofen-Koiran’'06)

Polynomial-time algorithm to find low-degree factors of multi-
variate lacunary polynomials over Q(«).
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Introduction

Factorization of lacunary polynomials

Theorem (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.

Theorem (Kaltofen-Koiran’'06)

Polynomial-time algorithm to find low-degree factors of multi-
variate lacunary polynomials over Q(«).

Theorem (Avendaino-Krick-Sombra’07)

Polynomial-time algorithm to find low-degree factors of bivariate
lacunary polynomials over Q(«).
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6/35



Introduction

Common ideas

Gap Theorem

14 k
P=> aXxuyh+ Y aXyh
N— ——
Po P1

with ag < ap < -+ < .
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Introduction

Common ideas

Gap Theorem

14 k
P=> aXxuyh+ Y aXyh
N— ——
Po P1

with a3 < ap < -+ < ag. Suppose that

apy1 — oy > gap(P)
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Gap Theorem

l k
P=>Y aXxuyli+ Y axuyl
j=1 j=t+1

Po Py

with a1 < ap < --- < ag. Suppose that

apy1 — ag > gap(P),

then F divides P iff F divides both Py and P;.




Gap Theorem

P= ZaX"‘f Y5 4 Z ajXiyPi
j=t+1

Po Py

with a1 < ap < --- < ag. Suppose that

agr1 — oy > gap(P),

then F divides P iff F divides both Py and P;.

{gap(P): function of the algebraic height of P.




Recursively apply the Gap Theorem:

P=X*Py + -+ X*Ps with deg(P;) < gap(P)
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Theorem

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05, Avendafio-Krick-Sombra’07]

gap(P) independent of the height

More elementary algorithms
Gap Theorem valid over any field of characteristic 0

Extension to multilinear factors

Results in positive characteristics



P(X,Y) = k
’ ) - Z anaj YBJ
j=1



k
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PX,Y) =) aXuYPi
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Observation
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k
PX,Y) =) aXuYPi
=i

Observation

(Y —uX —v) divides P(X,Y) <— P(X,uX+v)=0

Study of polynomials of the form Zan“f(uX + v
J

K: any field of characteristic 0
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Bound on the valuation

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]
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Bound on the valuation

Bound on the valuation
Definition
val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

Let P = Zanaf(uX-i-v)Bf #0,withuv #0andag < -+ < .
j=1
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Bound on the valuation

Bound on the valuation
Definition
val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

Let P = Zanaf(uX-i-v)Bf #0,withuv #0andag < -+ < .

j=1
Then

k+1—j
< o
val(P) < 1n§1ja§xk (aJ + < . )>
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Bound on the valuation

Definition
val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k
Let P = Zanaf(uX-i-v)Bf #0,withuv #0andag < -+ < .

j=1
Then
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Definition

val(P) = degree of the lowest degree monomial of P € K[X]

Theorem

k
Let P = ZanO‘f(uX—l—v)ﬁf Z0,withuv Z0and a; < -+ < .
j=1
Then

val(P) < a3 + </2(>

X% (uX + v)% linearly independent

Hajés' Lemma: if oy = -+ = ay, val(P) < oy + (k — 1)



Bound on the valuation

Gap Theorem

Theorem

Let

)4 k
P = Z ai X% (uX 4 v)Pi + Z ai X% (uX 4 v)Pi
j=1 j=t+1

-/

-

Po

with uv #0, a1 < -+ < ay. If

« > max (o +
AL 1§j§€< ' (

then P = 0 iff both Pp =0 and P; = 0.
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Theorem

Let

l k
P=> aX¥(uX+v)%+ > X% (uX + v)P
j=1 j=+1

Po Py

with uv #0, a; < -+ - < ay. If £ is the smallest index s.t.

l
Qi1 > o1 + <2>,

then P = 0 iff both Pp =0 and P; = 0.




Bound on the valuation

The Wronskian

Definition
Let f1,..., fx € K[X]. Then
fi fi
fl f
wr(fi, ... f) =det | . «

k.—l k:—l k:—l
I S (S
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Bound on the valuation

The Wronskian

Definition
Let f1,..., fx € K[X]. Then
fi

fil
wr(fi, ..., fx) = det

k.—l k:—l k:—l
I S (S

Proposition (Bocher, 1900)
wr(fi,...,fx) #0 <= the fs are linearly independent.
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Bound on the valuation

Wronskian & valuation

k
val(wr(fi, ..., fi)) = D val(f) — @
j=1
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Lemma

k

val(wr(fi,...,fi)) = ) val(f;) - < )
Jj=1
Proof.
val(f) val(f) val(fx)
0 fl f2 000 fk
L g .. f

fl(k.—l) f(k.—l) fk(k.—l)

—(k-1) )



Bound on the valuation

Upper bound for the valuation

Lemma

Let f; = X% (uX + v)%, uv # 0, linearly independent, and s.t.
aj,Bj = k—1. Then

k
val(wr(fi, ..., fr)) < Z ;.

