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XE XYY Yo iD)
XZ-Y*=0

Input: System of polynomials f = (fq,...,fs),
fj € K[Xo, 500y Xn],
:

Question: Is there a point a € K", , st fla) =0?

s <mn+ 1: Trivial (always true)
s >n+ 1: NP-Hard

s =n + 1: Resultant: Algebraic tool to answer the question



Definitions

PoLSys(K)

Input: f1,...,fs € K[Xq,...,Xn]
Question: Is there a € K" s.t. f(a) = 0?
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Definitions

PoLSys(K)

Input: f1,...,fs € K[Xq,...,Xn]
Question: Is there a € K" s.t. f(a) = 0?

HomPolLSys(K)

Input: fy,...,fs € K[Xo,...,Xn], homogeneous

: —n1
Question: Is there a nonzero a e K" sit. f(a) =07?

ResuLTANT(K)

Input: f1,...,f.11 € K[Xo,...,X,], homogeneous

. —n+1
Question: Is there a nonzero a € K st f(a) =0?
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HomPoLSys(IF,) is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

Theorem [G.-Koiran-Portier'10-13]

Let p be a prime number.
> ResuLtanT(IF,) is NP-hard for sparse polynomials.

» ResuLTanT(Fy) is NP-hard for dense polynomials for some
q=rp°
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NP-hardness results for square homogeneous systems of
polynomials over finite fields

Result on the evaluation of the resultant polynomial

Main open problem

» Improve the PSPACE upper bound in positive characteristics...

» ... or the NP lower bound.




Determinantal Representations of
Polynomials
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Determinant vs. Permanent: Algebraic “P = NP?”

Links between circuits, ABPs and the determinant

Convex optimization
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Results

Proposition [Valiant'79]

Formula of size s ~ Determinant of a matrix of dimension (s 2)
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[Liu-Regan’'06, G.-Kaltofen-Koiran-Portier'11]

Formula of ~~ Determinant of a matrix of (s+1)

[Toda’92, Malod-Portier’'08]

Weakly-skew circuit of with
~» Determinant of a matrix of

iﬁ et

XY LY L Z)
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From Formulas to Branching Programs
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Branching Program for the Permanent

perA = Z HAIG

0EG, i=1
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Branching Program for the Permanent

perA = Z HAIG

0EG, i=1
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n
perA = Z HAi)gm

O'GGni:]
a bic
per|d e f| =aeit+bfg+cdh+afh+bdi+ceg
g I i
Theorem [G12]

There exists a branching program of size 2™ repre-
senting the permanent of dimension n.




Permanent versus Determinant
Corollary

The permanent of dimension 1 is a projection of the determinant
of dimension N = 2™ —1.
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Corollary

The permanent of dimension n is a projection of the determinant
of dimension N =2" — 1.
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The permanent of dimension 1 is not a projection of the deter-

minant of dimension N = n9(1),
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0 did g =0 00

O 1 00 )

di b ¢ PO =l 0T 0F ol
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e 000 0 0

b0 08 02 00

Conjecture [Algebraic P # NP]

The permanent of dimension 1 is not a projection of the deter-
minant of dimension N = 2°("),




Results

Proposition [Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11]

Formula of size s ~ Determinant of a matrix of dimension (s+1)

Proposition [Toda’92, Malod-Portier'08]

Weakly-skew circuit of size s with 1 inputs
~ Determinant of a matrix of dimension (s +1-+ 1)

Bruno Grenet 1853




Results

Proposition [Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11]

Formula of size s ~ Determinant of a matrix of dimension (s+1)

Proposition [Toda’92, Malod-Portier'08]

Weakly-skew circuit of size s with 1 inputs
~ Determinant of a matrix of dimension (s +1-+ 1)

Theorem [G.-Kaltofen-Koiran-Portier'11]

If the underlying field has characteristic # 2,

Bruno Grenet 1853




Results

Proposition [Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11]

Formula of size s ~ Determinant of a matrix of dimension (s+1)

