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Representation of Univariate Polynomials

P(X)=X0—-4x8+8X"+5Xx3+1

Representations

» Dense:
[1,0,—4,8,0,0,0,5,0,0,1]

> Sparse:

{(10 :1),(8: —4),(7:8),(3:5),(0: 1)}
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Representation of Multivariate Polynomials

P(X,Y,Z)=X2Y3Z5 —4X3Y322 4+ 8 X522 + 5 XYZ + 1

Representations

» Dense:

> Lacunary (supersparse):

{(2,3,5 :1),(3,3,2: —4),(5,0,2:8),(1,1,1:5),(0: 1)}
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Representation of Multivariate Polynomials

P(X,Y,Z)=X2Y3Z5 —4X3Y322 4+ 8 X522 + 5 XYZ + 1

Representations

» Dense:

> Sparse:

{(II,III,IIIII 1), (T =40 (I 1= 8)5 (512 5)5 (s 1)}

> Lacunary (supersparse):

{(2,3,5 :1),(3,3,2: —4),(5,0,2:8),(1,1,1:5),(0: 1)}
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Arithmetic Circuits

QIX,Y,Z)=X*+4X3Y + 6 X2Y2 4 4XY3 4+ X?°Z +2XYZ

FY2Z 4 X2 Y 2XY + Y21 722127 +1
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Arithmetic Circuits

RX,Y,Z) =X+ Y) ' +(Z+ 1)+ (X + Y)*(Z+1)
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Arithmetic Circuits

RX,Y,Z)=(X+ Y ' +(Z+1)°+(X+ Y)*(Z+1)
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Arithmetic Circuits

RX,Y,Z)=(X+ Y ' +(Z+1)°+(X+ Y)*(Z+1)

=X+ Y)2(X+YP+(Z+1)+(Z+1)?
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Arithmetic Circuits

RX,Y,Z)=(X+ Y ' +(Z+1)°+(X+ Y)*(Z+1)
=X+ YY)+ (Z+1)+(X+Y))(Z+1)
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Arithmetic Branching Programs
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Arithmetic Branching Programs
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Arithmetic Branching Programs
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Arithmetic Branching Programs

(X + Y)Y +2)
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Arithmetic Branching Programs
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Arithmetic Branching Programs

2XY + (X + Y)(Y + 2)
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Links between representations

Circuits
Branching programs
Determinant of matrices

Smallest representations of some polynomials

Determinant
Permanent

Complexity of problems concerning polynomials

Existence of roots dense, sparse
Factorization lacunary
Polynomial Identity Testing circuit



Outline

1. Resolution of polynomial systems

2. Determinantal Representations of Polynomials

3. Factorization of lacunary polynomials
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1. Resolution of polynomial systems



X241v2_72-9
XZ+3XY +YZ+Y?>=0
XZ-Y?=0




X241v2_72-9
XZ+3XY +YZ+Y?>=0
XZ-Y?=0

Input: System of polynomials f = (i, f2, f3),
feZX,Y,Z)
Question: Is there a point a = (a1, a», a3) € C3,
fi(a) = h(a) = f3(a) =07

, S.t.




X241v2_72-9
XZ+3XY +YZ+Y?>=0
XZ-Y?=0

Input: System of polynomials f = (i, f2, f3),
feZX,Y,Z)
Question: Is there a point a = (a1, a», a3) € C3,
f(a) =07

, S.t.




of polynomial

More on the homogeneous case

Input: fi,...,f € K[Xo, ..., Xp], homogeneous

Question: Is there a nonzero a € K"*! sit. f(a) = 0?

Bruno Grenet — PhD Defense — Nov. 29, 2012 9,43




of polynomial

More on the homogeneous case

Input: fi,...,f € K[Xo, ..., Xp], homogeneous

Question: Is there a nonzero a € K"*! sit. f(a) = 0?

