Sparse polynomial interpolation

Bruno Grenet!

LJK - Université Grenoble-Alpes

ACT @ ICALP, Paderborn, July 10., 2023

'Based on joint works with P. Giorgi, A. Perret du Cray and D. S. Roche

(Vague) definition of the problem

Input: A way to evaluate a sparse polynomial f € R[x]
(Possibly) Bounds D > deg(f), H > foo and/or T > fu
Output: The sparse representation of f

where

t—1
f = Z C,'Xei7 c € R;ﬁo
i=0

Degree: deg(f) = max; e;
Height: foo = max;|cj| for ¢; € Z, qif ¢; € Iy
Sparsity: fu =t

Many variants of the problem

Ring of coefficients

> 7 or Q: size growth — modular techniques
> Finite fields of large characteristic

> Large finite fields

» Small finite fields

Number of variables
» Univariate polynomials
> Multivariate polynomials

Input representation

> Evaluations
> Blackbox
» Arithmetic circuit / SLP

Outline

1. Blackbox algorithm a la Prony / Ben-Or-Tiwari

2. SLP algorithm a la Garg—Schost

3. A new quasi-linear algorithm over the integers

4. The multivariate case

Outline

1. Blackbox algorithm a la Prony / Ben-Or-Tiwari

Settings

Input
» Blackbox access to f = Zf;(l) cix% e Ty
» Bound: T >t
» Hypothesis: ¢ > deg(f)
> Input size: None

Output

> The sparse representation of f
» Output size: O(t(log g + logdeg f))

Complexity analysis
» Number of blackbox evaluations
» Number of operations in I, or of bit operations
» Qutput sensitive complexity

Blahut’s Theorem (1979)

Theorem
Let f = >"i7) cix® € R[X]<p where R is an integral domain and w € R be a D-th principal
root of unity. Then the minimal polynomial of (f (w));s0 is N(x) = [[.Z3(x — w).

i=0
Proof.

X is a characteristic polynomial of (;); = (f(w’));

<~ Vj < D, Zi:o XkQjgk =0 where X = >, xxx¥
— N xA=0 modxP —1 Where?:xex(%) andA:ZjSDajxf
— YV, N (w) - Aw)=0 by DFT onw™'
— Vjx() fi=0 where f = Zj[.):_(;fjxf
< Vjec{e,...,et 1}, x(W) =0 since f; # 0
= [[iZ(x — w®) divides x

Blahut’s Theorem (1979)

Theorem
Let f = >"i7) cix® € R[X]<p where R is an integral domain and w € R be a D-th principal

root of unity. Then the minimal polynomial of (f (w));s0 is N(x) = [[.Z3(x — w).

Proof. ‘

X is a characteristic polynomial of (¢j); = (f(«));

<= Vj <D, Zi:o XkQjrk = 0 where x = 37 xix*
= X xA=0 modxP—1 Where?:xex(%) andA:ZjSDajxf
— YV, N (w) - Aw)=0 by DFT onw™'
— Vjx() fi=0 where f = Zj[.):_(;fjxf
< Vjec{e,...,et 1}, x(W) =0 since f; # 0
= [[iZ(x — w®) divides x

Fast algorithm [Berlekamp (1968), Massey (1969), ...]

» From A compute A as a Padé approximant — fast ccp algorithm O(M(t) log t)

Sparse polynomials and transposed Vandermonde matrices

1 f(1) 1 1 Co

- f(w) wo e o ¢
f:ZCixe’—> . =1 . . | = C

i ((JJ”) wr.wo .. wn;?t71 Ci’.—‘l

Corollary

> Sparse multipoint evaluation on geometric sequence
<= transposed Vandermonde matrix-vector product
> Sparse interpolation on geometric sequence with known exponents
<= transposed Vandermonde linear system solving

Fast algorithms [Kaltofen-Lakshman (1992), Bostan-Lecerf-Schost (2003), ...]
> Let F= Z, o Cix' = (F(w®),..., F(we")t=Ql. ¢
» Transposed dense multipoint evaluation / interpolation — O(M(t) log t)
(transposition principle: problems and their transpose of same complexity)

Algorithm a la Prony / Ben-Or-Tiwari [Prony (1795), Ben-Or-Tiwari (1988), ...]