Proposition [Toda’92, Malod-Portier'08]

Weakly-skew circuit of size s with 1 inputs
~ Determinant of a matrix of dimension (s +1-+ 1)

Theorem [G.-Kaltofen-Koiran-Portier'11]

If the underlying field has characteristic # 2,

> Formula of size s ~ Symmetric determinant of dimension 2s + 1
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[Liu-Regan’06, G.-Kaltofen-Koiran-Portier'11]
Formula of ~~ Determinant of a matrix of (s+1)
[Toda’92, Malod-Portier’'08]

Weakly-skew circuit of with
~~ Determinant of a matrix of

Theorem [G.-Kaltofen-Koiran-Portier'11]

If the underlying field has characteristic # 2,
» Formula of size s ~» Symmetric determinant of dimension 2s + 1

» Weakly-skew circuit of size s with i inputs
~~ Symmetric determinant of dimension 2(s + 1) + 1
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SDR in characteristic 2

Theorem [G., Monteil, Thomassé'13]

There are polynomials without SDR in characteristic 2, e.qg. xy+z.
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Theorem [G., Monteil, Thomassé'13]

There are polynomials without SDR in characteristic 2, e.qg. xy+z.

Determinant
&, = Permutation group of {1,...,n}

n
detA = Z (—])G(G)HAi’o-(i)
i=1
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Theorem [G., Monteil, Thomassé'13]

There are polynomials without SDR in characteristic 2, e.g. xy+z.

A polynomial is said representable if it has an SDR.

Determinant in characteristic 2 of symmetric matrices

Jn = Involutions of {1,...,n}
n
detA= ) [T Ao
O'Gjn i=1
ool X o
T e
sl e
zi oy




Theorem [G., Monteil, Thomassé'13]

There are polynomials without SDR in characteristic 2, e.g. xy+z.

A polynomial is said representable if it has an SDR.

Determinant in characteristic 2 of symmetric matrices

Jn = Involutions of {1,...,n}
n
detA = Z HAi,G(i)
(S jn i=1
° ° °
° X Xq___y___
° 2z :\\\
° 1 ' \‘% z
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Representable polynomials

Lemma

» P and Q are representable = P x Q is representable.
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Lemma

> P and Q are representable = P x Q is representable.

» For all P, P2 is representable.

Theorem

L(X7yeeeyXm) = Pé + X1 P12 + -4+ x;m P2, is representable.




Obstructions to representability

Theorem

If P is representable, then

P=Lyx---xLgmod (x4 1,...,x2 + 1)

where the Li’s are linear. (linear = degree-1)
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Theorem

If P is representable, then

P=1L;x---xLmod (x3 +03,...,x% + )

where the Li's are linear. (linear = degree-1)

it auni e T X [FEx
xz+y —det<y z) _de‘[<1 Z) _det<1+x x+z>

: VA 5 2 2
_det(O x+z> =xlat 2imod (ol oysiLl 2e E

{Such a P is said factorizable modulo (x? + €3,...,x2, +{2). }




Multilinear polynomials

Theorem

Let P be a multilinear polynomial. The following propositions are
equivalent:

(1) P is representable;
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Theorem

Let P be a multilinear polynomial. The following propositions are
equivalent:

(i) P is representable;
(i) V¢, P is factorizable modulo (x3 + €3,...,x2 + €2 );

(iii) 3¢, P is factorizable modulo (x3 + {3,...,x2 +{2)).

Is xy + z representable?

~~ Factorization in Flxq,...,xml/(x3 +£2,... %2 +(2))



)X...X( )

L xy +z mod (x%,y?,2%)



1) x - x ( 1)

= xy +z mod (x?,y?,z%)
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1) x - x ( 1)

L xy +z mod (x%,y?,2%)



1) x - x ( 1)

L xy +z mod (x%,y?,2%)



(x+y+z o 1) x - x ( 1)

- xy +z mod (x?,y?,z%)



1) x - x ( 1)

L xy +z mod (x%,y?,2%)



Finding a factor

lin(xy+yz+y+z+1)=y+z+1
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Finding a factor

lin(xy+yz+y+z+1)=y+z+1

Theorem

Under suitable conditions, P is factorizable if and only if

oP >

1 2
P = lin(P
lin(P) x o 04 mod (X7,...,Xm),

where aixq is a monomial of lin(P).

