Représentations des polynômes, algorithmes et bornes inférieures

Bruno Grenet

sous la direction de Pascal Koiran et Natacha Portier

Jeudi 29 novembre 2012

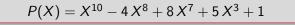
Representations of polynomials, algorithms and lower bounds

Bruno Grenet

supervised by Pascal Koiran and Natacha Portier

Thursday, November 29, 2012

Representation of Univariate Polynomials

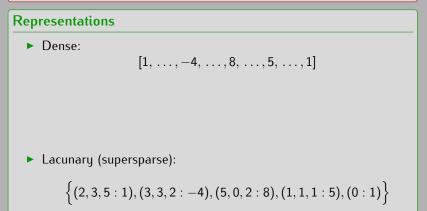


$$\left[1,0,-4,8,0,0,0,5,0,0,1\right]$$

$$ig\{(10:1),(8:-4),(7:8),(3:5),(0:1)ig\}$$

Representation of Multivariate Polynomials

$$P(X, Y, Z) = X^2 Y^3 Z^5 - 4 X^3 Y^3 Z^2 + 8 X^5 Z^2 + 5 X Y Z + 1$$



Representation of Multivariate Polynomials

$$P(X, Y, Z) = X^2 Y^3 Z^5 - 4 X^3 Y^3 Z^2 + 8 X^5 Z^2 + 5 XYZ + 1$$

Representations

Dense:

$$[1,\ldots,-4,\ldots,8,\ldots,5,\ldots,1]$$

Sparse:

 $\Big\{(||,|||,|||||:1),(|||,|||,||:-4),(|||||,,||:8),(|,|,|:5),(,,:1)\Big\}$

Lacunary (supersparse):

$$\left\{(2,3,5:1),(3,3,2:-4),(5,0,2:8),(1,1,1:5),(0:1)
ight\}$$

$$Q(X, Y, Z) = X^{4} + 4X^{3}Y + 6X^{2}Y^{2} + 4XY^{3} + X^{2}Z + 2XYZ + Y^{2}Z + X^{2} + Y^{4} + 2XY + Y^{2} + Z^{2} + 2Z + 1$$

$$Q(X, Y, Z) = (X + Y)^4 + (Z + 1)^2 + (X + Y)^2(Z + 1)$$

$Q(X, Y, Z) = (X + Y)^4 + (Z + 1)^2 + (X + Y)^2(Z + 1)$

$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

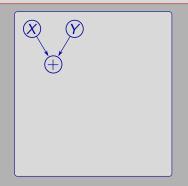
= $(X + Y)^{2}((X + Y)^{2} + (Z + 1)) + (Z + 1)^{2}$

$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$

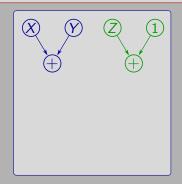
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$



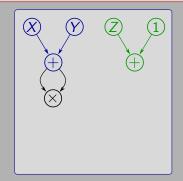
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$



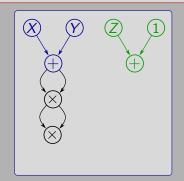
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$



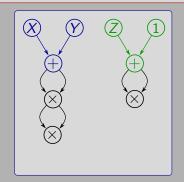
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$



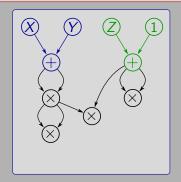
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$



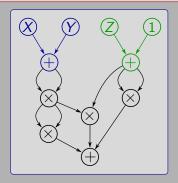
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

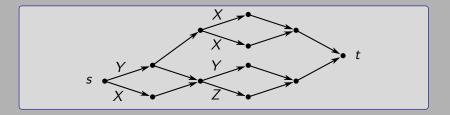
= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$

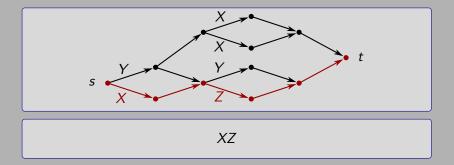


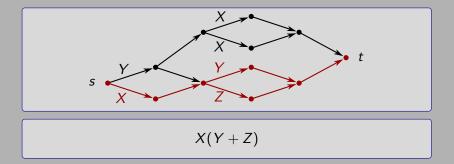
$$Q(X, Y, Z) = (X + Y)^{4} + (Z + 1)^{2} + (X + Y)^{2}(Z + 1)$$

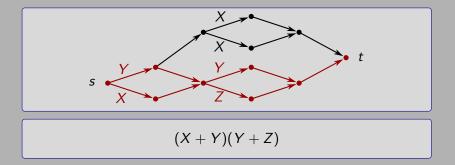
= $(X + Y)^{4} + ((Z + 1) + (X + Y)^{2})(Z + 1)$

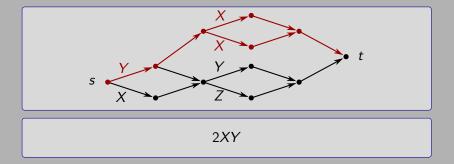


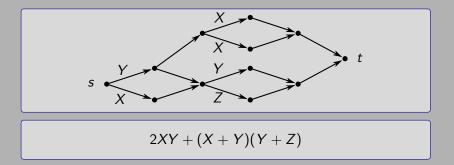












- Circuits
- Branching programs
- Determinant of matrices

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
 - Determinant
 - Permanent

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
 - Determinant
 - Permanent
- Complexity of problems concerning polynomials

Links between representations

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
 - Determinant
 - Permanent
- Complexity of problems concerning polynomials
 - Existence of roots

dense, sparse

Links between representations

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
 - Determinant
 - Permanent

Complexity of problems concerning polynomials

- Existence of roots
- Factorization

dense, sparse lacunary

Links between representations

- Circuits
- Branching programs
- Determinant of matrices
- Smallest representations of some polynomials
 - Determinant
 - Permanent

Complexity of problems concerning polynomials

- Existence of roots dense
 - Factorization
 - Polynomial Identity Testing

dense, sparse lacunary circuit

Outline

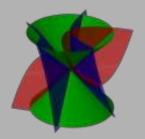
1. Resolution of polynomial systems

2. Determinantal Representations of Polynomials

3. Factorization of lacunary polynomials

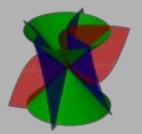
1. Resolution of polynomial systems

Is there a (nonzero) solution?



