Sparse polynomial interpolation

Bruno Grenet¹

LJK – Université Grenoble-Alpes

ACT @ ICALP, Paderborn, July 10., 2023

¹Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

(Vague) definition of the problem

Input: A way to *evaluate* a sparse polynomial $f \in R[x]$ (Possibly) Bounds $D \ge \deg(f)$, $H \ge f_{\infty}$ and/or $T \ge f_{\#}$ Output: The sparse representation of f

where

$$f=\sum_{i=0}^{t-1}c_ix^{e_i}, c_i\in R_{\neq 0}$$

Degree:
$$\deg(f) = \max_i e_i$$

Height: $f_{\infty} = \max_i |c_i|$ for $c_i \in \mathbb{Z}$, q if $c_i \in \mathbb{F}_q$
Sparsity: $f_{\#} = t$

Many variants of the problem

Ring of coefficients

- $\blacktriangleright \ \mathbb{Z} \text{ or } \mathbb{Q} \text{: size growth} \to \text{modular techniques}$
- Finite fields of *large characteristic*
- Large finite fields
- Small finite fields

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Evaluations
- Blackbox
- Arithmetic circuit / SLP

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm *à la* Garg–Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Settings

Input

- Blackbox access to $f = \sum_{i=0}^{t-1} c_i x^{e_i} \in \mathbb{F}_q$
- Bound: $T \ge t$
- Hypothesis: $q \ge \deg(f)$
- Input size: None

Output

- \blacktriangleright The sparse representation of f
- Output size: $O(t(\log q + \log \deg f))$

Complexity analysis

- Number of blackbox evaluations
- Number of operations in \mathbb{F}_q or of bit operations
- Output sensitive complexity

Blahut's Theorem (1979)

Theorem

Let $f = \sum_{i=0}^{t-1} c_i x^{e_i} \in R[X]_{<D}$ where *R* is an integral domain and $\omega \in R$ be a *D*-th principal root of unity. Then the minimal polynomial of $(f(\omega^j))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Proof.

 χ is a characteristic polynomial of $(\alpha_j)_j = (f(\omega^j))_j$

$$\begin{array}{l} \Longleftrightarrow \forall j < D, \sum_{k=0}^{\ell} \chi_k \alpha_{j+k} = 0 & \text{where } \chi = \sum_k \chi_k x^k \\ \Leftrightarrow & \overleftarrow{\chi} \times A = 0 \mod x^D - 1 & \text{where } \overleftarrow{\chi} = x^{\ell} \chi(\frac{1}{x}) \text{ and } A = \sum_{j \leq D} \alpha_j x^j \\ \Leftrightarrow & \forall j, \overleftarrow{\chi}(\omega^{-j}) \cdot A(\omega^{-j}) = 0 & \text{by DFT on } \omega^{-1} \\ \Leftrightarrow & \forall j, \chi(\omega^j) \cdot f_j = 0 & \text{where } f = \sum_{j=0}^{D-1} f_j x^j \\ \Leftrightarrow & \forall j \in \{e_0, \dots, e_{t-1}\}, \chi(\omega^j) = 0 & \text{since } f_j \neq 0 \\ \Leftrightarrow & \prod_{i=0}^{t-1} (x - \omega^{e_i}) \text{ divides } \chi \end{array}$$

Blahut's Theorem (1979)

Theorem

Let $f = \sum_{i=0}^{t-1} c_i x^{e_i} \in R[X]_{<D}$ where *R* is an integral domain and $\omega \in R$ be a *D*-th principal root of unity. Then the minimal polynomial of $(f(\omega^j))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Proof.

 χ is a characteristic polynomial of $(\alpha_j)_j = (f(\omega^j))_j$

$\iff orall j < D, \sum_{k=0}^\ell \chi_k lpha_{j+k} = 0$	where $\chi = \sum_k \chi_k x^k$
$\iff \overleftarrow{\chi} \times A = 0 \mod x^D - 1$	where $\overleftarrow{\chi} = x^\ell \chi(rac{1}{x})$ and $A = \sum_{j \leq D} lpha_j x^j$
$\iff orall j, \overleftarrow{\chi}(\omega^{-j}) \cdot {\mathcal A}(\omega^{-j}) = 0$	by DFT on ω^{-1}
$\iff orall j, \chi(\omega^j) \cdot f_j = 0$	where $f = \sum_{j=0}^{D-1} f_j x^j$
$\iff orall j \in \{e_0,\ldots,e_{t-1}\}, \chi(\omega^j)=0$	since $f_j eq 0$
$\iff \prod_{i=0}^{t-1} (x - \omega^{e_i})$ divides χ	

Fast algorithm

[Berlekamp (1968), Massey (1969), ...]