Bruno Grenet — PhD Defense — Nov. 29, 2012 9,43




Input: f1,...,fs € K[Xo,...,X,], homogeneous
Question: Is there a nonzero a € K" s.t. f(a) = 0?

s < n+ 1: Always Yes (~ trivial answer)

s > n+ 1: Hard problem (NP-hard)



Input: f1,...,fs € K[Xo,...,X,], homogeneous
Question: Is there a nonzero a € K" s.t. f(a) = 0?

s < n+ 1: Always Yes (~ trivial answer)
s > n+ 1: Hard problem (NP-hard)

s = n+ 1: Resultant: Algebraic tool to answer the question



Input: f1,...,fs € K[Xo,...,X,], homogeneous
Question: Is there a nonzero a € K" s.t. f(a) = 0?

s < n+ 1: Always Yes (~ trivial answer)
s > n+ 1: Hard problem (NP-hard)

s = n+ 1: Resultant: Algebraic tool to answer the question

Trivial? Easy? Hard?



of polynomial sy
Definitions

PoLSys(K)

Input: f,...,f € K[Xi,..., Xp]
Question: Is there a € K" s.t. f(a) = 0?
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Definitions
PoLSys(K)

Input: f,...,f € K[Xi,..., Xp]
Question: Is there a € K" s.t. f(a) = 0?

HomPoLSys(K)

Input: f1,...,f € K[Xp,...,X,], homogeneous

Question: Is there a nonzero a € K" sit. f(a) = 0?
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Resolution of polynomial systems

Definitions

PoLSys(K)

Input: f,...,f € K[Xi,..., Xp]
Question: Is there a € K" s.t. f(a) = 0?

HomPoLSys(K)

Input: f1,...,f € K[Xp,...,X,], homogeneous
Question: Is there a nonzero a € K" sit. f(a) = 0?

ResuLTANT(K)

Input: f1,...,f 1 € K[Xp,...,X,], homogeneous
Question: Is there a nonzero a € K"*! sit. f(a) = 0?
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|l ia
of poly Lsy

Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, PoLSys(Z) € AM.
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Upper bounds

Proposition (Koiran'96)

Under the Generalized Riemann Hypothesis, PoLSys(Z) € AM.

Class Arthur-Merlin
NP C AM =BP-NP C %
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of poly y

Upper bounds

Proposition (Koiran'96)
Under the Generalized Riemann Hypothesis, PoLSys(Z) € AM.

Corollary
Under GRH, HomMPoLSys(Z) and ResuLTANT(Z) belong to AM.
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Under the Generalized Riemann Hypothesis, PoLSys(Z) € AM.

Corollary

Under GRH, HomMPoLSys(Z) and ResuLTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add >, X;Y; — 1 to the system. O

Class Arthur-Merlin

NP C AM =BP-NP C 5




Under the Generalized Riemann Hypothesis, PoLSys(Z) € AM.

Corollary
Under GRH, HomMPoLSys(Z) and ResuLTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add >, X;Y; — 1 to the system. O

Class Arthur-Merlin

NP C AM =BP-NP C 5

If p is prime, (Hom)PoLSys(F,) & ResuLTanNT(EF,) are in PSPACE.




Resolution of polynomial systems

Known lower bounds
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of polynomial sy

Known lower bounds

Proposition (Folklore)

For p =0 or prime, PoLSys(E,) & HomPoLSys(F,) are NP-hard.
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of poly y

Known lower bounds

Proposition (Folklore)
For p =0 or prime, PoLSys(E,) & HomPoLSys(F,) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)
ResuLTANT(Z) is NP-hard.
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Notation: [y = O

For p =0 or prime, PoLSys(IF,) & HomPoLSys(I,) are

RESULTANT(Z) is

Same results with degree-2 polynomials.

| PoiSys | HomPoLSys | RESULTANT |
NP-hard NP-hard NP-hard
NP-hard NP-hard Open

Z
By




Notation: [y = O

For p =0 or prime, PoLSys(IF,) & HomPoLSys(I,) are

RESULTANT(Z) is

Same results with degree-2 polynomials.

| PoiSys | HomPoLSys | RESULTANT |
NP-hard NP-hard NP-hard
NP-hard NP-hard Open

Z
By

What happens for REsuLTANT(E},), p > 0?
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HomPoLSys(F,) is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)

Let p be a prime number.

> ResuLTANT(EF,) is NP-hard for sparse polynomials.




HomPoLSys(F,) is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

Theorem (G.-Koiran-Portier'10-12)

Let p be a prime number.

> ResuLTANT(IE,) is NP-hard for sparse polynomials.

