Sparse polynomial interpolation

Bruno Grenet ${ }^{1}$
LJK - Université Grenoble-Alpes
ACT @ ICALP, Paderborn, July 10., 2023

${ }^{1}$ Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

(Vague) definition of the problem

Input: A way to evaluate a sparse polynomial $f \in R[x]$ (Possibly) Bounds $D \geq \operatorname{deg}(f), H \geq f_{\infty}$ and/or $T \geq f_{\#}$
Output: The sparse representation of f
where

$$
f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}}, c_{i} \in R_{\neq 0}
$$

Degree: $\operatorname{deg}(f)=\max _{i} e_{i}$
Height: $f_{\infty}=\max _{i}\left|c_{i}\right|$ for $c_{i} \in \mathbb{Z}, q$ if $c_{i} \in \mathbb{F}_{q}$
Sparsity: $f_{\#}=t$

Many variants of the problem

Ring of coefficients

- \mathbb{Z} or \mathbb{Q} : size growth \rightarrow modular techniques
- Finite fields of large characteristic
- Large finite fields
- Small finite fields

Number of variables

- Univariate polynomials
- Multivariate polynomials

Input representation

- Evaluations
- Blackbox
- Arithmetic circuit / SLP

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. The multivariate case

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. The multivariate case

Settings

Input

- Blackbox access to $f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}} \in \mathbb{F}_{q}$
- Bound: $T \geq t$
- Hypothesis: $q \geq \operatorname{deg}(f)$
- Input size: None

Output

- The sparse representation of f
- Output size: $O(t(\log q+\log \operatorname{deg} f))$

Complexity analysis

- Number of blackbox evaluations
- Number of operations in \mathbb{F}_{q} or of bit operations
- Output sensitive complexity

Blahut's Theorem (1979)

Theorem

Let $f=\sum_{i=0}^{t-1} c_{i} x^{e_{i}} \in R[X]_{<D}$ where R is an integral domain and $\omega \in R$ be a D-th principal root of unity. Then the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j \geq 0}$ is $\Lambda(x)=\prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right)$.

Proof.

χ is a characteristic polynomial of $\left(\alpha_{j}\right)_{j}=\left(f\left(\omega^{j}\right)\right)_{j}$
$\Longleftrightarrow \forall j<D, \sum_{k=0}^{\ell} \chi_{k} \alpha_{j+k}=0$
$\Longleftrightarrow \overleftarrow{\chi} \times A=0 \bmod x^{D}-1$
$\Longleftrightarrow \forall j, \overleftarrow{\chi}\left(\omega^{-j}\right) \cdot A\left(\omega^{-j}\right)=0$
$\Longleftrightarrow \forall j, \chi\left(\omega^{j}\right) \cdot f_{j}=0$
$\Longleftrightarrow \forall j \in\left\{e_{0}, \ldots, e_{t-1}\right\}, \chi\left(\omega^{j}\right)=0$
$\Longleftrightarrow \prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right)$ divides χ
where $\chi=\sum_{k} \chi_{k} x^{k}$ where $\overleftarrow{\chi}=x^{\ell} \chi\left(\frac{1}{x}\right)$ and $A=\sum_{j \leq D} \alpha_{j} x^{j}$
by DFT on ω^{-1}
where $f=\sum_{j=0}^{D-1} f_{j} x^{j}$
since $f_{j} \neq 0$

Blahut's Theorem (1979)

Theorem

Let $f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}} \in R[X]_{<D}$ where R is an integral domain and $\omega \in R$ be a D-th principal root of unity. Then the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j \geq 0}$ is $\Lambda(x)=\prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right)$.

Proof.