Bruno Grenet
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Same expressiveness:
(Weakly-)Skew circuits
Branching Programs
Determinants
Symmetric Determinants in characteristic # 2
In characteristic 2, some polynomials have no SDR.
Characterization for multilinear polynomials

Algorithms to build SDRs

Main open question [Algebraic “P = NP?"]

What is the smallest N s.t. the permanent of dimension n is a
projection of the determinant of dimension N?
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The T-conjecture

Conjecture

[Shub-Smale’95]

The number of integer roots of any f € Z[X] is < poly(t(f)).

Theorems

T-conjecture
— P(C ;é NPC

[Shub-Smale’95]
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T(f) = minimal number of + and x needed to evaluate f,
from constant —1 and variables

Conjecture [Shub-Smale’95]

The number of integer roots of any f € Z[X] is < poly(t(f)).

Theorems

T-conjecture

= P¢ # NP¢ [Shub-Smale’95]
— super-polynomial lower bound for the permanent
(VP® £ VNPP) [Biirgisser’07]
Theorem [Cheng’03]

Extended T-conjecture = Merel torsion theorem, ...

False for real roots (Chebyshev polynomials)




The real Tt-conjecture

Conjecture [Koiran'11]

Letf=3F, [T;Z, fij where the fij's are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.
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The real Tt-conjecture

Conjecture [Koiran'11]

Letf=3F, [T;Z, fij where the fij's are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real t-conjecture
= Super-polynomial lower bound for the permanent

Bruno Grenet

28 /53



Conjecture [Koiran'11]

Let f = Z]f:1 H)TL fi; where the fi;'s are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
— Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots




Conjecture [Koiran'11]

Let f = Zlfﬁ H)TL fi; where the fi;'s are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
— Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

Adelic T-conjecture [Phillipson-Rojas’13]




Conjecture [Koiran'11]

Let f = Zlfﬁ H)TL fi; where the fi;'s are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
— Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots
Adelic T-conjecture [Phillipson-Rojas’13]

Case k = 1: Follows from Descartes’ rule.




Conjecture [Koiran'11]

Let f = Zlfﬁ H)TL fi; where the fi;'s are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
— Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots
Adelic T-conjecture [Phillipson-Rojas’13]
Case k = 1: Follows from Descartes’ rule.

Case k = 2: Open.




Conjecture [Koiran'11]

Let f = Zlfﬁ H)TL fi; where the fi;'s are t-sparse polynomials.

Then f has < poly(k, m,t) real roots.

Theorem [Koiran'11]

Real T-conjecture
— Super-polynomial lower bound for the permanent

Enough to bound the number of integer roots

Adelic T-conjecture [Phillipson-Rojas’13]
Case k = 1: Follows from Descartes’ rule.
Case k = 2: Open.

Toy question: Number of real roots of fg + 17




The limited power of powering

aiyj <A

k m
f s are t-sparse
SPS(k,m,t,A) = ¢ 5 T P
j=1

1=
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The limited power of powering

k m
f s are t-sparse
SPS(k,m,t,A) = ¢ 5 T P
i=1j=1 Xy S <A

Theorem [G.-Koiran-Portier-Strozecki'11]

If f € SPS(k, m,t,A), its number of real roots is at most

¢m 2k=1_1
C- [e- (1 + W)} for some C.
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The limited power of powering

k m
f s are t-sparse
SPS(k,m,t,A) = ¢ 5 T P
i=1j=1 Xy S <A

Theorem [G.-Koiran-Portier-Strozecki'11]

If f € SPS(k, m,t,A), its number of real roots is at most

¢m 2k=1_1
C- [e- (1 + m)} for some C.
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Case k =2

Proposition

The polynomial

has at most 2mt™ +4m(t — 1) real roots.
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Case k =2

Proposition

The polynomial

has at most 2mt™ +4m(t — 1) real roots.
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The polynomial

j= j=

has at most 2mt™ +4m(t — 1) real roots.