> ResuLtanT(F,) is NP-hard for dense polynomials for some g = p°.




f(X): s degree-2 homogeneous polynomials in F,[Xo, ..., X;]



of polynomial sy

Proof idea

From 7(X) to g(X,Y)
f(X)
(unchanged)

fn(>:< )
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of polynomial sy

Proof idea

From 7(X) to g(X,Y)
A(X)

fn(>:< )

g(X, Y) _ fn+1(X)
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lution of polynomial sy

Proof idea

From 7(X) to g(X,Y)
A(X)

fn(>:< )

fatr1(X) +AY?
fora(X) = Y2 +2Y?
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f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

g(X7 Y) =

f1(X)

fa(X)

for1(X) +AYZ
for2(X) — Y12 4 )\Y22
fsfl(X) Ys2—n—2 + )‘Ysz—n—l




f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

g(X7 Y) =

fi(X)
fa(X)
for1(X) +AYZ
fraa(X) — Y2 + AYZ




f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

g(X7 Y) =

fi(X)
fa(X)
for1(X) +AYZ
fraa(X) — Y2 + AYZ




f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

g(X7 Y) =

fi(X)
fa(X)
for1(X) +AYZ
fraa(X) — Y2 + AYZ




f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

A (X)
(X

| By g
fo1(X) = Y2, o+ AY2 4
fs(X) Y21

f(a)=0 = g(a,0) =0
Find * such that (g(a,b) =0 =— b =0)




f(X): s degree-2 homogeneous polynomials in F,[Xo, . ..

From f(X) to g(X,Y)

A (X)
(X

| By g
fo1(X) = Y2, o+ AY2 4
fs(X) Y21

f(a) =0 = g(a,0) =0
Find * such that (g(a,b) =0 = b=0 = f(a) =0)




NP-hardness results for square homogeneous systems of
polynomials over finite fields



NP-hardness results for square homogeneous systems of
polynomials over finite fields

Result on the evaluation of the resultant polynomial



NP-hardness results for square homogeneous systems of
polynomials over finite fields

Result on the evaluation of the resultant polynomial

Main open problem

> Improve the PSPACE upper bound in positive characteristics. ..

» ... or the NP lower bound.




2. Determinantal Representations of
Polynomials



Determinantal Repr ions of Polynomial

Determinant

Definition

S, = permutations of {1,..., n}

detA= 3" (-1 [ Ay

ceB, i=1
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2XY+H(X+Y)(Y+2Z) = det

Complexity of the determinant

Determinant vs. Permanent: Algebraic “P = NP?”

Links between circuits, ABPs and the determinant



N4

2X(X + Y) + (X + Y)Y + 2)

Arithmetic circuit

Size 6
Inputs 3



® © (L@
g8

® )

N4

2X(X + Y) + (X + Y)Y + 2)

@0 (2)

Weakly-skew circuit

Size 6
Inputs 5



N4

@iﬁ@é@ @%j;?f

Fom la

Size 7
[nputs 8



Determi L Repr i of Pol ial

Results

Proposition (Valiant'79)

Formula of size s ~» Determinant of a matrix of dimension (s+2)
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Determi L Repr i of Polynomial

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s ~» Determinant of a matrix of dimension (s+1)
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Determinantal Repr ions of Polynomial

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s ~» Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’'08)

Weakly-skew circuit of size s with / inputs
~» Determinant of a matrix of dimension (s -+ /+ 1)
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Determi L Repr i of Pol ial

From Formulas to Branching Programs
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det M= > (=) ] M,

O'EGn

Cycle covers <= Permutations



S
2

/Y 0 2 0 0 Y X 0
X 0 -1 X 0 0 0 O
X[ / 0 0 -1 Y 0 0 O
0 0 0 -1 0 0 O
Y[ X M=10 o0 0 0 -1 1 o0
Y 0O 0 0 0 0 -1 Z
\/ 0 0 0 0 0 0 -1
Y 1 0 0 O O 0 O

t

det M= > (=) ] M,
oce6, =1

Cycle covers <= Permutations

Up to signs, det(M) = sum of the weights of the cycle covers of G

OrRr <O +HOOoOo




Determi L Repr i of Pol ial

Branching Program for the Permanent

det A= " (—1)5(“)ﬁA,-,U(,-)

ceS, =Sl
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Determi L Repr i of Pol ial

Branching Program for the Permanent

per A = Z HA"’U(")

oeS, =Sl
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Branching Program for the Permanent

per A = Z HA"’U(")

oeS, =Sl
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perA = Z HA,-J(,-)

ceG, i=1

a b
per | d e = aei + bfg + cdh + afth + bdi + ceg
g h

)

Theorem (G."12)

There exists a branching program of size 2" repre-
senting the permanent of dimension n.




per A = Z

Ueen

a b
per | d e
g h

)

= aei + bfg + cdh + afth + bdi + ceg

Theorem (G."12)

There exists a branching program of size 2" repre-

senting the permanent of dimension n.