Jj=1

B. Grenet — Factoring bivariate lacunary polynomials without heights 1635
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Lemma

Let fj = XY (uX + v)%, uv # 0, linearly independent, and s.t.
Ozj,ﬁj > k — 1. Then

val(wr(f, ..., fx <Zaj

Proof idea. Write
wr(f, ... fi) = X299~ G (ux + v)ZiA= () x det(M)

with deg(Mj) < i.



Lemma

Let fj = XY (uX + v)ﬁf, uv # 0, linearly independent, and s.t.
Ozj,ﬁj > k — 1. Then

val(wr(f, ..., fx <Zaj

Proof idea. Write
wr(f, ... fi) = X299~ G (ux + v)ZiA= () x det(M)

with deg(Mj;) < i. Use val(det M) < deg(det M) < (%).



Bound on the valuation

Proof of the Theorem

Theorem

k
Let P = a;X®(uX+v)% #0,withuv #0and o3 < -+ < .

j=1
Then

val(P) < a1 + <’2‘)
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Bound on the valuation

Proof of the Theorem

Theorem

k
Let P = a;X®(uX+v)% #0,withuv #0and o3 < -+ < .

j=1
Then
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Theorem

k
Let P = Zanaf'(uX—i—v)’gf #0,withuv #Z0and a; < -+ < .
j=1
Then

val(P) < o + (g)

Proof. wr(P,f, ..., fx) = aywr(fi,...,f)

5 k
Z > val(wr fl,...,fk))ZVal(P)+Zaf_<12(>

= j=2



Theorem

k
Let P = Zanaf'(uX—i—v)’8f #0,withuv #Z0and a; < -+ < .

j=1
Then P
+1—=y
< 7 .
val(P) < 1r§nja§xk (og + < ) >>

Proof. wr(P,f, ..., fx) = aywr(fi,...,f)

5 k
Z > val(wr fl,...,fk))ZVal(P)+Zaf_<12(>

= j=2



J k
IaOS Lella va E a u + J (y—|— k—l
JXK(X V). <—
( )



k
Hajos’ Lemma: val Zan“(uX +v)i | <a+(k-1)
j=1

k
) . k
Our result: val Zano‘f(uX +v)Pi ] <ar+ <2>

j=1
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k
Hajos’ Lemma: val Zan“(uX +v)i | <a+(k-1)
j=1

k
k
Our result: val Zano‘f(uX +v)Pi ] <ar+ <2>
j=1

Lemmas: bounds attained, but not simultaneously ~~ trade-off?

Lower bound:

2k k+j—5 : :
X2k 3 (1+X)2k+3 1— Z 2J _:( 2—5-/_6 >X2‘,_5(1+X)k_1_J



Bound on the valuation

A generalization

Theorem
Let (o) € Z**™ and

k m

P:Zaij;-aij,

j=1 =1

where f; € K[X], deg(f;) = d; and val(f;) = p;.
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Bound on the valuation

A generalization

Theorem
Let (o) € Z**™ and

k m
P:Zaij;-aij,

j=1 =1

where f; € K[X], deg(f;) = d; and val(f;) = p;. Then

I(P) < Xm: g+ (d — i) ktl=J
va _12'2(/( £ HiCjj i Hi 5 .
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Bound on the valuation

A generalization

Theorem
Let (a;;) € R**™ and

k m
P:Zaij;-aij,

j=1 =1

where f; € K[X], deg(f;) = d; and val(f;) = p;. Then

I(P) < Xm: g+ (d — i) ktl=J
va _12'2(/( £ HiCjj i Hi 5 .
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Polynomial Identity Testing

Finding (multi)linear factors



Algorithms

Algorithms

Definition

K = Q[¢]/{¢), ¢ € Z[€] irreducible of degree §
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Algorithms

Algorithms

Definition
K = Q[¢]/{¢), ¢ € Z[€] irreducible of degree §

ns—1
T ds—1

> x € K represented as (g, ..