 $X^{2} + Y^{2} - Z^{2} = 0$ $XZ + 3XY + YZ + Y^{2} = 0$ $XZ - Y^{2} = 0$

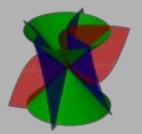
Is there a (nonzero) solution?



 $X^{2} + Y^{2} - Z^{2} = 0$ $XZ + 3XY + YZ + Y^{2} = 0$ $XZ - Y^{2} = 0$

Input: System of polynomials $f = (f_1, f_2, f_3)$, $f_j \in \mathbb{Z}[X, Y, Z]$, homogeneous Question: Is there a point $a = (a_1, a_2, a_3) \in \mathbb{C}^3$, nonzero, s.t. $f_1(a) = f_2(a) = f_3(a) = 0$?

Is there a (nonzero) solution?



 $X^{2} + Y^{2} - Z^{2} = 0$ $XZ + 3XY + YZ + Y^{2} = 0$ $XZ - Y^{2} = 0$

Input: System of polynomials $f = (f_1, f_2, f_3)$, $f_j \in \mathbb{Z}[X, Y, Z]$, homogeneous Question: Is there a point $a = (a_1, a_2, a_3) \in \mathbb{C}^3$, nonzero, s.t. f(a) = 0?

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. f(a) = 0?

▶ s < n + 1: Always **Yes** (\rightsquigarrow trivial answer)

- ▶ s < n + 1: Always **Yes** (\rightsquigarrow trivial answer)
- ▷ s > n + 1: Hard problem (NP-hard)

- ▶ s < n + 1: Always **Yes** (\rightsquigarrow trivial answer)
- > s > n + 1: **Hard** problem (NP-hard)
- > *s* = *n* + 1: **Resultant**: Algebraic tool to answer the question

- ▶ s < n + 1: Always **Yes** (\rightsquigarrow trivial answer)
- ▷ s > n + 1: Hard problem (NP-hard)
- > *s* = *n* + 1: **Resultant**: Algebraic tool to answer the question
 - → Trivial? Easy? Hard?

Definitions

$\mathsf{PolSys}(\mathbb{K})$

Input:
$$f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$$

Question: Is there $a \in \overline{\mathbb{K}}^n$ s.t. $f(a) = 0$?

Bruno Grenet – PhD Defense – Nov. 29, 2012

Definitions

 $\mathsf{PolSys}(\mathbb{K})$

Input:
$$f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$$

Question: Is there $a \in \overline{\mathbb{K}}^n$ s.t. $f(a) = 0$?

HomPolSys (\mathbb{K})

Definitions

 $\mathsf{PolSys}(\mathbb{K})$

Input:
$$f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$$

Question: Is there $a \in \overline{\mathbb{K}}^n$ s.t. $f(a) = 0$?

$\mathsf{HomPolSys}(\mathbb{K})$

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. f(a) = 0?

$\mathsf{Resultant}(\mathbb{K})$

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $PolSys(\mathbb{Z}) \in AM$.

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $PolSys(\mathbb{Z}) \in AM$.

Class Arthur-Merlin

$$\mathsf{NP} \subseteq \mathsf{AM} = \mathsf{BP} \cdot \mathsf{NP} \subseteq \mathsf{\Pi}_2^\mathsf{P}$$

Bruno Grenet — PhD Defense – Nov. 29, 2012

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $PolSys(\mathbb{Z}) \in AM$.

Corollary

Under GRH, HomPolSys(\mathbb{Z}) and Resultant(\mathbb{Z}) belong to AM.

Class Arthur-Merlin

$$\mathsf{NP} \subseteq \mathsf{AM} = \mathsf{BP} \cdot \mathsf{NP} \subseteq \Pi_2^\mathsf{P}$$

Bruno Grenet — PhD Defense – Nov. 29, 2012

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $PolSys(\mathbb{Z}) \in AM$.

Corollary

Under GRH, HomPolSys(\mathbb{Z}) and RESULTANT(\mathbb{Z}) belong to AM.

Proof. Remove the unwanted zero root: Add $\sum_{i} X_i Y_i - 1$ to the system.

Class Arthur-Merlin

$$\mathsf{NP} \subseteq \mathsf{AM} = \mathsf{BP} \cdot \mathsf{NP} \subseteq \Pi_2^\mathsf{P}$$

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, $PolSys(\mathbb{Z}) \in AM$.

Corollary

Under GRH, HomPolSys(\mathbb{Z}) and RESULTANT(\mathbb{Z}) belong to AM.

Proof. Remove the unwanted zero root: Add $\sum_{i} X_i Y_i - 1$ to the system.

Class Arthur-Merlin

$$\mathsf{NP} \subseteq \mathsf{AM} = \mathsf{BP} \cdot \mathsf{NP} \subseteq \mathsf{\Pi}_2^\mathsf{P}$$

Positive characteristics

If p is prime, $(Hom)PolSys(\mathbb{F}_p)$ & $Resultant(\mathbb{F}_p)$ are in PSPACE.

Notation: $\mathbb{F}_0=\mathbb{Q}$

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition (Folklore)

For p = 0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition (Folklore)

For p = 0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern'93)

RESULTANT(\mathbb{Z}) is NP-hard.

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition (Folklore)

For p = 0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern'93)

RESULTANT(\mathbb{Z}) is NP-hard.