χ is a characteristic polynomial of $\left(\alpha_{j}\right)_{j}=\left(f\left(\omega^{j}\right)\right)_{j}$

$$
\Longleftrightarrow \forall j<D, \sum_{k=0}^{\ell} \chi_{k} \alpha_{j+k}=0
$$

where $\chi=\sum_{k} \chi_{k} x^{k}$
$\Longleftrightarrow \overleftarrow{\chi} \times A=0 \bmod x^{D}-1$
$\Longleftrightarrow \forall j, \overleftarrow{\chi}\left(\omega^{-j}\right) \cdot A\left(\omega^{-j}\right)=0$
$\Longleftrightarrow \forall j, \chi\left(\omega^{j}\right) \cdot f_{j}=0$
$\Longleftrightarrow \forall j \in\left\{e_{0}, \ldots, e_{t-1}\right\}, \chi\left(\omega^{j}\right)=0$

$$
\begin{array}{r}
\text { where } \overleftarrow{\chi}=x^{\ell} \chi\left(\frac{1}{x}\right) \text { and } A=\sum_{j \leq D} \alpha_{j} x^{j} \\
\text { by DFTon } \omega^{-1} \\
\text { where } f=\sum_{j=0}^{D-1} f_{j} x^{j} \\
\text { since } f_{j} \neq 0
\end{array}
$$

$\Longleftrightarrow \prod_{i=0}^{t-1}\left(x-\omega^{e_{i}}\right)$ divides χ

Fast algorithm

- From A compute Λ as a Padé approximant \rightarrow fast GCD algorithm $O(M(t) \log t)$

Sparse polynomials and transposed Vandermonde matrices

$$
f=\sum_{i=0}^{t-1} c_{i} x^{e_{i}} \rightarrow\left(\begin{array}{c}
f(1) \\
f(\omega) \\
\vdots \\
f\left(\omega^{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\omega^{e_{0}} & \cdots & \omega^{e_{t-1}} \\
\vdots & & \vdots \\
\omega^{n e_{0}} & \cdots & \omega^{n e_{t-1}}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{t-1}
\end{array}\right)=\Omega_{n} \cdot \vec{c}
$$

Corollary

- Sparse multipoint evaluation on geometric sequence
\Longleftrightarrow transposed Vandermonde matrix-vector product
- Sparse interpolation on geometric sequence with known exponents
\Longleftrightarrow transposed Vandermonde linear system solving
Fast algorithms
[Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003), ...]
Let $F=\sum_{i=0}^{t-1} c_{i} x^{i} \rightarrow\left(F\left(\omega^{e_{0}}\right), \ldots, F\left(\omega^{e_{t-1}}\right)\right)^{t}=\Omega_{t}^{t} \cdot \vec{c}$
- Transposed dense multipoint evaluation / interpolation $\rightarrow O(M(t) \log t)$ (transposition principle: problems and their transpose of same complexity)

Algorithm à la Prony / Ben-Or-Tiwari

Algorithm

Input: Blackbox for $f \in \mathbb{F}_{q}[x], q \geq \operatorname{deg}(f)$; bound T on $f_{\#}$

1. Evaluate f at $1, \omega, \ldots, \omega^{2 T-1}$
where ω has order $\geq 2 T$
2. Compute the minimal polynomial Λ of $\left(f\left(\omega^{j}\right)\right)_{j}$
3. Compute its roots $\beta_{0}, \ldots, \beta_{t-1}$ and obtain the exponents e_{0}, \ldots, e_{t-1}
4. Solve a transposed Vandermonde system to get the coefficients c_{0}, \ldots, c_{t-1}

Complexity analysis

1. $2 T$ blackbox evaluations
2. $O(\mathrm{M}(T) \log T)$
3. $O(M(t) \log t \log q)+O(\sqrt{D})$
4. $O(M(t) \log t)$

Padé approximant root computation + discrete log. transposed dense interpolation

Remarks on Prony / Ben-Or-Tiwari algorithm

Complexity

- Quasi-linear in T, linear (optimal) number of evaluations
- Polynomial in D, rather than $\log D \rightarrow$ not polynomial in the output size

Other base rings

- Original Ben-Or-Tiwari's algorithm: over \mathbb{Z}
- large evaluations \rightarrow bit size $O(D)$
- no discrete logarithm
- originally for multivariate polynomials \rightarrow factorization
- Small finite fields \rightarrow use an extension
- Rings: works as long as ω is a principal root of unity of large order

Comparison with sparse FFT

Sparse FFT

- Given $\vec{v} \in \mathbb{C}^{n}$ and $k \ll n$, compute the k largest coefficients of $\mathrm{DFT}_{\omega}(\vec{v})$
- Complexity: $\tilde{O}(k \log n)$ floating-point operations in precision $O(n)$
[Hassanieh-Indyk-Katabi-Price (2012)]