Determi L Repr i of Polynomial

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant
of dimension N =2" — 1.
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Corollary

The permanent of dimension n is a projection of the determinant
of dimension N =2" — 1.

0 ad g 0O00O 0
010 0 i f O

a b c 0 01 0 0 c i
per|d e f|=det|]0 0 O 1 ¢ O f
g h i e 00 01 0O
h 00 0 010

b 00 0 001



Determinantal Repr ions of Polynomial

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s ~» Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’'08)

Weakly-skew circuit of size s with / inputs
~» Determinant of a matrix of dimension (s -+ /+ 1)

Bruno Grenet — PhD Defense — Nov. 29, 2012 2543




Determinantal Repr {ons of Polynomial

REIS

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s ~» Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with / inputs
~» Determinant of a matrix of dimension (s -+ /+ 1)

Theorem (G.-Kaltofen-Koiran-Portier'11)
If the underlying field has characteristic # 2,
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G.-Kaltofen-Koiran-Portier'11

Formula of ~» Determinant of a matrix of (s+1)

Weakly-skew circuit of with
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Theorem (G.-Kaltofen-Koiran-Portier'11)
If the underlying field has characteristic # 2,

> Formula of size s ~» Symmetric determinant of dimension 2s + 1

> Weakly-skew circuit of size s with / inputs
~> Symmetric determinant of dimension 2(s + /) + 1
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Corollary

n3 + o(n3) s.t. det M = det S.

Let M be an (n x n) matrix. Then there exists a symmetric matrix
2
3

S of dimension
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Same expressiveness:
(Weakly-)Skew circuits
Branching Programs
Determinants

Symmetric Determinants in characteristic # 2

Theorem (G.-Monteil-Thomassé’12)

In characteristic 2, some polynomials cannot be represented by a
symmetric determinant.

Main open question (Algebraic “P = NP?”)

What is the smallest N s.t. the permanent of dimension n is a
projection of the determinant of dimension N?
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X0 _
X’Y
+ XY
+ XY?
— X*YZ
- Y?Z+
X*Zz2
+ YZ?



X0 _
X’Y
+ XY
+ XY?
— X*YZ
- Y?Z+
X*Zz2
+ YZ?

= (X
Y
+
Z)(X* +
Y
)(Z

- X

)



X0 — X2Y £ XY £ XY?2 - XAYZ — Y?Z + X*Z%2 + Y72

=(X-Y+2)(X*+Y)(Z-X)

Factorization of a polynomial P
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Factorization of lacunary polynomials

Introduction

Factorization of a polynomial P
Find Fl,...,Ft st P=F x---x F;

P(X1,..., X, ZaJ XU ... X0

j=1
k

— size(P) = Zsize(aj) + log(ayj) + - - - + log(ay))
j=1

Bruno Grenet — PhD Defense — Nov. 29, 2012 2943

A



k
size(P) = Z size(a;) + log(a;)
j=1



k k
P(X) = Z aj X% size(P) = Zsize(aj) + log(e;)
j=1 j=1

Polynomial-time algorithm to find if aj € Z.



k k
P(X) = Z aj X% size(P) = Zsize(aj) + log(e;)
j=1 j=1

Polynomial-time algorithm to find if aj € Z.

Polynomial-time algorithm to find ifaj € K,
where K is an algebraic number field.
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Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.
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Factorization of lacunary polynomials

Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran'05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.

Proposition (Kaltofen-Koiran'06)

Polynomial-time algorithm to find low-degree factors of multi-
variate lacunary polynomials over algebraic number fields.
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Factorization of lacunary polynomials

Common ideas

Gap Theorem

14 k
P=> aXxuyh+ Y aX¥yP
N———
Po P1

with ag < ap < -+ < .
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Factorization of lacunary polynomials

Common ideas

Gap Theorem

14 k
P=> aXxuyh+ Y aX¥yP
N———
Po P1

with a3 < ap < -+ < ag. Suppose that

apy1 — oy > gap(P),

then F divides P iff F divides both Py and P;.
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Gap Theorem

P = ZaX"‘J YA 4 Z a X yPh
j=l+1

Po Py

with a1 < ap < --- < ag. Suppose that

oy — ag > gap(P),

then F divides P iff F divides both Py and P;.