Same results with **degree-2** polynomials.

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition (Folklore)

For p = 0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern'93)

RESULTANT(\mathbb{Z}) is NP-hard.

Same results with **degree-2** polynomials.

	PolSys	HomPolSys	RESULTANT
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_{p}	NP-hard	NP-hard	Open

Notation: $\mathbb{F}_0 = \mathbb{Q}$

Proposition (Folklore)

For p = 0 or prime, $PolSys(\mathbb{F}_p)$ & $HomPolSys(\mathbb{F}_p)$ are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern'93)

RESULTANT(\mathbb{Z}) is NP-hard.

Same results with **degree-2** polynomials.

	PolSys	HomPolSys	RESULTANT
\mathbb{Z}	NP-hard	NP-hard	NP-hard
\mathbb{F}_{p}	NP-hard	NP-hard	Open

▶ What happens for **RESULTANT**(\mathbb{F}_p), p > 0?

• HomPolSys(\mathbb{F}_p) is NP-hard:

homogeneous polynomials \geq # variables

• HomPolSys(\mathbb{F}_p) is NP-hard:

homogeneous polynomials \geq # variables

Two strategies:

• HomPolSys(\mathbb{F}_p) is NP-hard:

homogeneous polynomials \geq # variables

- Two strategies:
 - Reduce the number of polynomials

• HomPolSys(\mathbb{F}_p) is NP-hard:

```
# homogeneous polynomials \geq # variables
```

- **Two strategies:**
 - Reduce the number of polynomials
 - Increase the number of variables

• HomPolSys(\mathbb{F}_p) is NP-hard:

homogeneous polynomials \geq # variables

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

• HomPolSys(\mathbb{F}_p) is NP-hard:

homogeneous polynomials \geq # variables

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)

Let p be a prime number.

```
• HomPolSys(\mathbb{F}_p) is NP-hard:
```

homogeneous polynomials \geq # variables

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)

Let *p* be a prime number.

• RESULTANT (\mathbb{F}_p) is NP-hard for sparse polynomials.

```
• HomPolSys(\mathbb{F}_p) is NP-hard:
```

homogeneous polynomials \geq # variables

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

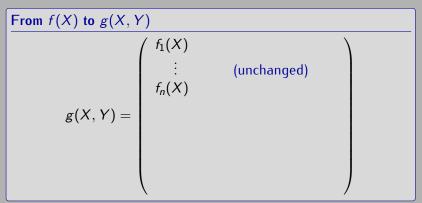
Theorem (G.-Koiran-Portier'10-12)

Let *p* be a prime number.

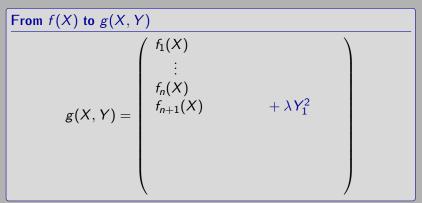
- RESULTANT (\mathbb{F}_p) is NP-hard for sparse polynomials.
- RESULTANT(\mathbb{F}_q) is NP-hard for **dense** polynomials for some $q = p^s$.

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \dots, X_n]$

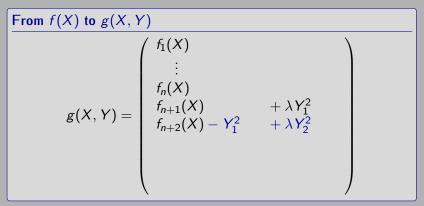
f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$



f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$



f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$



f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y)

$$g(X, Y) = \begin{pmatrix} f_1(X) \\ \vdots \\ f_n(X) \\ f_{n+1}(X) &+ \lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 &+ \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \end{pmatrix}$$

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y)

$$g(X,Y) = \begin{pmatrix} f_1(X) & & \\ \vdots & & \\ f_n(X) & & \\ f_{n+1}(X) & & +\lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 & & +\lambda Y_2^2 \\ \vdots & & \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) & - Y_{s-n-1}^2 \end{pmatrix}$$

Bruno Grenet – PhD Defense – Nov. 29, 2012

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y)

$$g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots \\ f_n(X) \\ f_{n+1}(X) &+ \lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 &+ \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) &- Y_{s-n-1}^2 \end{pmatrix}$$

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y) $g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots \\ f_n(X) \\ f_{n+1}(X) + \lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 + \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) - Y_{s-n-1}^2 \end{pmatrix}$

 $f(a) = 0 \implies g(a,0) = 0$

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y) $g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots \\ f_n(X) \\ f_{n+1}(X) &+ \lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 &+ \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) &- Y_{s-n-1}^2 \end{pmatrix}$

 $f(a) = 0 \implies g(a,0) = 0$

Find λ such that $(g(a, b) = 0 \implies b = 0)$

Proof idea

f(X): s degree-2 homogeneous polynomials in $\mathbb{F}_p[X_0, \ldots, X_n]$

From f(X) to g(X, Y) $g(X,Y) = \begin{pmatrix} f_1(X) \\ \vdots \\ f_n(X) \\ f_{n+1}(X) + \lambda Y_1^2 \\ f_{n+2}(X) - Y_1^2 + \lambda Y_2^2 \\ \vdots \\ f_{s-1}(X) - Y_{s-n-2}^2 + \lambda Y_{s-n-1}^2 \\ f_s(X) - Y_{s-n-1}^2 \end{pmatrix}$

 $f(a) = 0 \implies g(a,0) = 0$

Find λ such that $(g(a, b) = 0 \implies b = 0 \implies f(a) = 0)$

Conclusion

NP-hardness results for square homogeneous systems of polynomials over finite fields

Conclusion

- NP-hardness results for square homogeneous systems of polynomials over finite fields
- Result on the evaluation of the resultant polynomial

Conclusion

- NP-hardness results for square homogeneous systems of polynomials over finite fields
- Result on the evaluation of the resultant polynomial

Main open problem

- Improve the PSPACE upper bound in positive characteristics...
- ... or the NP lower bound.

