

Symmetric Determinantal Representations of Polynomials

Bruno Grenet LIP – ÉNS Lyon

SIAM Conference on Applied Algebraic Geometry Raleigh, NC — October 6, 2011

The problem

$$(x+y)+(y\times z)=\det \begin{bmatrix} 0&x&y&0&0&0&0&0&0&0&-\frac{1}{2}\\ x&0&0&-1&0&0&0&0&0&0&0&0\\ y&0&0&0&-1&0&0&0&0&0&0\\ 0&-1&0&0&0&1&0&0&0&0&0\\ 0&0&-1&0&0&1&0&z&0&0&0\\ 0&0&0&1&1&0&-1&0&0&0&0\\ 0&0&0&0&0&-1&0&0&0&1&0\\ 0&0&0&0&0&z&0&0&0&-1&0&0\\ 0&0&0&0&0&0&0&0&-1&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&-1&0&1\\ -\frac{1}{2}&0&0&0&0&0&0&0&0&0&-1&0&0 \end{bmatrix}$$

The problem

$$(x+y)+(y\times z)=\det \begin{bmatrix} 0&x&y&0&0&0&0&0&0&0&-\frac{1}{2}\\ x&0&0&-1&0&0&0&0&0&0&0\\ y&0&0&0&-1&0&0&0&0&0&0\\ 0&-1&0&0&0&1&0&0&0&0&0\\ 0&0&-1&0&0&1&0&z&0&0&0\\ 0&0&0&1&1&0&-1&0&0&0&0\\ 0&0&0&0&1&1&0&-1&0&0&0&0\\ 0&0&0&0&0&-1&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&-1&0&1&0\\ 0&0&0&0&0&0&0&0&0&-1&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&-1&0&1\\ -\frac{1}{2}&0&0&0&0&0&0&0&0&0&-1&0&1 \end{bmatrix}$$

Formal polynomial

The problem

- Formal polynomial
- Smallest possible dimension of the matrix

Representations of polynomials

Arithmetic circuit:

Size
$$e = 5$$
 Inputs $i = 2$

Representations of polynomials

Weakly-skew circuit:

Size
$$e = 5$$
 Inputs $i = 4$

Representations of polynomials

Formula:

Size
$$e = 5$$
 Inputs $i = 6$

Motivation

L. G. Valiant, Completeness classes in algebra, STOC'79

Theorem (Universality of determinant and permanent)

Let P be a polynomial given by a formula of size e. There exist matrices M and N of size $(e+2) \times (e+2)$ such that

$$P = \det M = \operatorname{per} N$$
.

Matrix theoretic constructions:

- Matrix theoretic constructions:
 - J. von zur Gathen [1]

2e + 2

[1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987.

- Matrix theoretic constructions:
 - J. von zur Gathen [1]
 - H. Liu & K.W. Regan [2]

- 2e + 2
 - e+1

- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987.
- [2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006.

Matrix theoretic constructions:

J. von zur Gathen [1]	2e +
• H. Liu & K.W. Regan [2]	e +

Extension to weakly-skew circuits

[1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987.

[2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006.

Matrix theoretic constructions:

J. von zur Gathen [1]	2e + 2
• H. Liu & K.W. Regan [2]	e+1

Extension to weakly-skew circuits

•	S.	Toda [3	3]	2e + 1
---	----	---------	----	--------

[1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987.

[2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006.

[3] Classes of arithmetic circuits capturing the complexity of computing the determinant, IEICE T. Inf. Syst., 1992.

Matrix theoretic constructions:

J. von zur Gathen [1]	2e + 2
• H. Liu & K.W. Regan [2]	e+1

Extension to weakly-skew circuits

•	S. Toda [3]	2e + 1
•	G. Malod & N. Portier [4]	e + i + 1

- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987.
- [2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006.
- [3] Classes of arithmetic circuits capturing the complexity of computing the determinant, IEICE T. Inf. Syst., 1992.
- [4] Characterizing Valiant's algebraic complexity classes, J. Compl., 2008.

