
Sparse polynomial interpolation

Bruno Grenet
1

LJK – Université Grenoble-Alpes

ACT @ ICALP, Paderborn, July 10., 2023

1

Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

2/34

(Vague) definition of the problem

Input: A way to evaluate a sparse polynomial f ∈ R[x]
(Possibly) Bounds D ≥ deg(f), H ≥ f∞ and/or T ≥ f#

Output: The sparse representation of f

where

f =
t−1∑
i=0

cixei , ci ∈ R ̸=0

Degree: deg(f) = maxi ei

Height: f∞ = maxi |ci| for ci ∈ Z, q if ci ∈ Fq

Sparsity: f# = t

3/34

Many variants of the problem

Ring of coefficients

▶ Z or Q: size growth → modular techniques

▶ Finite fields of large characteristic
▶ Large finite fields

▶ Small finite fields

Number of variables

▶ Univariate polynomials

▶ Multivariate polynomials

Input representation

▶ Evaluations

▶ Blackbox

▶ Arithmetic circuit / SLP

4/34

Outline

1. Blackbox algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

5/34

Outline

1. Blackbox algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

6/34

Settings

Input

▶ Blackbox access to f =
∑t−1

i=0
cixei ∈ Fq

▶ Bound: T ≥ t
▶ Hypothesis: q ≥ deg(f)
▶ Input size: None

Output

▶ The sparse representation of f
▶ Output size: O(t(log q + log deg f))

Complexity analysis

▶ Number of blackbox evaluations

▶ Number of operations in Fq or of bit operations

▶ Output sensitive complexity

7/34

Blahut’s Theorem (1979)

Theorem

Let f =
∑t−1

i=0
cixei ∈ R[X]<D where R is an integral domain and ω ∈ R be a D-th principal

root of unity. Then the minimal polynomial of (f (ωj))j≥0 is Λ(x) =
∏t−1

i=0
(x − ωei).

Proof.

χ is a characteristic polynomial of (αj)j = (f (ωj))j

⇐⇒ ∀j < D,

∑ℓ
k=0

χkαj+k = 0 where χ =
∑

k χkxk

⇐⇒ ←−χ × A = 0 mod xD − 1 where←−χ = xℓχ(1

x) and A =
∑

j≤D αjx j

⇐⇒ ∀j,←−χ (ω−j) · A(ω−j) = 0 by DFT on ω−1

⇐⇒ ∀j, χ(ωj) · fj = 0 where f =
∑D−1

j=0
fjx j

⇐⇒ ∀j ∈ {e0, . . . , et−1}, χ(ωj) = 0 since fj ̸= 0

⇐⇒
∏t−1

i=0
(x − ωei) divides χ

Fast algorithm [Berlekamp (1968), Massey (1969), . . .]

▶ From A compute Λ as a Padé approximant → fast gcd algorithm O(M(t) log t)

7/34

Blahut’s Theorem (1979)

Theorem

Let f =
∑t−1

i=0
cixei ∈ R[X]<D where R is an integral domain and ω ∈ R be a D-th principal

root of unity. Then the minimal polynomial of (f (ωj))j≥0 is Λ(x) =
∏t−1

i=0
(x − ωei).

Proof.

χ is a characteristic polynomial of (αj)j = (f (ωj))j

⇐⇒ ∀j < D,

∑ℓ
k=0

χkαj+k = 0 where χ =
∑

k χkxk

⇐⇒ ←−χ × A = 0 mod xD − 1 where←−χ = xℓχ(1

x) and A =
∑

j≤D αjx j

⇐⇒ ∀j,←−χ (ω−j) · A(ω−j) = 0 by DFT on ω−1

⇐⇒ ∀j, χ(ωj) · fj = 0 where f =
∑D−1

j=0
fjx j

⇐⇒ ∀j ∈ {e0, . . . , et−1}, χ(ωj) = 0 since fj ̸= 0

⇐⇒
∏t−1

i=0
(x − ωei) divides χ

Fast algorithm [Berlekamp (1968), Massey (1969), . . .]

▶ From A compute Λ as a Padé approximant → fast gcd algorithm O(M(t) log t)

8/34

Sparse polynomials and transposed Vandermonde matrices

f =
t−1∑
i=0

cixei →


f (1)
f (ω)

.

.

.

f (ωn)

 =


1 · · · 1

ωe0 · · · ωet−1

.

.

.

.

.

.

ωne0 · · · ωnet−1




c0

c1

.

.

.

ct−1

 = Ωn · c⃗

Corollary

▶ Sparse multipoint evaluation on geometric sequence

⇐⇒ transposed Vandermonde matrix-vector product

▶ Sparse interpolation on geometric sequence with known exponents

⇐⇒ transposed Vandermonde linear system solving

Fast algorithms [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003), . . .]