Algorithm
Input: Blackbox for f € FFy[x], ¢ > deg(f); bound T on fx
1. Evaluate f at 1, w, ..., w?"~! where w has order > 2T
2. Compute the minimal polynomial A of (f(w’));
3. Compute its roots Sy, ..., 5;—1 and obtain the exponents ey, ..., €1
4. Solve a transposed Vandermonde system to get the coefficients c, ..., ¢;—

Complexity analysis

1. 2T blackbox evaluations

2. O(M(T)logT) Padé approximant
3. O(M(t)log tlog q) + O(+/D) root computation + discrete log.
4.

O(M(t) log t) transposed dense interpolation

Remarks on Prony / Ben-Or-Tiwari algorithm

Complexity

» Quasi-linear in T, linear (optimal) number of evaluations
» Polynomial in D, rather than log D — not polynomial in the output size

Other base rings

> Original Ben-Or-Tiwari’s algorithm: over Z
> large evaluations — bit size O(D)
> no discrete logarithm
> originally for multivariate polynomials — factorization
> Small finite fields — use an extension
> Rings: works as long as w is a principal root of unity of large order

Comparison with sparse FFT

Sparse FFT

» Given vV € C" and k < n, compute the k largest coefficients of DFT,,(V)
» Complexity: O(k log n) floating-point operations in precision O(n)
[Hassanieh—Indyk-Katabi—Price (2012)]

Sparse FFT over IF,

> No notion of coefficient size — assume DFT,,(V) has Hamming weight k
» Prony’s / Ben-Or-Tiwari’s algorithm computes a sparse FFT over I,

Lower bound
Over I, sparse FFT is at least as hard as discrete logarithm
» Discrete log.: Given a, w € I, find e such that o = w*
> Reduction to sparse FFT with k = 1:
> Given o and w, compute Vv = (1, ,a?,...) and apply sparse interpolation — e
> Remarks:
> remains hard for k > 1 add some known monomials
» both problems are polynomially equivalent

Polynomial time incomplete sparse interpolation

Incomplete sparse interpolation
Input: Blackbox for f = Zf;g) cixi and bound T > ¢t
Output: (coy ..., c—1) and (w®, ..., we")
» Same algorithm, without discrete log. computations
» Running time: O(M(t) log(t) log q) op. in F,

Open questions

> Incomplete sparse interpolation in quasi-linear time?
> Difficulty: polynomial root finding — O(tlog q) op. in I, Rabin’s algorithm
> Are both problems computationally equivalent?
> Given a polynomial p, use it to produce a linearly recurrent sequence
> By Blahut’s theorem, it is the image of a sparse polynomial
> Its support gives the roots, in log. representation
— but computing roots from their log is not quasi-linear!

Outline

2. SLP algorithm a la Garg—Schost

Settings

Input

> Arithmetic circuit / SLP of size s for f = Z,t;(]) cix% e Ty
» Bounds: T > t, D > deg(f)
» Hypothesis: ¢ > deg(f)

Output

> The sparse representation of f
» Output size: O(t(log g + logdeg f))

Complexity analysis
» Number of operations in I, or of bit operations
» Input and output sensitive complexity

Remark
> Direct expansion of the circuit — complexity O(D) expression swell

Use of cyclic extensions

Main idea and difficulties [Garg-Schost (2009)]
» Compute explicitely f mod x? —1="3". ¢ix® mod p for some prime p
> Loss of information:

> Exponents known only modulo p
» Possible collisions between monomials

Reconstruction of full exponents

> Use several p;’s and (polynomial) Chinese remaindering, diversification, ...
[Garg-Schost (2009), Giesbrecht-Roche (2011), ...]
» Embed exponents into coefficients d la Paillier or using derivatives
[Arnold-Roche (2015), Huang (2019)]

Deal with collisions
> Large enough prime and/or many primes to avoid any collision [Garg-Schost (2009)]
> Accept few collisions and reconstruct f iteratively
[Arnold-Giesbrecht-Roche (2013), Huang (2019)]