• Extension to symmetric matrices (char. \neq 2)

- Extension to symmetric matrices (char. \neq 2)
- Impossibility result in char. 2

- Extension to symmetric matrices (char. \neq 2)
- Impossibility result in char. 2
- Partial permanent is (probably) not VNP-complete in char. 2

•	Extension to symmetric matrices (char. \neq 2)	[1]	
•	Impossibility result in char. 2	[2]	

• Partial permanent is (probably) not VNP-complete in char. 2 [1]

[1] With E. L. Kaltofen, P. Koiran, N. Portier. Symmetric Determinantal Representation of Weakly-Skew Circuits, Proc. 28th STACS, 2011.

[2] With T. Monteil, S. Thomassé. Symmetric Determinantal Representations in Characteristic 2, in preparation, 2011.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1A_1 + \cdots + x_nA_n$$

 \bullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

 \bullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

 \bullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

 \bullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

 \bullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

More on this: Tim Netzer's talk (Friday 9:30am @Riddick 339)

$$(x+y)+(y\times z)$$

Circuit: Weakly-skew circuit or formula

Circuit: Weakly-skew circuit or formula

Arithmetic Branching Program

Circuit

ABP

 $Circuit \implies ABP$

Extension to symmetric matrices

Overview

Circuit \implies ABP \implies Graph

$$\det \begin{pmatrix} 0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$= (x + y) + (y \times z)$$

Circuit
$$\implies$$
 ABP \implies Graph \implies Matrix

$$\det \begin{pmatrix} 0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$= (x + y) + (y \times z)$$

Characteristic $\neq 2$

Circuit

 \Longrightarrow

ABP

 \Longrightarrow

Graph

==;

Matrix

Symmetric matrices

Symmetric matrices

 \implies undirected graphs

Symmetric matrices

- \implies undirected graphs
- ⇒ "undirected ABPs"

Symmetric matrices

- \implies undirected graphs
- ⇒ "undirected ABPs"

Corollary

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. det $M = \det M'$.

Weakly-Skew Circuit \implies ABP

Weakly-Skew Circuit \implies ABP

Weakly-Skew Circuit \implies ABP

Weakly-Skew Circuit \implies ABP

Weakly-Skew Circuit ⇒ ABP

Weakly-Skew Circuit ⇒ ABP

$\overline{\mathsf{ABP}} \Longrightarrow \mathsf{Graph}$

• Add $s \xleftarrow{(1/2)\cdot (-1)^{\frac{|G|-1}{2}}} t$: new graph G'.

$\mathsf{ABP} \implies \mathsf{Graph}$

- Add $s \stackrel{(1/2)\cdot (-1)^{\frac{|\mathcal{G}|-1}{2}}}{\longrightarrow} t$: new graph \mathcal{G}' .
- Cycle covers of G'

$$\iff$$
 $s \rightarrow t$ -paths in G

$ABP \implies Graph$

- Add $s \stackrel{(1/2)\cdot (-1)^{\frac{|G|-1}{2}}}{\longrightarrow} t$: new graph G'.
- Cycle covers of G'

$$\iff$$
 $s \rightarrow t$ -paths in G

$$\iff t \to s$$
-paths in G .

Graph ⇒ Matrix

Determinant

$$\mathfrak{S}_n = \text{Permutation group of } \{1, \ldots, n\}$$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

Graph ⇒ Matrix

Determinant

 $\mathfrak{S}_n = \mathsf{Permutation} \; \mathsf{group} \; \mathsf{of} \; \{1,\ldots,n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

• permutation in $\mathfrak{S}_n \equiv$ cycle cover in G'

Graph ⇒ Matrix

Determinant

 $\mathfrak{S}_n = \text{Permutation group of } \{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

- permutation in $\mathfrak{S}_n \equiv$ cycle cover in G'
- Up to signs, det A = sum of weights of cycle covers in G'

 $P(x_1,\ldots,x_n)$

Weakly-Skew Circuit

$$P(x_1,...,x_n)$$
 Weakly-Skew Circuit
$$=\sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$$
 Arithmetic Branching Program

Weakly-Skew Circuit

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit
$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P) \qquad \text{Arithmetic Branching Program}$$

$$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C) \qquad \text{Graph } G'$$

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit

$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$$
 Arithmetic Branching Program

$$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C)$$
 Graph G'

$$= \det \text{Adj}(G')$$
 Symmetric Matrix

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit

 $= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$ Arithmetic Branching Program

 $= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C)$ Graph G'
 $= \det \text{Adj}(G')$ Symmetric Matrix