> size(x) ~ log(nodp) + - - - + log(ns—1ds_1)
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Polynomial Identity Testing

Finding (multi)linear factors

Definition

K = Q[¢]/{¥), ¢ € Z[¢] irreducible of degree &

n571)

» x € K represented as (Z—g,..., =

> size(x) ~ log(nodp) + - - - + log(ns_1ds—1)

K is part of the input, given by ¢ in dense representation




Polynomial Identity Testing

Finding (multi)linear factors

Definition

K = Q[¢]/{¥), ¢ € Z[¢] irreducible of degree &

n571)

» x € K represented as (Z—g,...., =

> size(x) ~ log(nodp) + - - - + log(ns_1ds—1)

K is part of the input, given by ¢ in dense representation

N.B.: Algorithms are from [Kaltofen-Koiran'05]




Algorithms

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test if

k
P = Z aj X% (uX 4 v)% vanishes.
j=1
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Theorem

There exists a deterministic polynomial-time algorithm to test if

k
P = Z aj X% (uX + v)? vanishes.
j=1
Proof.
If u=0: test 3, ajvii 20 [Lenstra’99]

If v =0: similar [Lenstra’99]



Theorem

There exists a deterministic polynomial-time algorithm to test if

k
P = Z aj X% (uX + v)? vanishes.
j=1
Proof.
If u=0: test 3, ajvii 20 [Lenstra’99]
If v =0: similar [Lenstra’99]

fu,v£0 P=P+---+ Ps st
P=0<¢ Pi=--=P. =0

where P; = Zj ajX%(uX + V)% with amax < Qtmin + (é)



Algorithms

Polynomial Identity Testing (2)

k
5 q Q k

j=1
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Algorithms

Polynomial Identity Testing (2)

k
QUX) =D aX(uX +v), with ay <

j=1
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Algorithms

Polynomial Identity Testing (2)

k
QUX) =D aX(uX +v), with ay <

j=1
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k
QX) = 3 2 X%(uX + v)¥, with ay < <k>

Jj=1

Let Y = uX + v. Then

K
Q(Y) = Z aju (Y — v) yBi
j=1

k Qj

=3 au (OZ') (—v)bys+bi—t

j=1¢=0



k
QX) = 3 2 X%(uX + v)¥, with ay < <k>

Jj=1

Let Y = uX 4+ v. Then

K
Q(Y) = Z aju (Y — v) yBi
j=1

k

::E:E:qw_%(iO(_vyy%+@4

j=1 ¢=0

number of monomials, exponents < poly(size(Q))




Theorem

Let
k m
P=> a][f"
j=1 i=1
where fi,...,fn, € K[X] are given in dense representation,

(o) € Zixm and (a;) € KX Then one can test if P vanishes
in deterministic polynomial time.
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P=> a][f"
j=1 i=1
where fi,...,fn, € K[X] are given in dense representation,
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in deterministic polynomial time.

Proof sketch.

k M
Factor out each f; and rewrite P = Z b; Hg’. g,
j=1 =1




Theorem

Let
k m
P=2 a]f"
j=1 =1
where fi,...,fn, € K[X] are given in dense representation,

(o) € Zixm and (a;) € KX Then one can test if P vanishes
in deterministic polynomial time.

Proof sketch.

k M
Factor out each f; and rewrite P = Z b; Hg’. g,
j=1 =1

deg(ge) (k+1—
< h g;.
Then pg(P) 1Ta<xk (ﬂj Z =) < ’ for each g




Theorem

Let
k m
P=2 a]f"
j=1 =1
where fi,...,fn, € K[X] are given in dense representation,

(o) € Zixm and (a;) € KX Then one can test if P vanishes
in deterministic polynomial time.

Proof sketch.

k M
Factor out each f; and rewrite P = Z b; Hg’. g,
j=1 =1

d k+1—j
Then gz (P) < max (ﬂj Z eg(er < u J)) for each g;.

1<j<k deg(gi) 2

Gap Theorem ~» write P as a sum of low-degree polynomials.