Proof sketch. Let F = f/[[; f;xj =1+1]]; fjﬁj_“j. Then

m m
= e
p o x Y (Bj—og)f ]t
il = 0z

el
< 2m(t — 1) roots and poles < 2mt™ — 1 roots




Multivariate SPS polynomials

Definition

(Pn)n>0 € mSPS(k, m) if there exists a polynomial Q s.t.

Pn(Xh“-)XQ(n)) -

where

> fjn is Q(n)-sparse;
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Multivariate SPS polynomials

Definition

(Pn)n>0 € mSPS(k, m) if there exists a polynomial Q s.t.

Pn(Xh“-)XQ(n)) -

where
> log(aijn) < Q(n);
> fjn is Q(n)-sparse;

> fj n has complexity at most Q(n) or GRH is assumed.

Bruno Grenet 31753



Multivariate SPS polynomials

Definition

(Pn)n>0 € mSPS(k, m) if there exists a polynomial Q s.t.

Pn(x1 yer oy XQ(n Z H f% "

i=1j=1
where
> log(aijn) < Q(n);
> fjn is Q(n)-sparse;

> fj n has complexity at most Q(n) or GRH is assumed.
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Lower bound for the permanent

Theorem

For fixed k and m, (PERy) does not have mSPS(k, m) circuits.
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Theorem

For fixed k and m, (PERy,) does not have mSPS(k, m) circuits.

Proof sketch. (PEr,) € mSPS(k, m)

zn
E PWEDG) — H(X —1) € SPS(k, m, poly(n),zpf"y{n))

i1

But PW,, has 2™ roots: contradiction.



Links with PIT

Theorem

For fixed k and m, we can test for zero f € SPS(k, m,t,A) in
time polynomial in t and A.
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Links with PIT

Theorem

For fixed k and m, we can test for zero f € SPS(k, m,t,A) in
time polynomial in t and A.

Proposition

With an oracle testing for zero Y ¥, | agi", PIT algorithm
in time polynomial in t and log(A).
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Theorem

For fixed k and m, we can test for zero f € SPS(k, m,t,A) in
time polynomial in t and A.

With an oracle testing for zero Y &, [[%, af;”, PIT algorithm
in time polynomial in t and log(A).

Remark. Works also with mSPS polynomials (Kronecker substitution).
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Real T-conjecture =—> VP° = VNP°
Use your favorite real analysis tools!
Adelic formulation: replace real roots by p-adic roots

Update: Number of real roots for f € SPS(k, m,t,A) < tO(mk*)

[Koiran-Portier-Tavenas'13]

Embarrassing Open Problem

Let f, g be t-sparse polynomials.
~> What is the maximum number of roots of fg 4+ 1?




Factorization of lacunary polynomials



Classical factorization algorithms

Factorization of a polynomial P

Find Fq, ..., Fy, irreducible, st. P=F; x --- x Fy.
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Factorization of a polynomial P

Find Fq, ..., F¢, irreducible, st. P=F; x --- x F;.

Z[X]

[Lenstra-Lenstra-Lovasz'82]

l

Q(«)[X]

[A. Lenstra’83, Landau’83]

|

Q(O‘) (X4 e )Xn]
[Kaltofen’85, A. Lenstra'87]

Fy X]
[Berlekamp'67]

Fq[xh---)Xn]



Classical factorization algorithms

Factorization of a polynomial P

Find Fq, ..., Fy, irreducible, st. P=F; x --- x Fy.