Embedding exponents into coefficients

Using derivatives [Huang 2019]
> Uff = axE f(x) =, cieix©
> Use of automatic differentiation [Baur—Strassen (1983)]
A la Paillier [Arnold-Roche (2015)]

> If f € Fy[x], evaluate f((1+ q)x) over Z/¢*Z
> Modulo ¢?, (14 q)% =1+ eiq

Requirements

» Both techniques require e; to be exactly representable in [f,
» [, should have characteristic > deg(f)

Managing collisions

Collision mod p: pair (e;, ¢j) such that e; = ¢; mod p

Avoiding or limiting collisions
Let p be a random prime in [\, 2A]
> For \ = O(%T2 log D), there is 'no collision with prob. >1— ¢
> For \ = O(%T log D), there are ‘> %T collision-free monomials with prob. > 1—¢

Dealing with collisions

> With > %T collision-free monomials, there are at most %T collisions
» Each collision may create one fake monomial
> If each collision-free monomial is correctly reconstructed, we get f* such that

1 1
(F =) < Sfa + ofe = of

Algorithm a la Garg-Schost [Garg-Schost (2009), Huang (2019)]

Algorithm
Input: Arithmetic circuit for f € Fy[x], char(IF;) > deg(f), T > fu, D > deg f
1. ff«0
2. Repeat log(T) times:
3. Take arandom p € [\, 2)] for A = O(T log Dlog T)
4. Compute f mod xP — 1and " mod xP — 1 using dense arithmetic (circuit for f)
5. For each pair of monomials cx? € f mod xP —1and x9~' € f/ mod xP — 1:
6 if //ce{0,...,D—1}:add c-x“/ to f*
7. Return f*

Complexity analysis
» O(log T) probes of the circuit — O(s - M(p) - log(T))
» p=0O(TlogDlogT)
— O(sT log D) operations in I, O(sT log Dlog q) binary operations

Remarks on Garg—Schost algorithm

Almost quasi-linear!

> Output size: O(T(log D + log q)), complexity: O(T log D log q)
» Hard to avoid: probing the circuit is already non-quasi-linear

Other base rings

» Smaller characteristic

> No exponent embedding anymore

> Several techniques, such as diversification

> Best complexity: O(sT log® D(log D + log q)) [Arnold-Giesbrecht-Roche (2014)]
> Over the integers

> Coefficient growth — modular techniques

> Best complexity: O(sT log® Dlog H) where H > f., [Perret du Cray (2023)]

Outline

3. A new quasi-linear algorithm over the integers

Known results for sparse interpolation over Z

f=3100ax, T > t,D > deg(f), H > foo

Already mentioned

> Blackbox interpolation: O(v/D) Prony / Ben-Or-Tiwari
> Arithmetic circuit: O(sT log® D log H) Garg-Schost
Mansour’s algorithm [Mansour (1995)]

> Input: blackbox over C, or (f(w));>0 where w = &*™/N

> Main idea:

> Binary search of nonzero coefficients: define f, ¢ = Zi:e,-za mod 2¢ CiX©

> Fast approximate computation of ||f,.¢||3 using evaluations on random w’
» Complexity: polynomial in T, log D, log H

> First polynomial-time sparse interpolation algorithm

» Can be derandomized [Alon-Mansour (1995)]
> Sparse FFT can be seen as an improvement of Mansour’s algorithm

> Bit complexity O(T log® D)

The new algorithm

Input: A modular blackbox for f € Z[x], bounds T > fu, D > deg(f), H > fx
Complexity: O(T(log D + log H)) bit operations

Modular blackbox
» Given o and m, compute f () mod m
» Can be implemented with an arithmetic circuit
» Pure blackbox: evaluations on Z \ {0, 1} have size Q(D)

General idea
» Follow Garg-Schost general structure
» Compute f mod x” — 14 la Prony / Ben-Or-Tiwari
» Work over several rings to make it efficient

First ingredient: compute exponents of f mod xP — 1

Evaluations in a small field I,
> Ifwisap-PRU inFy, f(w’) = (f mod xP — 1)(w’)