2. Determinantal Representations of Polynomials

Determinant

Definition

$$\mathfrak{S}_n$$
 = permutations of $\{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\epsilon(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

Determinant

Definition

$$\mathfrak{S}_n$$
 = permutations of $\{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\epsilon(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - afh - bdi - ceg$$

Bruno Grenet — PhD Defense – Nov. 29, 2012

$$2XY + (X+Y)(Y+Z) = \det \begin{pmatrix} 0 & 2 & 0 & 0 & Y & X & 0 & 0 \\ 0 & -1 & X & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & Y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & Y & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

2X

Complexity of the determinant

- Complexity of the determinant
- Determinant vs. Permanent: Algebraic "P = NP?"

2XY-

0 X

 $0 \ 0 \ \frac{1}{2}$

0

0

Determinantal representations

0 2

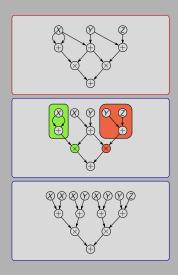
0 0

0 0

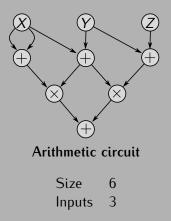
0 Y

- Complexity of the determinant
- Determinant vs. Permanent: Algebraic "P = NP?"
- Links between circuits, ABPs and the determinant

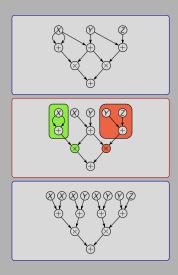
Circuits



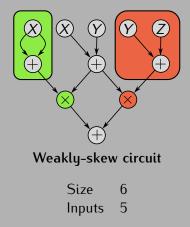
2X(X+Y) + (X+Y)(Y+Z)



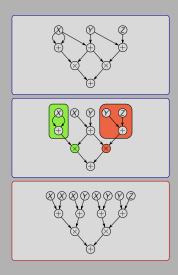
Circuits



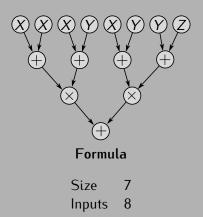
2X(X+Y) + (X+Y)(Y+Z)



Circuits



2X(X + Y) + (X + Y)(Y + Z)



Results

Proposition (Valiant'79)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+2)

Bruno Grenet — PhD Defense – Nov. 29, 2012

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

Results

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

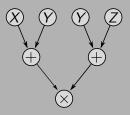
Proposition (Toda'92, Malod-Portier'08)

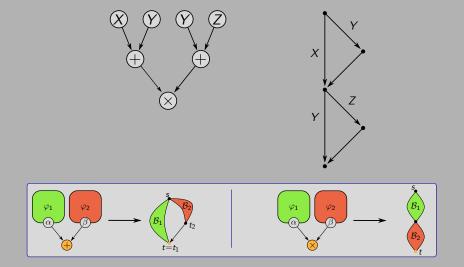
Weakly-skew circuit of size *s* with *i* inputs

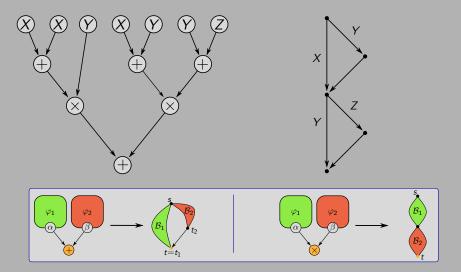
 \rightarrow Determinant of a matrix of dimension (s + i + 1)

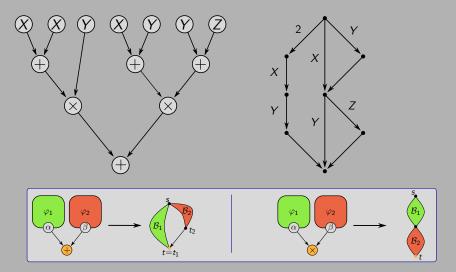
From Formulas to Branching Programs

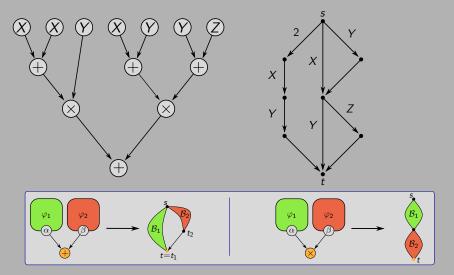
Bruno Grenet — PhD Defense – Nov. 29, 2012

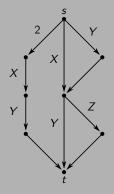




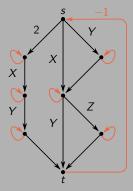


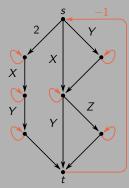






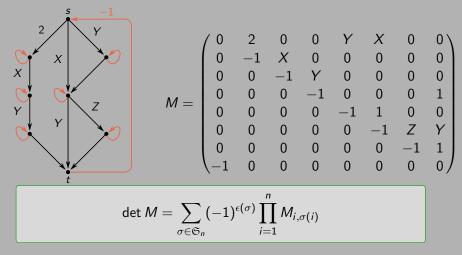
Bruno Grenet — PhD Defense – Nov. 29, 2012