▶ Let F =
∑t−1

i=0
cix i → (F (ωe0), . . . , F (ωet−1))t = Ωt

t · c⃗
▶ Transposed dense multipoint evaluation / interpolation → O(M(t) log t)

(transposition principle: problems and their transpose of same complexity)

9/34

Algorithm à la Prony / Ben-Or–Tiwari [Prony (1795), Ben-Or–Tiwari (1988), . . .]

Algorithm

Input: Blackbox for f ∈ Fq[x], q ≥ deg(f); bound T on f#
1. Evaluate f at 1, ω, . . . , ω2T−1 where ω has order ≥ 2T
2. Compute the minimal polynomial Λ of (f (ωj))j

3. Compute its roots β0, . . . , βt−1 and obtain the exponents e0, . . . , et−1

4. Solve a transposed Vandermonde system to get the coefficients c0, . . . , ct−1

Complexity analysis

1. 2T blackbox evaluations

2. O(M(T) log T) Padé approximant
3. O(M(t) log t log q) + O(

√
D) root computation + discrete log.

4. O(M(t) log t) transposed dense interpolation

10/34

Remarks on Prony / Ben-Or–Tiwari algorithm

Complexity

▶ Quasi-linear in T , linear (optimal) number of evaluations

▶ Polynomial in D, rather than logD → not polynomial in the output size

Other base rings

▶ Original Ben-Or–Tiwari’s algorithm: over Z
▶ large evaluations → bit size O(D)
▶ no discrete logarithm

▶ originally for multivariate polynomials → factorization

▶ Small finite fields → use an extension

▶ Rings: works as long as ω is a principal root of unity of large order

11/34

Comparison with sparse FFT

Sparse FFT

▶ Given v⃗ ∈ Cn
and k ≪ n, compute the k largest coefficients of DFTω (⃗v)

▶ Complexity: Õ(k log n) floating-point operations in precision O(n)
[Hassanieh–Indyk–Katabi–Price (2012)]

Sparse FFT over Fq

▶ No notion of coefficient size → assume DFTω (⃗v) has Hamming weight k
▶ Prony’s / Ben-Or–Tiwari’s algorithm computes a sparse FFT over Fq

Lower bound

Over Fq, sparse FFT is at least as hard as discrete logarithm

▶ Discrete log.: Given α, ω ∈ Fq, find e such that α = ωe

▶ Reduction to sparse FFT with k = 1:

▶ Given α and ω, compute v⃗ = (1, α, α2, . . .) and apply sparse interpolation → e
▶ Remarks:

▶ remains hard for k > 1 add some known monomials
▶ both problems are polynomially equivalent

12/34

Polynomial time incomplete sparse interpolation

Incomplete sparse interpolation

Input: Blackbox for f =
∑t−1

i=0
cixe

i and bound T ≥ t
Output: (c0, . . . , ct−1) and (ωe0 , . . . , ωet−1)

▶ Same algorithm, without discrete log. computations

▶ Running time: O(M(t) log(t) log q) op. in Fq

Open questions

▶ Incomplete sparse interpolation in quasi-linear time?

▶ Difficulty: polynomial root finding → Õ(t log q) op. in Fq Rabin’s algorithm
▶ Are both problems computationally equivalent?

▶ Given a polynomial p, use it to produce a linearly recurrent sequence

▶ By Blahut’s theorem, it is the image of a sparse polynomial

▶ Its support gives the roots, in log. representation
→ but computing roots from their log is not quasi-linear!

13/34

Outline

1. Blackbox algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

14/34

Settings

Input

▶ Arithmetic circuit / SLP of size s for f =
∑t−1

i=0
cixei ∈ Fq

▶ Bounds: T ≥ t , D ≥ deg(f)
▶ Hypothesis: q ≥ deg(f)

Output

▶ The sparse representation of f
▶ Output size: O(t(log q + log deg f))

Complexity analysis

▶ Number of operations in Fq or of bit operations

▶ Input and output sensitive complexity

Remark

▶ Direct expansion of the circuit → complexity O(D) expression swell

15/34

Use of cyclic extensions

Main idea and difficulties [Garg-Schost (2009)]

▶ Compute explicitely f mod xp − 1 =
∑

i cixei mod p
for some prime p

▶ Loss of information:

▶ Exponents known only modulo p
▶ Possible collisions between monomials

Reconstruction of full exponents

▶ Use several pj’s and (polynomial) Chinese remaindering, diversification, . . .