From A compute Λ as a Padé approximant \rightarrow fast GCD algorithm $O(M(t) \log t)$

Sparse polynomials and transposed Vandermonde matrices

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \to \begin{pmatrix} f(1) \\ f(\omega) \\ \vdots \\ f(\omega^n) \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \\ \omega^{e_0} & \cdots & \omega^{e_{t-1}} \\ \vdots & & \vdots \\ \omega^{ne_0} & \cdots & \omega^{ne_{t-1}} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{t-1} \end{pmatrix} = \Omega_n \cdot \vec{c}$$

Corollary

Sparse multipoint evaluation on geometric sequence

 \iff transposed Vandermonde matrix-vector product Sparse interpolation on geometric sequence with known exponents

 \iff transposed Vandermonde linear system solving

Fast algorithms

[Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003), ...]

• Let $F = \sum_{i=0}^{t-1} c_i x^i \to (F(\omega^{e_0}), \dots, F(\omega^{e_{t-1}}))^t = \Omega_t^t \cdot \vec{c}$

Transposed dense multipoint evaluation / interpolation → O(M(t) log t) (transposition principle: problems and their transpose of same complexity)

Algorithm à la Prony / Ben-Or-Tiwari

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm

Input: Blackbox for $f \in \mathbb{F}_q[x]$, $q \ge \deg(f)$; bound T on $f_{\#}$

1. Evaluate f at 1, ω , ..., ω^{2T-1}

where ω has order \geq 2T

- **2.** Compute the minimal polynomial Λ of $(f(\omega^j))_j$
- **3.** Compute its roots $\beta_0, \ldots, \beta_{t-1}$ and obtain the exponents e_0, \ldots, e_{t-1}
- 4. Solve a transposed Vandermonde system to get the coefficients c_0, \ldots, c_{t-1}

Complexity analysis

- 1. 2T blackbox evaluations
- 2. $O(M(T) \log T)$
- 3. $O(M(t) \log t \log q) + O(\sqrt{D})$
- 4. $O(M(t) \log t)$

Padé approximant root computation + discrete log. transposed dense interpolation

Remarks on Prony / Ben-Or-Tiwari algorithm

Complexity

- Quasi-linear in T, linear (optimal) number of evaluations
- ▶ Polynomial in *D*, rather than $\log D \rightarrow \text{not polynomial}$ in the output size

Other base rings

- ▶ Original Ben-Or–Tiwari's algorithm: over \mathbb{Z}
 - large evaluations \rightarrow bit size O(D)
 - no discrete logarithm
 - originally for multivariate polynomials ightarrow factorization
- Small finite fields \rightarrow use an extension
- Rings: works as long as ω is a *principal* root of unity of large order

Comparison with sparse FFT

Sparse FFT

- Given $\vec{v} \in \mathbb{C}^n$ and $k \ll n$, compute the k largest coefficients of $DFT_{\omega}(\vec{v})$
- Complexity: $\tilde{O}(k \log n)$ floating-point operations in precision O(n)

[Hassanieh-Indyk-Katabi-Price (2012)]

Sparse FFT over \mathbb{F}_q

- ▶ No notion of coefficient size \rightarrow assume DFT_{ω}(\vec{v}) has Hamming weight k
- Prony's / Ben-Or-Tiwari's algorithm computes a sparse FFT over \mathbb{F}_q

Lower bound

Over \mathbb{F}_q , sparse FFT is at least as hard as discrete logarithm

- **b** Discrete log.: Given $\alpha, \omega \in \mathbb{F}_q$, find *e* such that $\alpha = \omega^e$
- Reduction to sparse FFT with k = 1:
 - Given α and ω , compute $\vec{v} = (1, \alpha, \alpha^2, \dots)$ and apply sparse interpolation $\rightarrow e$

Remarks:

- remains hard for k > 1
- both problems are polynomially equivalent

add some known monomials

Polynomial time incomplete sparse interpolation

Incomplete sparse interpolation

Input: Blackbox for $f = \sum_{i=0}^{t-1} c_i x_i^e$ and bound $T \ge t$ Output: (c_0, \ldots, c_{t-1}) and $(\omega^{e_0}, \ldots, \omega^{e_{t-1}})$