Sparse FFT over \mathbb{F}_{q}

- No notion of coefficient size \rightarrow assume $\mathrm{DFT}_{\omega}(\vec{v})$ has Hamming weight k
- Prony's / Ben-Or-Tiwari's algorithm computes a sparse FFT over \mathbb{F}_{q}

Lower bound

Over \mathbb{F}_{q}, sparse FFT is at least as hard as discrete logarithm

- Discrete log.: Given $\alpha, \omega \in \mathbb{F}_{q}$, find e such that $\alpha=\omega^{e}$
- Reduction to sparse FFT with $k=1$:
- Given α and ω, compute $\vec{v}=\left(1, \alpha, \alpha^{2}, \ldots\right)$ and apply sparse interpolation $\rightarrow \boldsymbol{e}$
- Remarks:
- remains hard for $k>1$
add some known monomials
- both problems are polynomially equivalent

Polynomial time incomplete sparse interpolation

Incomplete sparse interpolation

Input: Blackbox for $f=\sum_{i=0}^{t-1} c_{i} x_{i}^{e}$ and bound $T \geq t$
Output: $\left(c_{0}, \ldots, c_{t-1}\right)$ and ($\left.\omega^{e_{0}}, \ldots, \omega^{e_{t-1}}\right)$

- Same algorithm, without discrete log. computations
- Running time: $O(M(t) \log (t) \log q)$ op. in \mathbb{F}_{q}

Open questions

- Incomplete sparse interpolation in quasi-linear time?
- Difficulty: polynomial root finding $\rightarrow \tilde{O}(t \log q)$ op. in \mathbb{F}_{q}

Rabin's algorithm

- Are both problems computationally equivalent?
- Given a polynomial p, use it to produce a linearly recurrent sequence
- By Blahut's theorem, it is the image of a sparse polynomial
- Its support gives the roots, in log. representation
\rightarrow but computing roots from their log is not quasi-linear!

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. The multivariate case

Settings

Input

- Arithmetic circuit / SLP of size s for $f=\sum_{i=0}^{t-1} c_{i} X^{e_{i}} \in \mathbb{F}_{q}$
- Bounds: $T \geq t, D \geq \operatorname{deg}(f)$
- Hypothesis: $q \geq \operatorname{deg}(f)$

Output

- The sparse representation of f
- Output size: $O(t(\log q+\log \operatorname{deg} f))$

Complexity analysis

- Number of operations in \mathbb{F}_{q} or of bit operations
- Input and output sensitive complexity

Remark

- Direct expansion of the circuit \rightarrow complexity $O(D)$

Use of cyclic extensions

Main idea and difficulties

- Compute explicitely $f \bmod x^{p}-1=\sum_{i} c_{i} x^{e_{i} \bmod p}$ for some prime p
- Loss of information:
- Exponents known only modulo p
- Possible collisions between monomials

Reconstruction of full exponents

- Use several p_{j} 's and (polynomial) Chinese remaindering, diversification, ...

> [Garg-Schost (2009), Giesbrecht-Roche (2011), ...]

- Embed exponents into coefficients à la Paillier or using derivatives
[Arnold-Roche (2015), Huang (2019)]
Deal with collisions
- Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
- Accept few collisions and reconstruct f iteratively
[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Embedding exponents into coefficients

Using derivatives

- If $f=\sum_{i} c_{i} X^{e_{i}}, f^{\prime}(x)=\sum_{i} c_{i} e_{i} x^{e_{i}}$
- Use of automatic differentiation

À la Paillier

- If $f \in \mathbb{F}_{q}[x]$, evaluate $f((1+q) x)$ over $\mathbb{Z} / q^{2} \mathbb{Z}$
- Modulo $q^{2},(1+q)^{e_{i}}=1+e_{i} q$

Requirements

- Both techniques require e_{i} to be exactly representable in \mathbb{F}_{q}
- \mathbb{F}_{q} should have characteristic $\geq \operatorname{deg}(f)$

Managing collisions

Collision mod p : pair $\left(e_{i}, e_{j}\right)$ such that $e_{i} \equiv e_{j} \bmod p$