> Small g for efficiency reasons
» Coefficients should remain nonzero modulo ¢ — q = poly(T log H)

Algorithm
Input: a p-PRUw € [to be computed
1. Evaluate f at 1, w, ..., w1 2T queries
2. Compute the minimal polynomial of (f(w’)); O(T log q)
O(plog q)

3. Compute its roots and get the exponents by multipoint evaluation

Complexity

» p = O(T log D) as in Garg—Schost’s algorithm
— O(T log Dlog q) = O(T log D log log H)

Second ingredient: compute f mod xP — 1

Evaluations in a larger ring

» [, is too small — coefficients known modulo q
> Use larger ring where coefficients can be represented
> Using large finite field is too costly (primality testing, etc.)

— Ring Z/q*Z where ¢* > 2H k = O(log H/ log q)
Algorithm

Input: a p-PRU wy € Z/q*7Z to be computed

1. Evaluate f at 1, wy, ..., w[q T queries

2. Solve a transposed Vandermonde system, build using the exponents O(Tk log q)

— Complexity: O(T log H)

Third ingredient: Embed exponents into coefficients

Compute both f(x) and f((1+ g¥)x) modulo (x? — 1, ¢?)

Paillier-like embedding
> (14 ¢M)% =1+ e;g" mod ¢*
b I f =3, cx,

£+ ¢")x) mod (@, xP —1) = (ci(1 + eig"))x 4P

1

Collisions
> If ¢;x% is collision-free modulo xP — 1 — reconstruct both ¢; and e,
» Possibly noisy terms from collisions e; = e; mod p

— Compute f* such that (f — f*)x < 3f« w.h.p.

Fourth ingredient: p-PRU in F, and Z/q*Z
Produce p, g and w together

1. Sample a random prime p € [\, 2)\] with A = O(T log D)

2. Sample a random prime g € {kp+1:1< k < \°} Effective Dirichlet theorem
3. Sample a random «a such that w = a(970/P £ 1

4. Return (p, q,w)

> Complexity: log®M(\) = log®")(T log D)

Lift w € F, to wy € Z/¢*Z

» If wy; is a p-PRU modulo ¢%, w,; mod ¢ is a p-PRU modulo ¢
» Write wy; = wj + aqi:
> 1=wh = w4 p? lag' mod ¢¥ = 1—wP = ¢’ x apw; ! mod ¢¥
> a= [%(1 — w? mod qZ’)} X (wip~') mod ¢'
» Complexity: O(klog plog q) = O(log H log(T log D)) binary operations

Complete algorithm

Algorithm
1L ff«0
2. Repeat log T times :
3. Compute p, g, w € Fy, wy € Z/q*Z Fourth ingredient
4. Compute exponents of (f — f*) mod (x” — 1, q) First ingredient
5. Compute (f — f*) mod (xP —1, q2k> Second ingredient
6. Compute (f —f*)((1+ qk)X) mod (xP — 1, q2k> Second ingredient
7. Reconstruct collision-free monomials plus some noise Third ingredient
8. Update f*
9. Return f*

Theorem [Giorgi-G.-Perret du Cray-Roche (2022)]

Given a modular blackbox for f € Z|x] and bounds T, D, H, the algorithm returns the sparse
representation of f with probability > %, and has bit complexity O(T(log D + log H))

Getting rid of the sparsity bound

Early termination technique

> Given (a;)j>o, find its minimal polynomial without any bound on its degree

» Berlekamp-Massey with early termination [Kaltofen-Lee (2003)]
> Works over Fy with ¢ = Q(D*)

» Complexity: 2t evaluations and O(t) operations over IF,

And over Z?
» Perform early termination modulo g, where ¢ = Q(D*)
» Finding such a prime is too costly — O(log® D)

Prime numbers without primality testing [Giorgi-G.-Perret du Cray-Roche (2022)]
» Take a random number m and pretend it be prime
» With good prob.,, its largest prime factor is > y/m
» For each test “a = 0 mod m?” — compute Gcp(a, m) and update m
> We show that algorithms (even randomized) have the same behavior