- Same algorithm, without discrete log. computations
- ▶ Running time: $O(M(t) \log(t) \log q)$ op. in \mathbb{F}_q

Open questions

- Incomplete sparse interpolation in quasi-linear time?
 - Difficulty: polynomial root finding $\rightarrow \tilde{O}(t \log q)$ op. in \mathbb{F}_q

Rabin's algorithm

- Are both problems computationally equivalent?
 - Given a polynomial *p*, use it to produce a linearly recurrent sequence
 - ▶ By Blahut's theorem, it is the *image* of a sparse polynomial
 - Its support gives the roots, in log. representation
 - \rightarrow but computing roots from their log is not quasi-linear!

Outline

1. Blackbox algorithm *à la* Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Settings

Input

- Arithmetic circuit / SLP of size *s* for $f = \sum_{i=0}^{t-1} c_i x^{e_i} \in \mathbb{F}_q$
- ▶ Bounds: $T \ge t$, $D \ge \deg(f)$
- Hypothesis: $q \ge \deg(f)$

Output

- \blacktriangleright The sparse representation of f
- Output size: $O(t(\log q + \log \deg f))$

Complexity analysis

- Number of operations in \mathbb{F}_q or of bit operations
- Input and output sensitive complexity

Remark

• Direct expansion of the circuit \rightarrow complexity O(D)

expression swell

Use of cyclic extensions

Main idea and difficulties

[Garg-Schost (2009)]

- Compute explicitly $f \mod x^p 1 = \sum_i c_i x^{e_i \mod p}$ for some prime p
- Loss of information:
 - Exponents known only modulo p
 - Possible collisions between monomials

Reconstruction of full exponents

• Use several p_j 's and (polynomial) Chinese remaindering, *diversification*, ...

[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]

Embed exponents into coefficients *à la* Paillier or using derivatives

[Arnold-Roche (2015), Huang (2019)]

Deal with collisions

- Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
- Accept few collisions and reconstruct f iteratively

[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Embedding exponents into coefficients

Using derivatives

$$If f = \sum_i c_i x^{e_i}, f'(x) = \sum_i c_i e_i x^{e_i}$$

Use of automatic differentiation

À la Paillier

Requirements

- ▶ Both techniques require e_i to be exactly representable in \mathbb{F}_q
- \mathbb{F}_q should have characteristic $\geq \deg(f)$

[Huang 2019]

[Baur-Strassen (1983)]

[Arnold-Roche (2015)]

Managing collisions

Collision mod *p*: pair (e_i, e_j) such that $e_i \equiv e_j \mod p$

Avoiding or limiting collisions

Let *p* be a random prime in $[\lambda, 2\lambda]$ For $\lambda = O(\frac{1}{\varepsilon}T^2 \log D)$, there is no collision with prob. $\geq 1 - \varepsilon$ For $\lambda = O(\frac{1}{\varepsilon}T \log D)$, there are $\geq \frac{2}{3}T$ collision-free monomials with prob. $\geq 1 - \varepsilon$

Dealing with collisions

- With $\geq \frac{2}{3}T$ collision-free monomials, there are at most $\frac{1}{6}T$ collisions
- Each collision may create one fake monomial
- If each collision-free monomial is correctly reconstructed, we get f^* such that

$$(f - f^*)_{\#} \le \frac{1}{3}f_{\#} + \frac{1}{6}f_{\#} = \frac{1}{2}f_{\#}$$

Algorithm à la Garg-Schost

[Garg-Schost (2009), Huang (2019)]

Algorithm

Input: Arithmetic circuit for $f \in \mathbb{F}_q[x]$, $char(\mathbb{F}_q) \ge \deg(f)$, $T \ge f_{\#}$, $D \ge \deg f$

- **1.** $f^* \leftarrow 0$
- 2. Repeat $\log(T)$ times:
- 3. Take a random $p \in [\lambda, 2\lambda]$ for $\lambda = O(T \log D \log T)$
- 4. Compute $f \mod x^p 1$ and $f' \mod x^p 1$ using dense arithmetic *(circuit for f')*
- 5. For each pair of monomials $cx^d \in f \mod x^p 1$ and $c'x^{d-1} \in f' \mod x^p 1$:
- 6. if $c'/c \in \{0, ..., D-1\}$: add $c \cdot x^{c'/c}$ to f^*
- 7. Return f^*

Complexity analysis

- $O(\log T)$ probes of the circuit $\rightarrow O(s \cdot M(p) \cdot \log(T))$
- $\sum_{n} p = O(T \log D \log T)$
- $o ilde{O}(sT\log D)$ operations in \mathbb{F}_q

 $\tilde{O}(sT \log D \log q)$ binary operations

Remarks on Garg-Schost algorithm

Almost quasi-linear!