	Formula	Weakly-skew circuit
Non symmetric	e+1	(e + i) + 1
Symmetric	2e + 1	2(e+i)+1

$$xy + yz + xz$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$

$$xz^2 + y^3 + y^2 + z^2$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$
$$xz^{2} + y^{3} + y^{2} + z^{2} = \det \begin{vmatrix} x & y & z & 1 \\ y & 0 & z & 0 \\ z & z & y & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$
$$xz^{2} + y^{3} + y^{2} + z^{2} = \det \begin{vmatrix} x & y & z & 1 \\ y & 0 & z & 0 \\ z & z & y & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}$$

$$xy + yz + xz = \det \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & z \end{vmatrix}$$
$$xz^{2} + y^{3} + y^{2} + z^{2} = \det \begin{vmatrix} x & y & z & 1 \\ y & 0 & z & 0 \\ z & z & y & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}$$

What about xy + z?

Impossibility in char. 2

Representable polynomials

A polynomial is said representable if it has a SDR.

A polynomial is said representable if it has a SDR.

Lemma

P and Q are representable $\implies P \times Q$ is representable.

A polynomial is said representable if it has a SDR.

Lemma

P and Q are representable $\implies P \times Q$ is representable.

Lemma

For all P, P^2 is representable.

A polynomial is said representable if it has a SDR.

Lemma

P and Q are representable $\implies P \times Q$ is representable.

Lemma

For all P, P^2 is representable.

A polynomial is said representable if it has a SDR.

Lemma

P and Q are representable $\implies P \times Q$ is representable.

Lemma

For all P, P^2 is representable.

- $\det(G \setminus \{s, t\}) = 1$
- $\det(G \setminus \{s\}) = \det(G \setminus \{t\}) = 0$

A class of representable polynomials

Theorem

$$L(x_1,...,x_m) = P_0^2 + x_1 P_1^2 + \cdots + x_m P_m^2$$
 is representable.

A class of representable polynomials

Theorem

$$L(x_1,...,x_m) = P_0^2 + x_1 P_1^2 + \cdots + x_m P_m^2$$
 is representable.

Obstructions to representability

Theorem

If P is representable, then

$$P \equiv L_1 \times \cdots \times L_k \mod \langle x_1^2 + 1, \dots, x_m^2 + 1 \rangle$$

where the L_i 's are linear.

Obstructions to representability

Theorem

If P is representable, then

$$P \equiv L_1 \times \cdots \times L_k \mod \langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$$

where the L_i 's are linear.

Obstructions to representability

Theorem

If P is representable, then

$$P \equiv L_1 \times \cdots \times L_k \mod \langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$$

where the L_i 's are linear.

Theorem

If P is multilinear, this is an equivalence.

Proof idea

• Modulo $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix}$$

Proof idea

• *Modulo* $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1 \\ 1 & z \end{pmatrix}$$

$$\mod \langle x^2 + 1, y^2 + 1, z^2 + 1 \rangle$$

Proof idea

- Modulo $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal
- Row/Column operations :
 - diagonal matrix
 - linear coefficients

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1 \\ 1 & z \end{pmatrix}$$

$$\mod \langle x^2 + 1, y^2 + 1, z^2 + 1 \rangle$$

Proof idea

- *Modulo* $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal
- Row/Column operations :
 - diagonal matrix
 - linear coefficients

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1 \\ 1 & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1+x \\ 1+x & x+z \end{pmatrix}$$

$$\mod \langle x^2 + 1, y^2 + 1, z^2 + 1 \rangle$$

Proof idea

- Modulo $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal
- Row/Column operations :
 - diagonal matrix
 - linear coefficients

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1 \\ 1 & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1+x \\ 1+x & x+z \end{pmatrix}$$
$$\equiv \det \begin{pmatrix} x & 0 \\ 0 & x+z \end{pmatrix} \mod \langle x^2+1, y^2+1, z^2+1 \rangle$$

Proof idea

- Modulo $\langle x_1^2 + \ell_1, \dots, x_m^2 + \ell_m \rangle$: no variable outside the diagonal
- Row/Column operations :
 - diagonal matrix
 - linear coefficients

$$xz + y^2 = \det \begin{pmatrix} x & y \\ y & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1 \\ 1 & z \end{pmatrix} \equiv \det \begin{pmatrix} x & 1+x \\ 1+x & x+z \end{pmatrix}$$
$$\equiv \det \begin{pmatrix} x & 0 \\ 0 & x+z \end{pmatrix} \equiv x(x+z) \bmod \langle x^2+1, y^2+1, z^2+1 \rangle$$

Impossibility in char. 2

An algorithm

Wait! Is xy + z representable?