Complexity
Polynomial in the degree of the polynomials

Bruno Grenet 3653
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X]02Y101 +X101Y102 _X]01yl01 NGy ]
= el e 0 Lyle . 1)
= BN Te0d T e X0 0

Algorithms polynomial in log(deg(P))

Some factors only



Lacunary polynomials

Definition

P(Xi,...
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Lacunary polynomials

Definition

k
P(X1,e. s Xn) =) X7V X
j=1

> Lacunary representation: {(&1j,...,&nj : @j):

Bruno Grenet
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1024/101 101102 1014101y
LR o Uy Xl ey Moy
=Lyl x10yleh. 1
= bl R e ARECaRlelve R L Cl

Algorithms polynomial in log(deg(P))

Some factors only

Definition

k
P(X1y.eey Xn) = ) X7 - X
j=1

> Lacunary representation: {(1j,...,&nj:q;): 1 <j <k}

> size(P) ~ ) .size(aj) + log(a;) + - - - + log(otn;)

)




Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale'98]

Let

ZaJX"‘1+ Z a; X% € Z[X]

j=L+1
%,_/
Q R

with o7 <o <+ < a.
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Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale'98]

Let
ZaJX"‘J + Z a; X% € Z[X]
j=L+1

Q R
with a7 < o < -+ < k. Suppose that

xe+1 — g > 14 log (maxlajl)
i<

~
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Integral roots of integral polynomials

Gap Theorem [Cucker-Koiran-Smale'98]

Let
ZaJX“J + Z a; X% € Z[X
j=L+1

Q R
with a7 < o < -+ < k. Suppose that

xe+1 — g > 14 log (maxlajl),
i<

~

then forall x € Z, x| > 2, P(x) =0 = Q(x) = R(x) =0.
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Integral roots of integral polynomials
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Let
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Factorization of lacunary polynomials

Theorems

Deterministic polynomial time (in log(deq P)) algorithms for:

» linear factors of univariate polynomials over Z;
[Cucker-Koiran-Smale’98]
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Theorems
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[H. Lenstra’99]
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Factorization of lacunary polynomials

Theorems

Deterministic polynomial time (in log(deq P)) algorithms for:

» linear factors of univariate polynomials over Z;
[Cucker-Koiran-Smale’98]

> low-degree factors of univariate polynomials over O)(oc);
[H. Lenstra’99]

> linear factors of bivariate polynomials over ();
[Kaltofen-Koiran'05]

> low-degree factors of multivariate polynomials over (o).
[Kaltofen-Koiran'06]

Bruno Grenet 3953




Linear factors of bivariate polynomials

Observation

(Y —uX —v) divides P(X,Y) <= P(X,uX+v)=0
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Linear factors of bivariate polynomials

Observation

(Y —uX —v) divides P(X,Y) <= P(X,uX+v)=0

Gap Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki'13]
Let

¢ 3
P = ZaX“l(uX—l—v )P 4 Z a; X% (uX +v)Pi

1 j=L+1
Q R

with uwv #0, o7 < -+ < o
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Observation

(Y —uX —v) divides P(X,Y) < P(X,uX+v) =0

Gap Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]
Let
{4 k
P= Z a; X% (uX +v)Pi + Z a; X (uX +v)P
j=1 j=0+1
Q R

with uv £ 0, o < -+ < k. If

)
X1 > X1 + <2>

then P =0 iff both Q =0 and R =0.




Observation

(Y —uX —v) divides P(X,Y) < P(X,uX+v) =0

Gap Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]
Let
{4 k
P=) aX®YPi + ) agXYP;
j=1 j=0+1
Q R

with uv £ 0, o¢ < - < k. If

)
X1 > X1 + <2>

then (Y —uX —v) divides P iff it divides both Q and R.