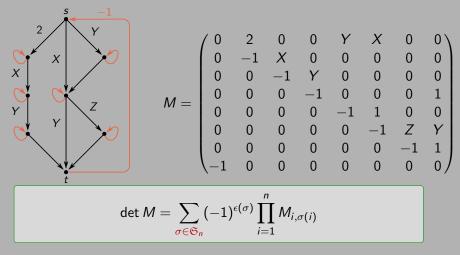


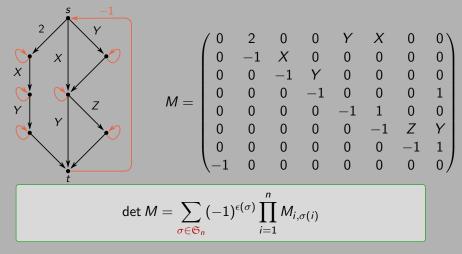
M =	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right) $	$2 \\ -1 \\ 0 \\ 0$	0 X -1 0	0 0 <i>Y</i> -1	Y 0 0	X 0 0	0 0 0 0 <i>Z</i> -1 0	0 0 0
	0	0 0	0 0	0 0	$-1 \\ 0$	$1 \\ -1$	0 <i>Z</i>	0 Y
	0	0	0	0	0	0	-1	1
	$\setminus -1$	0	0	0	0	0	0	0/

Bruno Grenet - PhD Defense - Nov. 29, 2012



Bruno Grenet — PhD Defense – Nov. 29, 2012





- Up to signs, det(M) = sum of the weights of the cycle covers of G

Bruno Grenet — PhD Defense – Nov. 29, 2012

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\epsilon(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$
$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - afh - bdi - ceg$$

$$per A = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n A_{i,\sigma(i)}$$
$$det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - afh - bdi - ceg$$

$$per A = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n A_{i,\sigma(i)}$$
$$per \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh + afh + bdi + ceg$$

Bruno Grenet – PhD Defense – Nov. 29, 2012

per
$$A = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n A_{i,\sigma(i)}$$

$$per\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh + afh + bdi + ceg$$

Theorem (G.'12)

There exists a **branching program of size** 2^n representing the **permanent of dimension** *n*.

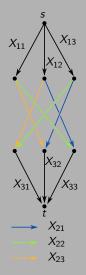
Branching Program for the Permanent

per
$$A = \sum_{\sigma \in \mathfrak{S}_n} \qquad \prod_{i=1}^n A_{i,\sigma(i)}$$

$$per\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh + afh + bdi + ceg$$

Theorem (G.'12)

There exists a **branching program of size** 2^n representing the **permanent of dimension** *n*.



Permanent versus Determinant

Corollary

The **permanent of dimension** *n* is a projection of the **determinant of dimension** $N = 2^n - 1$.

Permanent versus Determinant

Corollary

The **permanent of dimension** *n* is a projection of the **determinant of dimension** $N = 2^n - 1$.

$$\operatorname{per} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \operatorname{det} \begin{pmatrix} 0 & a & d & g & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & i & f & 0 \\ 0 & 0 & 1 & 0 & 0 & c & i \\ 0 & 0 & 0 & 1 & c & 0 & f \\ e & 0 & 0 & 0 & 1 & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 1 & 0 \\ b & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

3runo Grenet — PhD Defense – Nov. 29, 2012

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size *s* with *i* inputs \rightarrow Determinant of a matrix of dimension (*s* + *i* + 1)

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size *s* with *i* inputs \rightarrow Determinant of a matrix of dimension (*s* + *i* + 1)

Theorem (G.-Kaltofen-Koiran-Portier'11)

If the underlying field has **characteristic** \neq 2,

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

Proposition (Toda'92, Malod-Portier'08)

Weakly-skew circuit of size *s* with *i* inputs \rightarrow Determinant of a matrix of dimension (*s* + *i* + 1)

Theorem (G.-Kaltofen-Koiran-Portier'11)

If the underlying field has **characteristic** \neq 2,

► Formula of size *s* ~→ Symmetric determinant of dimension 2*s* + 1

Proposition (Liu-Regan'06, G.-Kaltofen-Koiran-Portier'11)

Formula of size $s \rightarrow$ Determinant of a matrix of dimension (s+1)

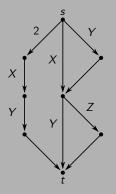
Proposition (Toda'92, Malod-Portier'08)

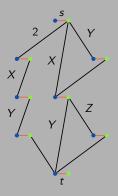
Weakly-skew circuit of size *s* with *i* inputs \rightarrow Determinant of a matrix of dimension (*s* + *i* + 1)

Theorem (G.-Kaltofen-Koiran-Portier'11)

If the underlying field has **characteristic** \neq 2,

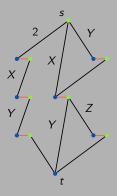
- ► Formula of size *s* ~→ Symmetric determinant of dimension 2*s* + 1
- ► Weakly-skew circuit of size s with i inputs → Symmetric determinant of dimension 2(s + i) + 1

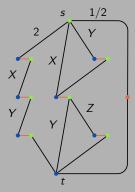




Bruno Grenet — PhD Defense – Nov. 29, 2012

6 / 43

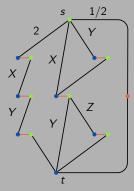




S

Factorization of lacunary polynomials

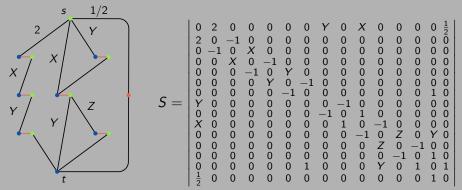
From Branching Programs to Symmetric Determinants



Bruno Grenet — PhD Defense – Nov. 29, 2012

Factorization of lacunary polynomials

From Branching Programs to Symmetric Determinants



Corollary

Let *M* be an $(n \times n)$ matrix. Then there exists a symmetric matrix *S* of dimension $\frac{2}{3}n^3 + o(n^3)$ s.t. det *M* = det *S*.