Outline

4. The multivariate case

Kronecker substitution

The substitution [Kronecker (18827)]
f € Rlxo, ..., xa—1] with deg, (f) < D fu(x) = f(x,xP,xP*, ..., xP")

> deg(f,) < D"

» Easily computable and invertible

> Replaces log(D) with nlog(D) in the complexities

> Generalization if deg, (f) < di: fu(x) = f(x, x®, x%h . xdodn-2)

Caveats
» Over [F; where ¢ must be > D: the condition becomes q¢ > D" huge!
> Replace an evaluation point a by (ar, &2, ..., aP"")

> ntimes more bits than «
> a call to the (multivariate) blackbox is more expensive than to a univariate blackbox

Randomized Kronecker substitution

The substitution [Arnold-Roche (2014)]

f € Rlxo, ..., xa—1] with deg, (f) < D — fu(x) = f(x*,...,x*)
» with random sy, ..., 5,1 = b(TnIog D)

> deg(f,) = O(TnD)
> possible collisions — non invertible

» use several random tuples (s, . .., Sp—1)
Results
Sparse interpolation of f € Fgs[xo, ..., x,—q] in time
» O(snT log Dlog ¢°) if ¢ = Q(nDT) [Huang (2019)]

» O(sntlog? D(log D + log ¢°)) otherwise [Huang-Gao (2020]

Conclusion

Results

Sparse interpolation over the integers
> First quasi-linear algorithm for modular blackbox
> Complexity O(sT(log D + log H)) for arithmetic circuit of size s
> Corollaries:

> First quasi-linear sparse multiplication algorithm [Giorgi-G.-Perret du Cray (2020)]
> First quasi-linear exact sparse division algorithm [Giorgi-G.-Perret du Cray-Roche (2021-22)]

Sparse interpolation over F,, char(q) > D

> Huang’s algorithm for arithmetic circuits: O(sT log(D) log(q))

> A la Prony / Ben-Or-Tiwari (extended blackbox): O(T log?(q)) [G. (unpublished)]
» Incomplete sparse interpolation + exponent embedding

Many other results

» Derandomization [Klivans-Spielmann (2001), Blaser-Jindal (2014), ...]
» Other fields [Kaltofen-Lakshman-Wiley (1990), Avendafio-Krick-Pacetti (2006), ...]
» Parallel algorithms [Grigoriev-Karpinski-Singer (1990), Javadi-Monagan (2010), ...]
> Very fast heuristic algorithms [van der Hoeven-Lecerf (2014, 2019, 2021, ...)]

Open problems

Quasi-linear interpolation algorithm over [,

> large characteristic / large field — blackbox? circuit?
» small field — only circuit make sense
> over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

> input size is slog H where H bounds the constants
» algorithms in O(sT(log D + log H))
> Easier problem: given a circuit C and a sparse polynomial f, does C compute f?

> (Deterministic) polynomial time algorithm [Blaser-Hardt-Lipton-Vishnoi (2009)]
» Randomized: O(sT log(DH) + T log(D) log(DH)) [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

» Gcp, Euclidean division, divisibility testing, factorization, ...

Open problems

Quasi-linear interpolation algorithm over [,

> large characteristic / large field — blackbox? circuit?
» small field — only circuit make sense
> over field of large characteristic: computational equivalence with root finding?

Truly quasi-linear algorithm for circuit interpolation

> input size is slog H where H bounds the constants
» algorithms in O(sT(log D + log H))
> Easier problem: given a circuit C and a sparse polynomial f, does C compute f?

> (Deterministic) polynomial time algorithm [Blaser-Hardt-Lipton-Vishnoi (2009)]
» Randomized: O(sT log(DH) + T log(D) log(DH)) [Giorgi-G.-Perret du Cray-Roche (2022)]

Many open problems on sparse polynomials

» Gcp, Euclidean division, divisibility testing, factorization, ...

Thank you!

	Blackbox algorithm à la Prony / Ben-Or–Tiwari
	SLP algorithm à la Garg–Schost
	A new quasi-linear algorithm over the integers
	The multivariate case