Observation

(Y —uX —v) divides P(X,Y) < P(X,uX+v) =0

Gap Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]
Let
{4 k
P=) aX®YPi + ) agXYP;
j=1 j=0+1
Q R

with uv £ 0, o¢ < - < k. If

)
X1 > X1 + <2>

then every linear factor of P divides both Q and R




Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]
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Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
¢
LetP = Z a; X% (uX—I—v)BJ' Z£0,withuv #0and a7 < -+ < .

j=1
Then TR
+1=)
< 2 .
val(P) < 12%@ (oc] 4 < ) >)
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The Wronskian

Definition
Let fq,..., fe € K[X]. Then
1 fy
f! f/
wr(fq,...,Tg) = det .1 2

(€—1) L(e-1)
f1 fZ
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The Wronskian

Definition
Let fq,..., fe € K[X]. Then
1 fy
f] f5
wr(fq,...,Tg) = det . .

(€—1) L(e-1)
f1 fZ

Proposition [Bécher, 1900]

wr(fy,...,f¢) #0 <= the fj's are linearly independent.
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Wronskian & valuation

¢
val(wr(fq,.. Zval f;) — ( >
j=1
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Wronskian & valuation

val(wr(fq,...,fe)) > Zval(fj) B (ﬁ)

j=1

Lemma

Let f; = X% (uX +v)Bi, uv # 0, linearly independent, and s.t.
o, B5 = £ Then

val(wr(fy,...,f) < ) a5 =) val(fj).

j=1 j=1
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j=1

Lemma
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o, B5 = £ Then
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Lemma

£
val(wr(fq,...,Tg)) > Zval(fj) — (ﬁ)
j=1

Lemma

Let f; = X (uX —i—v)ﬁ’i, uv # 0, linearly independent, and s.t.
%% [3]' > (. Then

14
val(wr(fq,...,Tg)) < Z oy = Zval(f])

j=1 j=1

Proof of the theorem. wr(P, o, ..., f¢) = ay wr(fq,..., )

Zocj>val(wr(f1,..., > val(P —i—Zoc] ()

i
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¢
Hajés’ Lemma: val Z XX tpfil =5

¢
Our result: val Z a; X (uX Sl e it
j=1
Lemmas: bounds attained, but not simultaneously ~~ trade-off?
¢
VE>3,3P =) o;X%(uX+v)Pi st val(P) = o +
j=1

£

25 D : ;

X243 :(]+X)2€+3_1_sz_5< ;;]_6 )XZJ5“+X)€]J
=3



Gap Theorem

Theorem

Let

¢
P = ZaJX“l(uX—I—v )P 4 Z X% (uX +v) B
j=1 j=L+1

. 4

Q R

with uv £ 0, o7 < -+ < o If

§ (1

then P =0 iff both Q =0 and R = 0.
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Gap Theorem

Theorem

Let

¢
P = ZaJX“l(uX—I—v )P 4 Z X% (uX +v) B
j=1 j=L+1

. 4

Q R

with uv £ 0, o7 < -+ < o If

01—
; >
Xep1 > max (ocJ + ( 7 )) > val(Q),

SIS

then P =0 iff both Q =0 and R = 0.
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Gap Theorem

Theorem

Let

¢
P = ZaJX“l(uX—I—v )P 4 Z X% (uX +v) B
j=1 j=L+1

. 4

Q R

with uv #0, a7 < -+ < . If € is the smallest index s.t.

{
Xg1 > X1 + (2)

then P =0 iff both Q =0 and R = 0.

Bruno Grenet 4553



Finding linear factors

Observation + Gap Theorem (recursively)

(Y —uX —v) divides P(X,Y)
— PX,uX+v) =0
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Observation + Gap Theorem (recursively)

(Y —uX —v) divides P(X,Y)
— PX,uX+v) =0
— Pi(X,uX+v)=---=Ps(X,uX+v)=0
< (Y —uX—v) divides each P¢(X,Y)

N

et {
Pt £y Z ancijBj with K+, —1 — Ky, <2t)
Ji=il

Independent from u and v

X does not play a special role
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P X31Y6 il 2X30Y7 it XZ9Y8 il X29Y6 i X18Y13
_X16y15 1 x17y13 4 x16y14 | x10y2 _ x93
SeTVE L BVe 0 e Do Xy 6

151 o

101

0 5 i R e e
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By i i b
blelienE e
AT T S & e e