[Garg-Schost (2009), Giesbrecht-Roche (2011), . . .]

▶ Embed exponents into coefficients à la Paillier or using derivatives

[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

▶ Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]

▶ Accept few collisions and reconstruct f iteratively

[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

16/34

Embedding exponents into coefficients

Using derivatives [Huang 2019]

▶ If f =
∑

i cixei
, f ′(x) =

∑
i cieixei

▶ Use of automatic differentiation [Baur–Strassen (1983)]

À la Paillier [Arnold–Roche (2015)]

▶ If f ∈ Fq[x], evaluate f ((1 + q)x) over Z/q2Z
▶ Modulo q2

, (1 + q)ei = 1 + eiq

Requirements

▶ Both techniques require ei to be exactly representable in Fq
▶ Fq should have characteristic ≥ deg(f)

17/34

Managing collisions

Collision mod p: pair (ei, ej) such that ei ≡ ej mod p

Avoiding or limiting collisions

Let p be a random prime in [λ, 2λ]
▶ For λ = O(1

εT 2 logD), there is no collision with prob. ≥ 1− ε
▶ For λ = O(1

εT logD), there are ≥ 2

3
T collision-free monomials with prob. ≥ 1− ε

Dealing with collisions

▶ With ≥ 2

3
T collision-free monomials, there are at most

1

6
T collisions

▶ Each collision may create one fake monomial

▶ If each collision-free monomial is correctly reconstructed, we get f ∗ such that

(f − f ∗)# ≤
1

3

f# +
1

6

f# =
1

2

f#

18/34

Algorithm à la Garg–Schost [Garg-Schost (2009), Huang (2019)]

Algorithm

Input: Arithmetic circuit for f ∈ Fq[x], char(Fq) ≥ deg(f), T ≥ f#, D ≥ deg f

1. f ∗ ← 0

2. Repeat log(T) times:

3. Take a random p ∈ [λ, 2λ] for λ = O(T logD log T)
4. Compute f mod xp − 1 and f ′ mod xp − 1 using dense arithmetic (circuit for f ′)
5. For each pair of monomials cxd ∈ f mod xp − 1 and c′xd−1 ∈ f ′ mod xp − 1:

6. if c′/c ∈ {0, . . . ,D − 1}: add c · xc′/c
to f ∗

7. Return f ∗

Complexity analysis

▶ O(log T) probes of the circuit→ O(s ·M(p) · log(T))
▶ p = O(T logD log T)

→ Õ(sT logD) operations in Fq Õ(sT logD log q) binary operations

19/34

Remarks on Garg–Schost algorithm

Almost quasi-linear!

▶ Output size: O(T (logD + log q)), complexity: Õ(T logD log q)
▶ Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

▶ Smaller characteristic

▶ No exponent embedding anymore

▶ Several techniques, such as diversification
▶ Best complexity: O(sT log2 D(logD + log q)) [Arnold-Giesbrecht-Roche (2014)]

▶ Over the integers

▶ Coefficient growth → modular techniques

▶ Best complexity: O(sT log3 D logH) where H ≥ f∞ [Perret du Cray (2023)]

20/34

Outline

1. Blackbox algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

21/34

Known results for sparse interpolation over Z
f =

∑t−1

i=0
cixei

, T ≥ t , D ≥ deg(f), H ≥ f∞

Already mentioned

▶ Blackbox interpolation: Õ(
√

D) Prony / Ben-Or–Tiwari
▶ Arithmetic circuit: Õ(sT log3 D logH) Garg–Schost

Mansour’s algorithm [Mansour (1995)]

▶ Input: blackbox over C, or (f (ωj))j≥0 where ω = e2iπ/N

▶ Main idea:

▶ Binary search of nonzero coefficients: define fα,ℓ =
∑

i:ei≡α mod 2
ℓ cixei

▶ Fast approximate computation of ∥fα,ℓ∥2

2
using evaluations on random ωj

▶ Complexity: polynomial in T , logD, logH
▶ First polynomial-time sparse interpolation algorithm

▶ Can be derandomized [Alon-Mansour (1995)]

▶ Sparse FFT can be seen as an improvement of Mansour’s algorithm

▶ Bit complexity Õ(T log2 D)

22/34

The new algorithm

Input: A modular blackbox for f ∈ Z[x], bounds T ≥ f#, D ≥ deg(f), H ≥ f∞
Complexity: Õ(T (logD + logH)) bit operations

Modular blackbox

▶ Given α and m, compute f (α) mod m
▶ Can be implemented with an arithmetic circuit

▶ Pure blackbox: evaluations on Z \ {0,±1} have size Ω(D)