Avoiding or limiting collisions

Let p be a random prime in $[\lambda, 2 \lambda]$

- For $\lambda=O\left(\frac{1}{\varepsilon} T^{2} \log D\right)$, there is no collision with prob. $\geq 1-\varepsilon$
- For $\lambda=O\left(\frac{1}{\varepsilon} T \log D\right)$, there are $\geq \frac{2}{3} T$ collision-free monomials with prob. $\geq 1-\varepsilon$

Dealing with collisions

- With $\geq \frac{2}{3} T$ collision-free monomials, there are at most $\frac{1}{6} T$ collisions
- Each collision may create one fake monomial
- If each collision-free monomial is correctly reconstructed, we get f^{*} such that

$$
\left(f-f^{*}\right)_{\#} \leq \frac{1}{3} f_{\#}+\frac{1}{6} f_{\#}=\frac{1}{2} f_{\#}
$$

Algorithm à la Garg-Schost

Algorithm

Input: Arithmetic circuit for $f \in \mathbb{F}_{q}[x], \operatorname{char}\left(\mathbb{F}_{q}\right) \geq \operatorname{deg}(f), T \geq f_{\#}, D \geq \operatorname{deg} f$

1. $f^{*} \leftarrow 0$
2. Repeat $\log (T)$ times:
3. Take a random $p \in[\lambda, 2 \lambda]$ for $\lambda=O(T \log D \log T)$
4. Compute $f \bmod x^{p}-1$ and $f^{\prime} \bmod x^{p}-1$ using dense arithmetic (circuit for f^{\prime})
5. For each pair of monomials $c x^{d} \in f \bmod x^{p}-1$ and $c^{\prime} x^{d-1} \in f^{\prime} \bmod x^{p}-1$:
6. if $c^{\prime} / c \in\{0, \ldots, D-1\}$: add $c \cdot x^{c^{\prime} / c}$ to f^{*}
7. Return f^{*}

Complexity analysis

- $O(\log T)$ probes of the circuit $\rightarrow O(s \cdot M(p) \cdot \log (T))$
- $p=O(T \log D \log T)$
$\rightarrow \tilde{O}(s T \log D)$ operations in \mathbb{F}_{q}

Remarks on Garg-Schost algorithm

Almost quasi-linear!

- Output size: $O(T(\log D+\log q))$, complexity: $\tilde{O}(T \log D \log q)$
- Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

- Smaller characteristic
- No exponent embedding anymore
- Several techniques, such as diversification
- Best complexity: $O\left(s T \log ^{2} D(\log D+\log q)\right)$
[Arnold-Giesbrecht-Roche (2014)]
- Over the integers
- Coefficient growth \rightarrow modular techniques
- Best complexity: $O\left(s T \log ^{3} D \log H\right)$ where $H \geq f_{\infty}$

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. The multivariate case

Known results for sparse interpolation over \mathbb{Z}

$$
f=\sum_{i=0}^{t-1} c_{i} x^{e_{i}}, T \geq t, D \geq \operatorname{deg}(f), H \geq f_{\infty}
$$

Already mentioned

- Blackbox interpolation: $\tilde{O}(\sqrt{D})$
- Arithmetic circuit: $\tilde{O}\left(s T \log ^{3} D \log H\right)$

> Prony / Ben-Or-Tiwari
> Garg-Schost

Mansour's algorithm

- Input: blackbox over \mathbb{C}, or $\left(f\left(\omega^{j}\right)\right)_{j \geq 0}$ where $\omega=e^{2 i \pi / N}$
- Main idea:
- Binary search of nonzero coefficients: define $f_{\alpha, \ell}=\sum_{i: e_{i} \equiv \alpha \bmod 2^{\ell}} c_{i} x^{e_{i}}$
- Fast approximate computation of $\left\|f_{\alpha, \ell}\right\|_{2}^{2}$ using evaluations on random ω^{j}
- Complexity: polynomial in $T, \log D, \log H$
- First polynomial-time sparse interpolation algorithm
- Can be derandomized
- Sparse FFT can be seen as an improvement of Mansour's algorithm
- Bit complexity $\tilde{O}\left(T \log ^{2} D\right)$