Algorithms

Finding linear factors

Observation + Gap Theorem

(Y — uX — v) divides P(X,Y)
— P(X,uX+v)=0
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Algorithms

Finding linear factors

Observation + Gap Theorem

(Y — uX — v) divides P(X,Y)
— P(X,uX+v)=0

— Pi(X,uX4v)=--=P(X,uX+v)=0
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Observation + Gap Theorem

(Y — uX — v) divides P(X,Y)
— P(X,uX+v)=0
— P(X,uX+v)=---=Ps(X,uX+v)=0
<= (Y — uX — v) divides each P:(X,Y)




Observation + Gap Theorem

(Y — uX — v) divides P(X,Y)
— P(X,uX+v)=0
— P(X,uX+v)=---=Ps(X,uX+v)=0
<= (Y — uX — v) divides each P:(X,Y)

~ find linear factors of low-degree polynomials




Algorithms

Some details

k
Find linear factors (Y — uX — v) of P(X,Y) = Z aj X% yPi

Jj=1
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Find linear factors (Y — uX — v) of P(X,Y) Z a X yPi

If v = 0: Factors of polynomials Zj a;YPi
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Find linear factors (Y — uX — v) of P(X,Y) Z a X yPi

If u = 0: Factors of polynomials }_; a Y#i [Lenstra’99]
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Find linear factors (Y — uX — v) of P(X,Y) Z a X yPi

If u = 0: Factors of polynomials }_; a Y#i [Lenstra’99]
If v =0: P(X,uX) =3, ajufi Xth [Lenstra’99]
If u,v #0:

Compute P = Py +--- + Ps where Py = 3 2, X% Y7 with

Qmax S Qmin + (g)
Invert the roles of X and Y, to get Bmax < Bmin + (5)
Apply some dense factorization algorithm [Kaltofen'82, ..., Lecerf'07]
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Main computational task: Factorization of dense polynomials
— Complexity in terms of gap(P)

[Kaltofen-Koiran'05]: gap(P) = O(k log k + k log hp)
hp = max; \aj| if Pe Z[)<7 Y]
Here: gap(P) = O(k?)

Algebraic number field: only for Lenstra’s algorithm



Algorithms

Finding multilinear factors

Lemma
Let P =3, a; X% (uX + V)% (wX + )% # 0, uvwt # 0. Then

val(P) < max <aj +2(k+21 _j>) .
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Lemma

Let P =3, a2 X% (uX + V)% (wX + t)% # 0, uvwt # 0. Then

val(P) < max <aj +2<k+21 _j>> :

Theorem

There exists a polynomial-time algorithm to compute the multi-
linear factors of ), ;X Y5

Proof.
XY — (uX — vY + w) divides P <= P(X, £5%) = 0.
Gap Theorem for Q(X) = (X + v)™9 5 P(X, L&),
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2n+1

A+X)"+1+X) =X¥(X+1) mod2

Theorem

K
Let P = Zanaf(uX +v)Pi € Fys[X], where p > max;(aj + ;).
j=1
Then val(P) < max;(aj + (k+21_1)), provided P # 0.




2n+1

A+X)?" +(1+X)? =X?(X+1) mod?2

Theorem

K
Let P = Zanaf(uX +v)Pi € Fys[X], where p > max;(aj + ;).
j=1
Then val(P) < max;(aj + (k+21_1)), provided P # 0.

wr(fi,...,fx) #0 <= fs linearly independent
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Theorem

There exists a deterministic polynomial-time algorithm to test if
> aiX%(uX + v)#i € Fps[X], where p > max;(a; + 3;), vanishes.

Proof.
If uv # 0: as in characteristic 0, using a Gap Theorem.
If u=0: Evaluate >_; ajv#i using repeated squaring.

The case v = 0 is similar.



Positive characteristic

Finding linear factors

Theorem
Let P = >, a; X% YB € Fy[X, Y], where p > max;(a; + 53;).
Finding factors of the form (uX + vY + w) is

» doable in randomized polynomial time if uvw # 0 ;
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Theorem
Let P =3, ajX%YPi € Fy[X, Y], where p > max;(a; + 5;).
Finding factors of the form (uX + vY + w) is

> doable in randomized polynomial time if uvw # 0 ;

» NP-hard under randomized reductions otherwise.

Only randomized dense factorization algorithms over [

NP-hardness: reduction from root detection over [F,s
[Kipnis-Shamir’'99, Bi-Cheng-Rojas'12]
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Elementary proofs & algorithms for the factorization of lacunary
bivariate polynomials

Easier to implement
Two Gap Theorems: mix both!

Gap Theorem independent of the height

Large coefficients
Valid to some extent for other fields

Results in large positive characteristic

Still relies on [Lenstra’99]
Number fields
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Can we find low-degree factors of multivariate polynomials?
And low-degree factors of univariate polynomials?
~+ Impossibility results in positive characteristic
Can we find lacunary factors?
Can we handle polynomials in small characteristic?

Is the correct bound for the valuation quadratic or linear?

Thank you!

arXiv:1206.4224


http://arxiv.org/abs/1206.4224/
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