General idea

▶ Follow Garg–Schost general structure

▶ Compute f mod xp − 1 à la Prony / Ben-Or–Tiwari

▶ Work over several rings to make it efficient

23/34

First ingredient: compute exponents of f mod xp − 1

Evaluations in a small field Fq

▶ If ω is a p-PRU in Fq, f (ωj) = (f mod xp − 1)(ωj)
▶ Small q for efficiency reasons

▶ Coefficients should remain nonzero modulo q → q = poly(T logH)

Algorithm

Input: a p-PRU ω ∈ Fq to be computed

1. Evaluate f at 1, ω, . . . , ω2T−1
2T queries

2. Compute the minimal polynomial of (f (ωj))j Õ(T log q)

3. Compute its roots and get the exponents by multipoint evaluation Õ(p log q)

Complexity

▶ p = O(T logD) as in Garg–Schost’s algorithm

→ Õ(T logD log q) = Õ(T logD log logH)

24/34

Second ingredient: compute f mod xp − 1

Evaluations in a larger ring

▶ Fq is too small → coefficients known modulo q
▶ Use larger ring where coefficients can be represented

▶ Using large finite field is too costly (primality testing, etc.)

→ Ring Z/qkZ where qk > 2H k = O(logH/ log q)

Algorithm

Input: a p-PRU ωk ∈ Z/qkZ to be computed

1. Evaluate f at 1, ωk , . . . , ωT−1

k T queries

2. Solve a transposed Vandermonde system, build using the exponents Õ(Tk log q)

→ Complexity: Õ(T logH)

25/34

Third ingredient: Embed exponents into coefficients

Compute both f (x) and f ((1 + qk)x) modulo ⟨xp − 1, q2k⟩

Paillier-like embedding

▶ (1 + qk)ei = 1 + eiqk mod q2k

▶ If f =
∑

i cixei
,

f ((1 + qk)x) mod ⟨q2k , xp − 1⟩ =
∑

i

(ci(1 + eiqk))xei mod p

Collisions

▶ If cixei
is collision-free modulo xp − 1 → reconstruct both ci and ei

▶ Possibly noisy terms from collisions ei = ej mod p

→ Compute f ∗ such that (f − f ∗)# ≤ 1

2
f# w.h.p.

26/34

Fourth ingredient: p-PRU in Fq and Z/q2kZ
Produce p, q and ω together

1. Sample a random prime p ∈ [λ, 2λ] with λ = O(T logD)
2. Sample a random prime q ∈ {kp + 1 : 1 ≤ k ≤ λ5} Effective Dirichlet theorem
3. Sample a random α such that ω = α(q−1)/p ̸= 1

4. Return (p, q, ω)
▶ Complexity: logO(1)(λ) = logO(1)(T logD)

Lift ω ∈ Fq to ωk ∈ Z/q2kZ
▶ If ω2i is a p-PRU modulo q2i

, ω2i mod qi
is a p-PRU modulo qi

▶ Write ω2i = ωi + aqi
:

▶ 1 ≡ ω
p
2i ≡ ω

p
i + pωp−1

i aqi mod q2i ⇒ 1− ω
p
i ≡ qi × apω−1

i mod q2i

▶ a =
[

1

qi (1− ω
p
i mod q2i)

]
× (ωip−1) mod qi

▶ Complexity: Õ(k log p log q) = Õ(logH log(T logD)) binary operations

27/34

Complete algorithm

Algorithm

1. f ∗ ← 0

2. Repeat log T times :

3. Compute p, q, ω ∈ Fq, ωk ∈ Z/q2kZ Fourth ingredient

4. Compute exponents of (f − f ∗) mod ⟨xp − 1, q⟩ First ingredient

5. Compute (f − f ∗) mod ⟨xp − 1, q2k⟩ Second ingredient

6. Compute (f − f ∗)((1 + qk)x) mod ⟨xp − 1, q2k⟩ Second ingredient

7. Reconstruct collision-free monomials plus some noise Third ingredient

8. Update f ∗

9. Return f ∗

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox for f ∈ Z[x] and bounds T , D, H, the algorithm returns the sparse
representation of f with probability ≥ 2

3
, and has bit complexity Õ(T (logD + logH))

28/34

Getting rid of the sparsity bound

Early termination technique

▶ Given (αj)j≥0, find its minimal polynomial without any bound on its degree

▶ Berlekamp–Massey with early termination [Kaltofen-Lee (2003)]

▶ Works over Fq with q = Ω(D4)
▶ Complexity: 2t evaluations and Õ(t) operations over Fq

And over Z?