The new algorithm

Input: A modular blackbox for $f \in \mathbb{Z}[x]$, bounds $T \geq f_{\#}, D \geq \operatorname{deg}(f), H \geq f_{\infty}$ Complexity: $\tilde{O}(T(\log D+\log H))$ bit operations

Modular blackbox

- Given α and m, compute $f(\alpha) \bmod m$
- Can be implemented with an arithmetic circuit
- Pure blackbox: evaluations on $\mathbb{Z} \backslash\{0, \pm 1\}$ have size $\Omega(D)$

General idea

- Follow Garg-Schost general structure
- Compute f mod $x^{p}-1$ à la Prony / Ben-Or-Tiwari
- Work over several rings to make it efficient

First ingredient: compute exponents of $f \bmod x^{p}-1$

Evaluations in a small field \mathbb{F}_{q}

- If ω is a p-PRU in $\mathbb{F}_{q}, f\left(\omega^{j}\right)=\left(f \bmod x^{p}-1\right)\left(\omega^{j}\right)$
- Small q for efficiency reasons
- Coefficients should remain nonzero modulo $q \rightarrow q=\operatorname{poly}(T \log H)$

Algorithm

```
Input: a \(p\)-PRU \(\omega \in \mathbb{F}_{q}\)
to be computed
```

1. Evaluate f at $1, \omega, \ldots, \omega^{2 T-1}$
2. Compute the minimal polynomial of $\left(f\left(\omega^{j}\right)\right)_{j}$
3. Compute its roots and get the exponents by multipoint evaluation
$2 T$ queries $\tilde{O}(T \log q)$
$\tilde{O}(p \log q)$

Complexity

- $p=O(T \log D)$ as in Garg-Schost's algorithm

$$
\rightarrow \tilde{O}(T \log D \log q)=\tilde{O}(T \log D \log \log H)
$$

Second ingredient: compute $f \bmod x^{p}-1$

Evaluations in a larger ring

- \mathbb{F}_{q} is too small \rightarrow coefficients known modulo q
- Use larger ring where coefficients can be represented
- Using large finite field is too costly (primality testing, etc.)
$\rightarrow \operatorname{Ring} \mathbb{Z} / q^{k} \mathbb{Z}$ where $q^{k}>2 H$

$$
k=O(\log H / \log q)
$$

Algorithm

Input: a $p-\operatorname{PRU} \omega_{k} \in \mathbb{Z} / q^{k} \mathbb{Z}$

1. Evaluate f at $1, \omega_{k}, \ldots, \omega_{k}^{T-1}$
2. Solve a transposed Vandermonde system, build using the exponents
$\tilde{O}(T k \log q)$
\rightarrow Complexity: $\tilde{O}(T \log H)$

Third ingredient: Embed exponents into coefficients

Compute both $f(x)$ and $f\left(\left(1+q^{k}\right) x\right)$ modulo $\left\langle x^{p}-1, q^{2 k}\right\rangle$

Paillier-like embedding

- $\left(1+q^{k}\right)^{e_{i}}=1+e_{i} q^{k} \bmod q^{2 k}$
$-\operatorname{If} f=\sum_{i} c_{i} X^{e_{i}}$,

$$
f\left(\left(1+q^{k}\right) x\right) \bmod \left\langle q^{2 k}, x^{p}-1\right\rangle=\sum_{i}\left(c_{i}\left(1+e_{i} q^{k}\right)\right) x^{e_{i} \bmod p}
$$

Collisions

- If $c_{i} x^{e_{i}}$ is collision-free modulo $x^{p}-1 \rightarrow$ reconstruct both c_{i} and e_{i}
- Possibly noisy terms from collisions $e_{i}=e_{j} \bmod p$
\rightarrow Compute f^{*} such that $\left(f-f^{*}\right)_{\#} \leq \frac{1}{2} f_{\#}$ w.h.p.