Same **expressiveness**:

(Weakly-)Skew circuits

Same **expressiveness**:

- Weakly-)Skew circuits
- Branching Programs

Same **expressiveness**:

- Weakly-)Skew circuits
- Branching Programs
- Determinants

Same **expressiveness**:

- Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

Same **expressiveness**:

- Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

Theorem (G.-Monteil-Thomassé'12)

In characteristic 2, some polynomials cannot be represented by a symmetric determinant.

Same **expressiveness**:

- Weakly-)Skew circuits
- Branching Programs
- Determinants
- Symmetric Determinants in characteristic $\neq 2$

Theorem (G.-Monteil-Thomassé'12)

In characteristic 2, some polynomials cannot be represented by a symmetric determinant.

Main open question (Algebraic "P = NP?")

What is the **smallest** N s.t. the **permanent of dimension** n is a projection of the **determinant of dimension** N?

3. Factorization of lacunary polynomials

$-X^{6} - X^{2}Y + X^{5}Y + XY^{2} - X^{4}YZ - Y^{2}Z + X^{4}Z^{2} + YZ^{2}$

Bruno Grenet - PhD Defense - Nov. 29, 2012

$$-X^{6} - X^{2}Y + X^{5}Y + XY^{2} - X^{4}YZ - Y^{2}Z + X^{4}Z^{2} + YZ^{2}$$

$$= (X - Y + Z)(X^4 + Y)(Z - X)$$

Bruno Grenet - PhD Defense - Nov. 29, 2012

$$-X^{6} - X^{2}Y + X^{5}Y + XY^{2} - X^{4}YZ - Y^{2}Z + X^{4}Z^{2} + YZ^{2}$$

$$= (X - Y + Z)(X^4 + Y)(Z - X)$$

Factorization of a polynomial P

Find F_1, \ldots, F_t s.t. $P = F_1 \times \cdots \times F_t$

Bruno Grenet — PhD Defense – Nov. 29, 2012

$$-X^{6} - X^{2}Y + X^{5}Y + XY^{2} - X^{4}YZ - Y^{2}Z + X^{4}Z^{2} + YZ^{2}$$

$$= (X - Y + Z)(X^{4} + Y)(Z - X)$$

Factorization of a polynomial P

Find F_1, \ldots, F_t s.t. $P = F_1 \times \cdots \times F_t$

$$P(X_1,\ldots,X_n)=\sum_{j=1}^k a_j X_1^{\alpha_{1j}}\cdots X_n^{\alpha_{nj}}$$

$$\implies \mathsf{size}(P) = \sum_{j=1}^k \mathsf{size}(a_j) + \log(\alpha_{1j}) + \dots + \log(\alpha_{nj})$$

3runo Grenet — PhD Defense – Nov. 29, 2012 –

Factorization of sparse univariate polynomials

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 size $(P) = \sum_{j=1}^{k} \text{size}(a_j) + \log(\alpha_j)$

Bruno Grenet – PhD Defense – Nov. 29, 2012

Factorization of sparse univariate polynomials

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 size $(P) = \sum_{j=1}^{k} \operatorname{size}(a_j) + \log(\alpha_j)$

Proposition (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find **integer roots** if $a_j \in \mathbb{Z}$.

Bruno Grenet — PhD Defense – Nov. 29, 2012

Factorization of sparse univariate polynomials

$$P(X) = \sum_{j=1}^{k} a_j X^{\alpha_j}$$
 size $(P) = \sum_{j=1}^{k} \operatorname{size}(a_j) + \log(\alpha_j)$

Proposition (Cucker-Koiran-Smale'98)

Polynomial-time algorithm to find **integer roots** if $a_j \in \mathbb{Z}$.

Proposition (Lenstra'99)

Polynomial-time algorithm to find factors of degree $\leq d$ if $a_j \in \mathbb{K}$, where \mathbb{K} is an algebraic number field.

Bruno Grenet — PhD Defense – Nov. 29, 2012

Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q} .

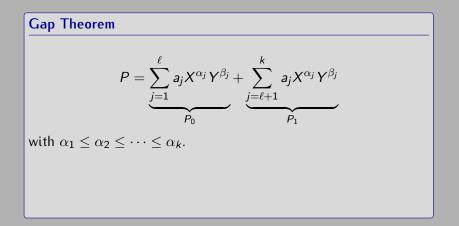
Factorization of lacunary polynomials

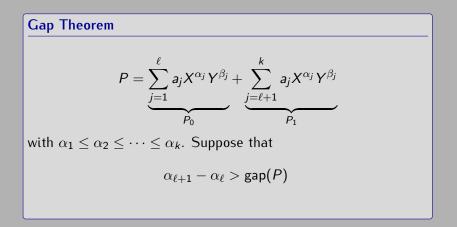
Proposition (Kaltofen-Koiran'05)

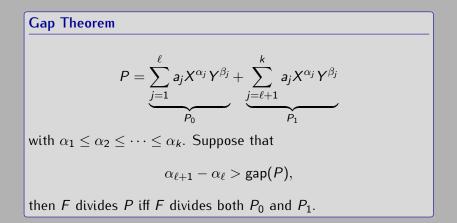
Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q} .

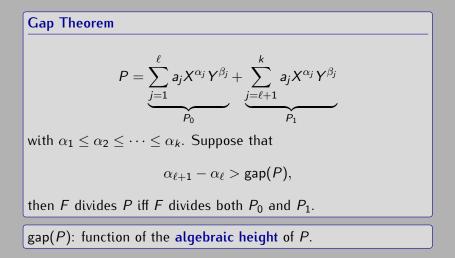
Proposition (Kaltofen-Koiran'06)

Polynomial-time algorithm to find **low-degree factors** of **multi-variate** lacunary polynomials over algebraic number fields.









Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

gap(P) independent of the height

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

- gap(P) independent of the height
 - $\rightsquigarrow \ \ More \ elementary \ \ algorithms$

Bruno Grenet — PhD Defense – Nov. 29, 2012

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

- gap(P) independent of the height
 - ---> More elementary algorithms
 - --- Gap Theorem valid over **any field of characteristic 0**

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

- gap(P) independent of the height
 - ---> More elementary algorithms
 - --- Gap Theorem valid over **any field of characteristic** 0
- Extension to multilinear factors

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki'12)

Polynomial time algorithm to find **multilinear** factors of **bivariate** lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials

[Kaltofen-Koiran'05]

- gap(P) independent of the height
 - ---> More elementary algorithms
 - --- Gap Theorem valid over any field of characteristic 0
- Extension to **multilinear** factors
- Results in positive characteristics

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Bruno Grenet — PhD Defense – Nov. 29, 2012 💡

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Study of polynomials of the form
$$\sum_{j} a_{j} X^{\alpha_{j}} (uX + v)^{\beta_{j}}$$

Bruno Grenet — PhD Defense – Nov. 29, 2012 💡

$$P(X,Y) = \sum_{j=1}^{k} a_j X^{\alpha_j} Y^{\beta_j}$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- Study of polynomials of the form $\sum_{i} a_{i} X^{\alpha_{i}} (uX + v)^{\beta_{i}}$
- K: any field of characteristic 0

Definition

 $val(P) = degree of the lowest degree monomial of <math>P \in \mathbb{K}[X]$

Definition

 $\mathsf{val}(P) = \mathsf{degree}$ of the lowest degree monomial of $P \in \mathbb{K}[X]$

Theorem $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } \alpha_1 \leq \cdots \leq \alpha_k$

Definition

 $\mathsf{val}(P) = \mathsf{degree}$ of the lowest degree monomial of $P \in \mathbb{K}[X]$

Theorem $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } \alpha_1 \leq \cdots \leq \alpha_k$ $\implies \text{val}(P) \leq \max_{1 \leq j \leq k} \left(\alpha_j + \binom{k+1-j}{2} \right)$

Definition

 $\mathsf{val}(P) = \mathsf{degree}$ of the lowest degree monomial of $P \in \mathbb{K}[X]$

Theorem $P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } \alpha_1 \leq \cdots \leq \alpha_k$ $\implies \text{val}(P) \leq \alpha_1 + \binom{k}{2}$

 $> X^{\alpha_j}(uX + v)^{\beta_j}$ linearly independent

Definition

 $\mathsf{val}(P) = \mathsf{degree} \ \mathsf{of} \ \mathsf{the} \ \mathsf{lowest} \ \mathsf{degree} \ \mathsf{monomial} \ \mathsf{of} \ P \in \mathbb{K}[X]$

$\frac{\text{Theorem}}{P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j} \neq 0, \text{ with } \alpha_1 \leq \cdots \leq \alpha_k$ $\implies \text{val}(P) \leq \alpha_1 + \binom{k}{2}$

 $> X^{\alpha_j}(uX + v)^{\beta_j}$ linearly independent

▶ Hajós' Lemma: if $\alpha_1 = \cdots = \alpha_k$, val $(P) \leq \alpha_1 + (k-1)$

The Wronskian

Definition

Let $f_1, \dots, f_k \in \mathbb{K}[X]$. Then $W(f_1, \dots, f_k) = \det \begin{bmatrix} f_1 & f_2 & \dots & f_k \\ f'_1 & f'_2 & \dots & f'_k \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \end{bmatrix}$.

The Wronskian

Definition

Let $f_1, \ldots, f_k \in \mathbb{K}[X]$. Then

$$W(f_1, \dots, f_k) = \det \begin{bmatrix} f_1 & f_2 & \dots & f_k \\ f'_1 & f'_2 & \dots & f'_k \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \end{bmatrix}.$$

Proposition (Bôcher, 1900)

 $W(f_1, \ldots, f_k) \neq 0 \iff$ the f_j 's are linearly independent.

Bruno Grenet — PhD Defense – Nov. 29, 2012

6 / 43

Wronskian & valuation

Lemma

$$\mathsf{val}(\mathsf{W}(f_1,\ldots,f_k)) \geq \sum_{j=1}^k \mathsf{val}(f_j) - \binom{k}{2}$$

Wronskian & valuation

Lemma

$$\mathsf{val}(\mathsf{W}(f_1,\ldots,f_k)) \geq \sum_{j=1}^k \mathsf{val}(f_j) - \binom{k}{2}$$

Lemma

Let $f_j = X^{\alpha_j} (uX + v)^{\beta_j}$, linearly independent, s.t. $\alpha_j, \beta_j \ge k - 1$. $\mathsf{val}(\mathsf{W}(f_1, \dots, f_k)) \le \sum_{j=1}^k \alpha_j$

Wronskian & valuation

Lemma

$$\mathsf{val}(\mathsf{W}(f_1,\ldots,f_k)) \geq \sum_{j=1}^k \mathsf{val}(f_j) - \binom{k}{2}$$

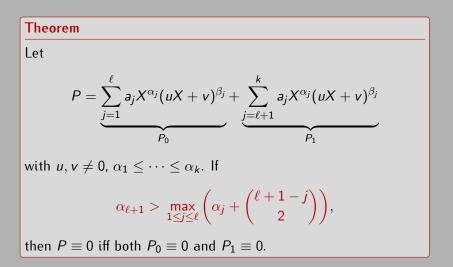
Lemma

Let
$$f_j = X^{\alpha_j} (uX + v)^{\beta_j}$$
, linearly independent, s.t. $\alpha_j, \beta_j \ge k - 1$.
 $\mathsf{val}(\mathsf{W}(f_1, \dots, f_k)) \le \sum_{j=1}^k \alpha_j$

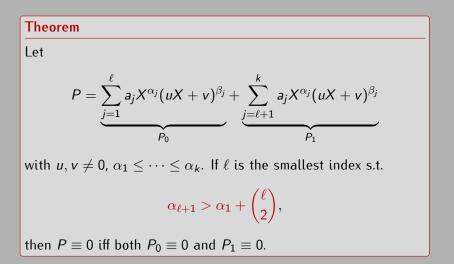
Proof of the theorem.

$$\sum_{j=1}^k lpha_j \ge \mathsf{val}(\mathsf{W}(f_1,\ldots,f_k)) \ge \mathsf{val}(P) + \sum_{j=2}^k lpha_j - \binom{k}{2}$$

Gap Theorem



Gap Theorem



Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

PIT algorithm ~> test a given linear factor

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- PIT algorithm ~> test a given linear factor
- How to find linear factors?