P XX YiRlhg - Xy
P XY X 1)

e G g gibe ta
Pr= XYY - (XY 1)

= linear factors of P: (X —Y +1,1), (X, 3), (Y,2)



Complete algorithm

Find linear factors of P(X,Y) = Z a; X% YBi
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Complete algorithm

Find linear factors of P(X,Y) = Z a; X% YBi

(X, m'tnj OCj)
(Y, m'Lnj f’])
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Find linear factors of P(X,Y) Z (1]X"‘)YBJ

j=1

monomials binomials

e |

(X—a)
Factors of 3 ; a; X%

(Y —uX)

Roots of w3 ; ajubPi

Univariate lacunary factorization
[H. Lenstra’99]



Find linear factors of P(X,Y) Z (1]X""YBJ
j=1

monomials binomials trinomials

e J iy

(X—a) Common factors of
Factors of . a; X% Jele= AL
13 Pe=) ajX9YP
(Y —uX) =it
Roots of u— Y ajufi with deg(P¢) < O(ﬂ%)

Univariate lacunary factorization ~ Low-degree factorization
[H. Lenstra’99] [Kaltofen’82, ..., Lecerf'07]



Comments

Bottleneck: Factorization of low-degree polynomials

Bruno Grenet 4953

A



Bottleneck: Factorization of low-degree polynomials
L Complexity measure: gap(P)




Bottleneck: Factorization of low-degree polynomials
L Complexity measure: gap(P)

O(klogk + kloghp) [Kaltofen-Koiran'05]
gap(P) = 2 :
O(k?) [CGKPS'13]

hp = max; |q;| if P € Z[X,Y]



Bottleneck: Factorization of low-degree polynomials
L Complexity measure: gap(P)

O(klogk + kloghp) [Kaltofen-Koiran'05]
gap(P) = 2 :
O(k?) [CGKPS'13]

hp = max; |q;| if P € Z[X,Y]

Algebraic number field only: based on [H. Lenstra’99]
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Positive characteristics

Theorem
¢
Let P = Z a; X% (uX +v)Bi e ]F;[X], where p > max;j (o + ;).

j=1
Then val(P) < max; (o + (“73 7)), provided P # 0.
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Qsxis L nEXe T st mod 2

Theorem
(4
Let P = Z a; X% (uX +v)Bi e F3IX], where p > max; (o + ;).
i=1
Then val(P) < max; (o + (H;ﬂ)), provided P # 0.

Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]

Let P = 3 ;a;X5YPi € FSIX, Y], where p > maxj(oj + Bj).
Factors of the form (uX +vY +w) are

» computable in randomized polynomial time if uvw # 0;




QX2 L (T8 =% i) mod 2

Theorem
(4
Let P = Z a; X% (uX +v)Bi e F3IX], where p > max; (o + ;).
i=1
Then val(P) < max; (o + (H;ﬂ)), provided P # 0.

Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]

Let P = 3 ;a;X5YPi € FSIX, Y], where p > maxj(oj + Bj).
Factors of the form (uX +vY +w) are

» computable in randomized polynomial time if uvw # 0;

» NP-hard to detect otherwise.
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Computing linear factors of lacunary bivariate polynomials

univariate lacunary polynomials
Reduction to e L :
low-degree bivariate polynomials

Also works for multilinear factors
Also works for multivariate polynomials

New Gap Theorem (independent of the height)

Easy to implement

Large coefficients

Partial results for other fields (positive characteristic, absolute factorization)
Two Gap Theorems: mix both!

Open questions

Can one find low-degree factors? And lacunary factors?
What about smaller characteristics?
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Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

By circuits, branching programs, (symmetric) determinants
As lists: dense, sparse, lacunary

Algorithms:

Construction of determinantal representations
Factorization of lacunary polynomials
Polynomial identity testing for several representations

Lower Bounds:

For the resolution of polynomial systems
For the symmetric determinantal representations in characteristic 2
For the arithmetic complexity of the permanent

Thank you!
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