Fourth ingredient: p-PRU in \mathbb{F}_{q} and $\mathbb{Z} / q^{2 k} \mathbb{Z}$

Produce p, q and ω together

1. Sample a random prime $p \in[\lambda, 2 \lambda]$ with $\lambda=O(T \log D)$
2. Sample a random prime $q \in\left\{k p+1: 1 \leq k \leq \lambda^{5}\right\} \quad$ Effective Dirichlet theorem
3. Sample a random α such that $\omega=\alpha^{(q-1) / p} \neq 1$
4. Return (p, q, ω)

- Complexity: $\log ^{O(1)}(\lambda)=\log ^{O(1)}(T \log D)$

Lift $\omega \in \mathbb{F}_{q}$ to $\omega_{k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$

- If $\omega_{2 i}$ is a p-PRU modulo $q^{2 i}, \omega_{2 i} \bmod q^{i}$ is a p-PRU modulo q^{i}
- Write $\omega_{2 i}=\omega_{i}+a q^{i}$:
- $1 \equiv \omega_{2 i}^{p} \equiv \omega_{i}^{p}+p \omega_{i}^{p-1} a q^{i} \bmod q^{2 i} \Rightarrow 1-\omega_{i}^{p} \equiv q^{i} \times a p \omega_{i}^{-1} \bmod q^{2 i}$
- $a=\left[\frac{1}{q^{\prime}}\left(1-\omega_{i}^{p} \bmod q^{2 i}\right)\right] \times\left(\omega_{i} p^{-1}\right) \bmod q^{i}$
- Complexity: $\tilde{O}(k \log p \log q)=\tilde{O}(\log H \log (T \log D))$ binary operations

Complete algorithm

Algorithm

1. $f^{*} \leftarrow 0$
2. Repeat $\log T$ times :
3. Compute $p, q, \omega \in \mathbb{F}_{q}, \omega_{k} \in \mathbb{Z} / q^{2 k} \mathbb{Z}$
4. Compute exponents of $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q\right\rangle$
5. Compute $\left(f-f^{*}\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$
6. Compute $\left(f-f^{*}\right)\left(\left(1+q^{k}\right) x\right) \bmod \left\langle x^{p}-1, q^{2 k}\right\rangle$
7. Reconstruct collision-free monomials plus some noise

Fourth ingredient
First ingredient
Second ingredient
Second ingredient
Third ingredient
8. Update f^{*}
9. Return f^{*}

Theorem
[Giorgi-G.-Perret du Cray-Roche (2022)]
Given a modular blackbox for $f \in \mathbb{Z}[x]$ and bounds T, D, H, the algorithm returns the sparse representation off with probability $\geq \frac{2}{3}$, and has bit complexity $\tilde{O}(T(\log D+\log H))$

Getting rid of the sparsity bound

Early termination technique

- Given $\left(\alpha_{j}\right)_{j \geq 0}$, find its minimal polynomial without any bound on its degree
- Berlekamp-Massey with early termination
[Kaltofen-Lee (2003)]
- Works over \mathbb{F}_{q} with $q=\Omega\left(D^{4}\right)$
- Complexity: $2 t$ evaluations and $\tilde{O}(t)$ operations over \mathbb{F}_{q}

And over \mathbb{Z} ?

- Perform early termination modulo q, where $q=\Omega\left(D^{4}\right)$
- Finding such a prime is too costly $\rightarrow O\left(\log ^{3} D\right)$

Prime numbers without primality testing

- Take a random number m and pretend it be prime
- With good prob., its largest prime factor is $\geq \sqrt{m}$
- For each test " $a=0 \bmod m$?" \rightarrow compute $\operatorname{GCD}(a, m)$ and update m
- We show that algorithms (even randomized) have the same behavior

Outline

1. Blackbox algorithm à la Prony / Ben-Or-Tiwari
2. SLP algorithm à la Garg-Schost
3. A new quasi-linear algorithm over the integers
4. The multivariate case

Kronecker substitution

The substitution
$\left.f \in R \mid x_{0}, \ldots, x_{n-1}\right]$ with $\operatorname{deg}_{x_{i}}(f)<D \mapsto f_{u}(x)=f\left(x, x^{D}, x^{D^{2}}, \ldots, x^{D^{n-1}}\right)$

- $\operatorname{deg}\left(f_{u}\right)<D^{n}$
- Easily computable and invertible
- Replaces $\log (D)$ with $n \log (D)$ in the complexities
- Generalization if $\operatorname{deg}_{x_{i}}(f)<d_{i}: f_{u}(x)=f\left(x, x^{d_{0}}, x^{d_{0} d_{1}}, \ldots, x^{d_{0} \cdots d_{n-2}}\right)$