- Output size: $O(T(\log D + \log q))$, complexity: $\tilde{O}(T \log D \log q)$
- Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

- Smaller characteristic
 - No exponent embedding anymore
 - Several techniques, such as diversification
 - Best complexity: $O(sT \log^2 D(\log D + \log q))$
- Over the integers
 - Coefficient growth \rightarrow modular techniques
 - Best complexity: $O(sT \log^3 D \log H)$ where $H \ge f_{\infty}$

[Arnold-Giesbrecht-Roche (2014)]

[Perret du Cray (2023)]

Outline

1. Blackbox algorithm *à la* Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Known results for sparse interpolation over $\ensuremath{\mathbb{Z}}$

$$f = \sum_{i=0}^{t-1} c_i x^{e_i}, T \ge t, D \ge \deg(f), H \ge f_{\infty}$$

Already mentioned

- Blackbox interpolation: $\tilde{O}(\sqrt{D})$
- Arithmetic circuit: $\tilde{O}(sT \log^3 D \log H)$

Mansour's algorithm

- ▶ Input: blackbox over \mathbb{C} , or $(f(\omega^j))_{j\geq 0}$ where $\omega = e^{2i\pi/N}$
- Main idea:
 - Binary search of nonzero coefficients: define $f_{\alpha,\ell} = \sum_{i:e_i \equiv \alpha \mod 2^{\ell}} c_i x^{e_i}$
 - Fast approximate computation of $\|f_{\alpha,\ell}\|_2^2$ using evaluations on random ω^j
- Complexity: polynomial in *T*, log *D*, log *H*
 - First polynomial-time sparse interpolation algorithm
 - Can be derandomized
- Sparse FFT can be seen as an improvement of Mansour's algorithm
 - Bit complexity $\tilde{O}(T \log^2 D)$

Prony / Ben-Or-Tiwari Garg-Schost

[Mansour (1995)]

[Alon-Mansour (1995)]

The new algorithm

Input: A modular blackbox for $f \in \mathbb{Z}[x]$, bounds $T \ge f_{\#}$, $D \ge \deg(f)$, $H \ge f_{\infty}$ Complexity: $\tilde{O}(T(\log D + \log H))$ bit operations

Modular blackbox

- Given α and *m*, compute $f(\alpha) \mod m$
- Can be implemented with an arithmetic circuit
- Pure blackbox: evaluations on $\mathbb{Z} \setminus \{0, \pm 1\}$ have size $\Omega(D)$

General idea

- Follow Garg–Schost general structure
- Compute $f \mod x^p 1 a la$ Prony / Ben-Or-Tiwari
- Work over several rings to make it efficient

First ingredient: compute exponents of $f \mod x^p - 1$

Evaluations in a small field \mathbb{F}_q

- If ω is a *p*-PRU in \mathbb{F}_q , $f(\omega^j) = (f \mod x^p 1)(\omega^j)$
- Small *q* for efficiency reasons
- Coefficients should remain nonzero modulo $q \rightarrow q = \text{poly}(T \log H)$

Algorithm

- Input: a *p*-PRU $\omega \in \mathbb{F}_q$ to be computed
- 1. Evaluate f at 1, ω , ..., ω^{2T-1}
- 2. Compute the minimal polynomial of $(f(\omega^j))_j$
- 3. Compute its roots and get the exponents by multipoint evaluation

Complexity

▶
$$p = O(T \log D)$$
 as in Garg-Schost's algorithm
 $\rightarrow \tilde{O}(T \log D \log q) = \tilde{O}(T \log D \log \log H)$

2T queries

 $\tilde{O}(T \log q)$

 $\tilde{O}(p \log q)$

Second ingredient: compute $f \mod x^p - 1$

Evaluations in a larger ring

- ▶ \mathbb{F}_q is too small → coefficients known modulo q
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)

$$o \operatorname{Ring} \mathbb{Z}/q^k \mathbb{Z}$$
 where $q^k > 2H$ $k = O(\log H/\log q)$