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- PIT algorithm ~> test a given linear factor
- How to find linear factors?

Gap theorem

$$P(X, uX + v) \equiv 0$$

$$\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$$

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- PIT algorithm ~> test a given linear factor
- How to find linear factors?

Gap theorem

$$P(X, uX + v) \equiv 0$$

$$\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$$

Find linear factors of low-degree polynomials
 ~~ [Kaltofen'82, ..., Lecerf'07]

Observation

$$(Y - uX - v)$$
 divides $P(X, Y) \iff P(X, uX + v) \equiv 0$

- PIT algorithm ~> test a given linear factor
- How to find linear factors?

Gap theorem

$$P(X, uX + v) \equiv 0$$

$$\iff P_1(X, uX + v) \equiv \cdots \equiv P_s(X, uX + v) \equiv 0$$

- Find linear factors of low-degree polynomials
 ~~ [Kaltofen'82, ..., Lecerf'07]
- K: algebraic number field

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1)$$

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1)$$

$\begin{array}{l} \hline \textbf{Theorem} \\ \hline \text{Let } P = \sum_{j=1}^{k} a_j X^{\alpha_j} (1+X)^{\beta_j} \not\equiv 0, \text{ where } p > \max_j (\alpha_j + \beta_j) \text{ and} \\ \hline a_j \in \mathbb{F}_{p^s}. \text{ Then } \operatorname{val}(P) \leq \max_j (\alpha_j + \binom{k+1-j}{2}). \end{array}$

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1)$$

$\begin{array}{l} \hline \textbf{Theorem} \\ \text{Let } P = \sum_{j=1}^{k} a_j X^{\alpha_j} (1+X)^{\beta_j} \not\equiv 0, \text{ where } p > \max_j (\alpha_j + \beta_j) \text{ and} \\ a_j \in \mathbb{F}_{p^s}. \text{ Then } \operatorname{val}(P) \leq \max_j (\alpha_j + \binom{k+1-j}{2}). \end{array}$

Theorem

Let $P = \sum_{j} a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_j(\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

• doable in randomized polynomial time if $uvw \neq 0$;

$$(1+X)^{2^n} + (1+X)^{2^{n+1}} = X^{2^n}(X+1)$$

$\begin{array}{l} \hline \textbf{Theorem} \\ \text{Let } P = \sum_{j=1}^{k} a_j X^{\alpha_j} (1+X)^{\beta_j} \not\equiv 0, \text{ where } p > \max_j (\alpha_j + \beta_j) \text{ and} \\ a_j \in \mathbb{F}_{p^s}. \text{ Then } \operatorname{val}(P) \leq \max_j (\alpha_j + \binom{k+1-j}{2}). \end{array}$

Theorem

Let $P = \sum_{j} a_j X^{\alpha_j} Y^{\beta_j} \in \mathbb{F}_{p^s}[X, Y]$, where $p > \max_j(\alpha_j + \beta_j)$. Finding factors of the form (uX + vY + w) is

- doable in randomized polynomial time if $uvw \neq 0$;
- ► NP-hard under randomized reductions otherwise.

Finding **multilinear factors** of **bivariate** lacunary polynomials

More elementary proofs for [Kaltofen-Koiran'05]

Finding multilinear factors of bivariate lacunary polynomials

More elementary proofs for [Kaltofen-Koiran'05]

• There exists
$$P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 s.t. $val(P) = \alpha_1 + (2k - 3)$

Finding multilinear factors of bivariate lacunary polynomials

More elementary proofs for [Kaltofen-Koiran'05]

For There exists
$$P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 s.t. $\operatorname{val}(P) = \alpha_1 + (2k - 3)$

Results in large positive characteristic

Finding multilinear factors of bivariate lacunary polynomials

More elementary proofs for [Kaltofen-Koiran'05]

For There exists
$$P = \sum_{j=1}^{k} a_j X^{\alpha_j} (uX + v)^{\beta_j}$$
 s.t. $\operatorname{val}(P) = \alpha_1 + (2k - 3)$

Results in large positive characteristic

Main open problem

Extend to low-degree factors of multivariate polynomials

Representations of polynomials, algorithms and lower bounds

Representations of polynomials, algorithms and lower bounds

Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants

Representations of polynomials, algorithms and lower bounds

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary

Representations of polynomials, algorithms and lower bounds

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:

Representations of polynomials, algorithms and lower bounds

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials

Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations

3 / 43

Representations of polynomials, algorithms and lower bounds

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations
- Lower Bounds:

Representations of polynomials, algorithms and lower bounds

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations
- **Lower Bounds:**
 - For the resolution of polynomial systems

Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations

Lower Bounds:

- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2

3 / 43

Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations

Lower Bounds:

- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2
- For the arithmetic complexity of the permanent

Representations of polynomials, algorithms and lower bounds

Representations of polynomials:

- By circuits, branching programs, (symmetric) determinants
- As lists: dense, sparse, lacunary
- Algorithms:
 - Factorization of lacunary polynomials
 - Polynomial identity testing for several representations

Lower Bounds:

- For the resolution of polynomial systems
- For the symmetric determinantal representations in characteristic 2
- For the arithmetic complexity of the permanent