Caveats

- Over \mathbb{F}_{q} where q must be $\geq D$: the condition becomes $q \geq D^{n}$
- Replace an evaluation point α by ($\alpha, \alpha^{D}, \ldots, \alpha^{D^{n-1}}$)
- n times more bits than α
- a call to the (multivariate) blackbox is more expensive than to a univariate blackbox

Randomized Kronecker substitution

The substitution
$f \in R\left[x_{0}, \ldots, x_{n-1}\right]$ with $\operatorname{deg}_{x_{i}}(f)<D \mapsto f_{u}(x)=f\left(x^{s_{0}}, \ldots, x^{s_{n-1}}\right)$

- with random $s_{0}, \ldots, s_{n-1}=\tilde{O}(T n \log D)$
- $\operatorname{deg}\left(f_{u}\right)=\tilde{O}(T n D)$
- possible collisions \rightarrow non invertible
- use several random tuples $\left(s_{0}, \ldots, s_{n-1}\right)$

Results

Sparse interpolation of $f \in \mathbb{F}_{q^{s}}\left[x_{0}, \ldots, x_{n-1}\right]$ in time

- $\tilde{O}\left(s n T \log D \log q^{s}\right)$ if $q=\tilde{\Omega}(n D T)$
- $\tilde{O}\left(\right.$ snt $\left.\log ^{2} D\left(\log D+\log q^{s}\right)\right)$ otherwise

Conclusion

Results

Sparse interpolation over the integers

- First quasi-linear algorithm for modular blackbox
- Complexity $\tilde{O}(s T(\log D+\log H))$ for arithmetic circuit of size s
- Corollaries:
\Rightarrow First quasi-linear sparse multiplication algorithm [Giorgi-G.-Perret du Cray (2020)]
- First quasi-linear exact sparse division algorithm [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Sparse interpolation over \mathbb{F}_{q}, $\operatorname{char}(q) \geq D$

- Huang's algorithm for arithmetic circuits: $\tilde{O}(s T \log (D) \log (q))$
- À la Prony / Ben-Or-Tiwari (extended blackbox): $\tilde{O}\left(T \log ^{2}(q)\right) \quad$ [G. (unpublished)]
- Incomplete sparse interpolation + exponent embedding

Many other results

- Derandomization
[Klivans-Spielmann (2001), Bläser-Jindal (2014), ...]
- Other fields
- Parallel algorithms
[Kaltofen-Lakshman-Wiley (1990), Avendaño-Krick-Pacetti (2006), ...]
[Grigoriev-Karpinski-Singer (1990), Javadi-Monagan (2010), ...]
- Very fast heuristic algorithms

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_{q}

- large characteristic / large field \rightarrow blackbox? circuit?
- small field \rightarrow only circuit make sense
- over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

- input size is $s \log H$ where H bounds the constants
- algorithms in $\tilde{O}(s T(\log D+\log H))$
- Easier problem: given a circuit C and a sparse polynomial f, does C compute f ?
\rightarrow (Deterministic) polynomial time algorithm [Bläser-Hardt-Lipton-Vishnoi (2009)]
$>$ Randomized: $O(s T \log (D H)+T \log (D) \log (D H)$) [Giorgi-G.-Perret du Cray-Roche (2022)]
Many open problems on sparse polynomials
- gCD, Euclidean division, divisibility testing, factorization, ...

Open problems

Quasi-linear interpolation algorithm over \mathbb{F}_{q}

- large characteristic / large field \rightarrow blackbox? circuit?
- small field \rightarrow only circuit make sense
- over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

- input size is $s \log H$ where H bounds the constants
- algorithms in $\tilde{O}(s T(\log D+\log H))$
- Easier problem: given a circuit C and a sparse polynomial f, does C compute f ?
- (Deterministic) polynomial time algorithm [Bläser-Hardt-Lipton-Vishnoi (2009)]
$>$ Randomized: $O(s T \log (D H)+T \log (D) \log (D H)$) [Giorgi-G.-Perret du Cray-Roche (2022)]
Many open problems on sparse polynomials
- gCD, Euclidean division, divisibility testing, factorization, ...

Thank you!