Algorithm

Input: a *p*-PRU $\omega_k \in \mathbb{Z}/q^k\mathbb{Z}$ to be computed

- **1.** Evaluate f at 1, $\omega_k, \ldots, \omega_k^{T-1}$
- 2. Solve a transposed Vandermonde system, build using the exponents

ightarrow Complexity: $ilde{O}(T \log H)$

T aueries

 $\tilde{O}(Tk \log a)$

Third ingredient: Embed exponents into coefficients

Compute both
$$f(x)$$
 and $f((1+q^k)x)$ modulo $\langle x^p - 1, q^{2k} \rangle$

Paillier-like embedding

$$(1+q^k)^{e_i} = 1 + e_i q^k \mod q^{2k}$$

$$If f = \sum_i c_i x^{e_i},$$

$$f((1+q^k)x) \mod \langle q^{2k}, x^p - 1 \rangle = \sum_i q^{2k}$$

$$f((1+q^k)x) mod \langle q^{2k}, x^p-1
angle = \sum_i (c_i(1+e_iq^k)) x^{e_i mod p}$$

Collisions

- ▶ If $c_i x^{e_i}$ is collision-free modulo $x^p 1 \rightarrow$ reconstruct both c_i and e_i
- Possibly noisy terms from collisions $e_i = e_j \mod p$
- \rightarrow Compute f^* such that $(f f^*)_{\#} \leq \frac{1}{2} f_{\#}$ w.h.p.

Fourth ingredient: *p*-PRU in \mathbb{F}_q and $\mathbb{Z}/q^{2k}\mathbb{Z}$

Produce p, q and ω together

- 1. Sample a random prime $p \in [\lambda, 2\lambda]$ with $\lambda = O(T \log D)$
- 2. Sample a random prime $q \in \{kp + 1 : 1 \le k \le \lambda^5\}$

Effective Dirichlet theorem

- 3. Sample a random α such that $\omega = \alpha^{(q-1)/p} \neq 1$
- 4. Return (p, q, ω)
- Complexity: $\log^{O(1)}(\lambda) = \log^{O(1)}(T \log D)$

Lift $\omega \in \mathbb{F}_q$ to $\omega_k \in \mathbb{Z}/q^{2k}\mathbb{Z}$

▶ If ω_{2i} is a *p*-PRU modulo q^{2i} , ω_{2i} mod q^i is a *p*-PRU modulo q^i

Complete algorithm

Algorithm

- 1. $f^* \leftarrow 0$
- 2. Repeat log *T* times :
- 3. Compute $p, q, \omega \in \mathbb{F}_q, \omega_k \in \mathbb{Z}/q^{2k}\mathbb{Z}$
- 4. Compute exponents of $(f f^*) \mod \langle x^p 1, q \rangle$
- 5. Compute $(f f^*) \mod \langle x^p 1, q^{2k} \rangle$
- 6. Compute $(f f^*)((1 + q^k)x) \mod \langle x^p 1, q^{2k} \rangle$
- 7. Reconstruct collision-free monomials plus some noise
- 8. Update f^*
- 9. Return f^*

Theorem

[Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox for $f \in \mathbb{Z}[x]$ and bounds T, D, H, the algorithm returns the sparse representation of f with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D + \log H))$

Fourth ingredient First ingredient Second ingredient Second ingredient Third ingredient

Getting rid of the sparsity bound

Early termination technique

- Given $(\alpha_j)_{j\geq 0}$, find its minimal polynomial without any bound on its degree
- Berlekamp-Massey with early termination
- Works over \mathbb{F}_q with $q = \Omega(D^4)$
- Complexity: 2t evaluations and $\tilde{O}(t)$ operations over \mathbb{F}_q

And over \mathbb{Z} ?

- Perform *early termination* modulo q, where $q = \Omega(D^4)$
- Finding such a prime is too costly $\rightarrow O(\log^3 D)$

Prime numbers without primality testing

- Take a random number m and pretend it be prime
 - With good prob., its largest prime factor is $\geq \sqrt{m}$
- For each test " $a = 0 \mod m$?" \rightarrow compute GCD(a, m) and update m
- We show that algorithms (even randomized) have the same behavior

[Giorgi-G.-Perret du Cray-Roche (2022)]

[Kaltofen-Lee (2003)]

Outline

1. Blackbox algorithm *à la* Prony / Ben-Or–Tiwari

2. SLP algorithm à la Garg-Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Kronecker substitution

The substitution

[Kronecker (1882?)]

huge!