▶ Perform early termination modulo q, where q = Ω(D4)
▶ Finding such a prime is too costly → O(log3 D)

Prime numbers without primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]

▶ Take a random number m and pretend it be prime

▶ With good prob., its largest prime factor is ≥
√

m
▶ For each test “a = 0 mod m?” → compute gcd(a,m) and update m
▶ We show that algorithms (even randomized) have the same behavior

29/34

Outline

1. Blackbox algorithm à la Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

30/34

Kronecker substitution

The substitution [Kronecker (1882?)]

f ∈ R|x0, . . . , xn−1] with degxi
(f) < D 7→ fu(x) = f (x, xD, xD2

, . . . , xDn−1

)
▶ deg(fu) < Dn

▶ Easily computable and invertible

▶ Replaces log(D) with n log(D) in the complexities

▶ Generalization if degxi
(f) < di : fu(x) = f (x, xd0 , xd0d1 , . . . , xd0···dn−2)

Caveats

▶ Over Fq where q must be ≥ D: the condition becomes q ≥ Dn
huge!

▶ Replace an evaluation point α by (α, αD, . . . , αDn−1

)
▶ n times more bits than α
▶ a call to the (multivariate) blackbox is more expensive than to a univariate blackbox

31/34

Randomized Kronecker substitution

The substitution [Arnold-Roche (2014)]

f ∈ R[x0, . . . , xn−1] with degxi
(f) < D 7→ fu(x) = f (xs0 , ..., xsn−1)

▶ with random s0, . . . , sn−1 = Õ(Tn logD)
▶ deg(fu) = Õ(TnD)
▶ possible collisions → non invertible

▶ use several random tuples (s0, . . . , sn−1)

Results

Sparse interpolation of f ∈ Fqs [x0, . . . , xn−1] in time

▶ Õ(snT logD log qs) if q = Ω̃(nDT) [Huang (2019)]

▶ Õ(snt log2 D(logD + log qs)) otherwise [Huang–Gao (2020]

32/34

Conclusion

33/34

Results

Sparse interpolation over the integers

▶ First quasi-linear algorithm for modular blackbox

▶ Complexity Õ(sT (logD + logH)) for arithmetic circuit of size s
▶ Corollaries:

▶ First quasi-linear sparse multiplication algorithm [Giorgi-G.-Perret du Cray (2020)]

▶ First quasi-linear exact sparse division algorithm [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Sparse interpolation over Fq, char(q) ≥ D
▶ Huang’s algorithm for arithmetic circuits: Õ(sT log(D) log(q))
▶ À la Prony / Ben-Or–Tiwari (extended blackbox): Õ(T log2(q)) [G. (unpublished)]

▶ Incomplete sparse interpolation + exponent embedding

Many other results

▶ Derandomization [Klivans-Spielmann (2001), Bläser-Jindal (2014), . . .]

▶ Other fields [Kaltofen-Lakshman-Wiley (1990), Avendaño-Krick-Pacetti (2006), . . .]

▶ Parallel algorithms [Grigoriev-Karpinski-Singer (1990), Javadi-Monagan (2010), . . .]

▶ Very fast heuristic algorithms [van der Hoeven-Lecerf (2014, 2019, 2021, . . .)]

34/34

Open problems

Quasi-linear interpolation algorithm over Fq

▶ large characteristic / large field → blackbox? circuit?

▶ small field → only circuit make sense

▶ over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

▶ input size is s logH where H bounds the constants

▶ algorithms in Õ(sT (logD + logH))
▶ Easier problem: given a circuit C and a sparse polynomial f , does C compute f ?

▶ (Deterministic) polynomial time algorithm [Bläser-Hardt-Lipton-Vishnoi (2009)]

▶ Randomized: O(sT log(DH) + T log(D) log(DH)) [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

▶ gcd, Euclidean division, divisibility testing, factorization, . . .

Thank you!

34/34

Open problems

Quasi-linear interpolation algorithm over Fq

▶ large characteristic / large field → blackbox? circuit?

▶ small field → only circuit make sense

▶ over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

▶ input size is s logH where H bounds the constants

▶ algorithms in Õ(sT (logD + logH))
▶ Easier problem: given a circuit C and a sparse polynomial f , does C compute f ?

▶ (Deterministic) polynomial time algorithm [Bläser-Hardt-Lipton-Vishnoi (2009)]

▶ Randomized: O(sT log(DH) + T log(D) log(DH)) [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

▶ gcd, Euclidean division, divisibility testing, factorization, . . .

Thank you!

	Blackbox algorithm à la Prony / Ben-Or–Tiwari
	SLP algorithm à la Garg–Schost
	A new quasi-linear algorithm over the integers
	The multivariate case