Wait! Is xy + z representable?

IsRepresentable(P):

P multilinear

lacktriangle Compute P' such that

Wait! Is xy + z representable?

IsRepresentable(P):

- lacktriangle Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$

Wait! Is xy + z representable?

IsRepresentable(P):

- lacktriangle Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$
 - P'(0) = 0 and P' has a nonzero linear part L(P')

Wait! Is xy + z representable?

IsRepresentable(P):

- \bigcirc Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$
 - P'(0) = 0 and P' has a nonzero linear part L(P')
- **2** $P'_0 \leftarrow \text{QUOTIENT}(P', x)$ where x is its largest variable

Wait! Is xy + z representable?

IsRepresentable(P):

- \bigcirc Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$
 - P'(0) = 0 and P' has a nonzero linear part L(P')

Wait! Is xy + z representable?

IsRepresentable(P):

- \bigcirc Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$
 - P'(0) = 0 and P' has a nonzero linear part L(P')
- - Then $IsRepresentable(P'_0)$

Wait! Is xy + z representable?

IsRepresentable(P):

- \bigcirc Compute P' such that
 - $\exists Q, P' \equiv P \times Q \mod \langle x_i^2 + 1 \rangle$
 - P'(0) = 0 and P' has a nonzero linear part L(P')
- - Then IsRepresentable (P'_0)
 - Else RETURN FALSE

• Characterization of multilinear representable polynomials

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix
 - Else: Answers NO

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix
 - Else: Answers NO
- Non-multilinear polynomials:

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix
 - Else: Answers NO
- Non-multilinear polynomials:
 - Necessary Condition

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix
 - Else: Answers NO
- Non-multilinear polynomials:
 - Necessary Condition
 - Algorithm: Either answer NO, or a matrix to check

- Characterization of multilinear representable polynomials
- Polynomial-time algorithm for multilinear polynomials :
 - If representable: find a matrix
 - Else: Answers NO
- Non-multilinear polynomials:
 - Necessary Condition
 - Algorithm: Either answer NO, or a matrix to check
- Full characterization?

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$$\mathfrak{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\} \text{ to itself}$$

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$$\mathfrak{P}_n = \mathsf{Injective} \; \mathsf{Partial} \; \mathsf{Maps} \; \mathsf{from} \; \{1,\ldots,n\} \; \mathsf{to} \; \mathsf{itself}$$

$$\mathsf{per}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \mathsf{def}(\pi)} M_{i,\pi(i)}$$

Injective Partial Maps
 ≡ Partial Matchings in a Bipartite Graph

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

 $\mathfrak{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\}$ to itself

$$\mathsf{per}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \mathsf{def}(\pi)} M_{i,\pi(i)}$$

- Injective Partial Maps ≡ Partial Matchings in a Bipartite Graph
- ullet VP, VNP, VNP-complete \equiv P, NP, NP-complete for polynomials

Is the partial permanent VNP-complete in characteristic 2?

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Main lemma

$$(\operatorname{per}^* M)^2 \in \operatorname{VP}$$

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Main lemma

$$(per^* M)^2 \in VP$$

Theorem (Malod'11, Valiant'02 via Mengel'11)

$$\mathsf{per}^* \in \mathsf{VP}$$

• Symmetric Determinantal Representations of linear size in char. $\neq 2$.

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- ullet Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?
- Characteristic 2:

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?
- Characteristic 2:
 - Fully characterize polynomials with a Symmetric Determinantal Representation

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- ullet Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?
- Characteristic 2:
 - Fully characterize polynomials with a Symmetric Determinantal Representation
 - Explore other graph polynomials

- Symmetric Determinantal Representations of linear size in char. $\neq 2$.
- Impossibility in char. 2
- Partial answer to Bürgisser's Open Problem
- ullet Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?
- Characteristic 2:
 - Fully characterize polynomials with a Symmetric Determinantal Representation
 - Explore other graph polynomials
- Symmetric matrices in Valiant's theory?

Thank you!

- **1** Introduction
- 2 Extension to symmetric matrices
- 3 Impossibility in char. 2
- **4** Partial Permanent
- **5** Conclusion