- $f \in R[x_0, \ldots, x_{n-1}] \text{ with } \deg_{x_i}(f) < D \mapsto f_u(x) = f(x, x^D, x^{D^2}, \ldots, x^{D^{n-1}})$ $\blacktriangleright \deg(f_u) < D^n$
 - Easily computable and invertible
 - Replaces log(D) with n log(D) in the complexities
 - Generalization if $\deg_{x_i}(f) < d_i$: $f_u(x) = f(x, x^{d_0}, x^{d_0d_1}, \dots, x^{d_0\cdots d_{n-2}})$

Caveats

- ▶ Over \mathbb{F}_q where q must be ≥ D: the condition becomes $q \ge D^n$
- Replace an evaluation point α by $(\alpha, \alpha^D, \dots, \alpha^{D^{n-1}})$
 - *n* times more bits than α
 - a call to the (multivariate) blackbox is more expensive than to a univariate blackbox

Randomized Kronecker substitution

The substitution $f \in R[x_0, ..., x_{n-1}]$ with $\deg_{x_i}(f) < D \mapsto f_u(x) = f(x^{s_0}, ..., x^{s_{n-1}})$ • with random $s_0, \ldots, s_{n-1} = \tilde{O}(Tn \log D)$ \blacktriangleright deg $(f_{\mu}) = \tilde{O}(TnD)$ \blacktriangleright possible collisions \rightarrow non invertible use several random tuples (s_0, \ldots, s_{n-1})

Results

Sparse interpolation of $f \in \mathbb{F}_{q^s}[x_0, \ldots, x_{n-1}]$ in time

- \triangleright $\tilde{O}(snT \log D \log a^s)$ if $a = \tilde{\Omega}(nDT)$
- $\blacktriangleright \tilde{O}(snt \log^2 D(\log D + \log q^s))$ otherwise

[Huang (2019)] [Huang-Gao (2020]

Conclusion

Results

Sparse interpolation over the integers

- First quasi-linear algorithm for modular blackbox
 - Complexity $\tilde{O}(sT(\log D + \log H))$ for arithmetic circuit of size s
- Corollaries:
 - First quasi-linear sparse multiplication algorithm [Giorgi-G.-Perret du Cray (2020)]
 - First quasi-linear exact sparse division algorithm [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Sparse interpolation over \mathbb{F}_q , $char(q) \geq D$

- Huang's algorithm for arithmetic circuits: $\tilde{O}(sT \log(D) \log(q))$
- A la Prony / Ben-Or–Tiwari (extended blackbox): $\tilde{O}(T \log^2(q))$
- [G. (unpublished)]

Incomplete sparse interpolation + exponent embedding

Many other results

- Derandomization
- Other fields
- Parallel algorithms
- Very fast heuristic algorithms

[Klivans-Spielmann (2001), Bläser-Jindal (2014), ...] [Kaltofen-Lakshman-Wiley (1990), Avendaño-Krick-Pacetti (2006), ...] [Grigoriev-Karpinski-Singer (1990), Javadi-Monagan (2010), ...] Ims [van der Hoeven-Lecerf (2014, 2019, 2021, ...)]

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_q

- ▶ large characteristic / large field \rightarrow blackbox? circuit?
- ▶ small field \rightarrow only circuit make sense
- over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

- input size is s log H where H bounds the constants
- algorithms in $\tilde{O}(sT(\log D + \log H))$
- Easier problem: given a circuit *C* and a sparse polynomial *f*, does *C* compute *f*?
 - (Deterministic) polynomial time algorithm
 [Bläser-Hardt-Lipton-Vishnoi (2009)]
 - Randomized: $O(sT \log(DH) + T \log(D) \log(DH))$ [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

▶ GCD, Euclidean division, divisibility testing, factorization, ...

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_q

- ▶ large characteristic / large field \rightarrow blackbox? circuit?
- small field \rightarrow only circuit make sense
- over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

- ▶ input size is *s* log *H* where *H* bounds the constants
- algorithms in $\tilde{O}(sT(\log D + \log H))$
- Easier problem: given a circuit *C* and a sparse polynomial *f*, does *C* compute *f*?
 - (Deterministic) polynomial time algorithm
 [Bläser-Hardt-Lipton-Vishnoi (2009)]
 - Randomized: $O(sT \log(DH) + T \log(D) \log(DH))$ [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

▶ GCD, Euclidean division, divisibility testing, factorization, ...

Thank you!