{gap(P): function of the algebraic height of P.




Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]



Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

gap(P) independent of the height



Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

gap(P) independent of the height

More elementary algorithms



Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

gap(P) independent of the height

More elementary algorithms
Gap Theorem valid over any field of characteristic 0



Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

gap(P) independent of the height

More elementary algorithms
Gap Theorem valid over any field of characteristic 0

Extension to multilinear factors



Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate
lacunary polynomials over algebraic number fields.

Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran'05]

gap(P) independent of the height

More elementary algorithms
Gap Theorem valid over any field of characteristic 0

Extension to multilinear factors

Results in positive characteristics



Factorization of lacunary polynomials

Linear factors of bivariate polynomials
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k
PX,Y) =) aXuYPi
=i

Observation

(Y —uX —v) divides P(X,Y) <— P(X,uX+v)=0

Study of polynomials of the form ZanO‘f(uX + v)#i
J

K: any field of characteristic 0



Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]
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Bound on the valuation
Definition
val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

P = Zanaj(uX—i- v)ﬂj £0, with ag < -+ < ay
j=1
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Factorization of lacunary polynomials

Bound on the valuation
Definition
val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

P = Zanaj(uX—i- v)ﬂj £0, with ag < -+ < ay

=1

k41—
= val(P) < i (aj + ( 5 >)
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Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

P = Zanaj(uX—i- v)ﬂj £0, with ag < -+ < ay
j=1

—s val(P) < a1 + <’2‘)
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Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P € K[X]

Theorem
k

P = Zanaj(uX—i- v)ﬂj £0, with ag < -+ < ay
j=1

—s val(P) < a1 + <’2‘)
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Factorization of lacunary polynomials

The Wronskian

Definition
Let f1,..., fx € K[X]. Then
fi f
fi fy
W(f, ..., fx) =det .

f-l(k.—l) f-z(k.—l)
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Factorization of lacunary polynomials

The Wronskian

Definition
Let f1,..., fx € K[X]. Then
fi

fil
W(fi, ..., f) = det

k.—l k:—l k:—l
(D gt )

Proposition (Bocher, 1900)
W(fi,...,fx) #0 <= the f/'s are linearly independent.
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Factorization of lacunary polynomials

Wronskian & valuation

k
val(W(f, ..., fk)) > Zval(ﬁ) B <l2(>

j=1
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Factorization of lacunary polynomials

Wronskian & valuation

k
val(W(f, ..., fk)) > Zval(ﬁ) B (12(>

j=1

Lemma

Let f = X% (uX + v)?, linearly independent, s.t. o, B; > k — 1.

k
val(W(f, ..., f)) < > a
j=1
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Lemma

val(W(f, ..., ivalﬂ ()

Jj=1

Lemma

Let f;

= X%(uX + v)%, linearly independent, s.t. aj,3; > k — 1.

vaI( fl,.. fk) ZOCJ

Proof of the theorem.

k k k
>y 2 val(W( ) 2 valP) + o~ (5)
=1




Factorization of lacunary polynomials

Gap Theorem

Theorem

Let

)4
P = Za X% (uX + v)% + Z ai X% (uX 4 v)Pi
=1 j=t+1

- -/
-

Po

with u,v #£0, a3 < - < ay. If

« > max (o +
A1 1§j§e< ' (

then P = 0 iff both P, =0 and P; = 0.
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Factorization of lacunary polynomials

Gap Theorem

Theorem

Let

)4
P = Za X% (uX + v)% + Z ai X% (uX 4 v)Pi
=1 j=t+1

- -/ ~ 2
N VT

Po Py

with u,v £ 0, a3 < -+ < ag. If £ is the smallest index s.t.

/
Qi1 > 01 + <2>,

then P = 0 iff both P, =0 and P; = 0.
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Observation

(Y —uX —v) divides P(X,Y) <= P(X,uX+v)=0

PIT algorithm ~~ test a given linear factor

How to find linear factors?

Gap theorem
P(X,uX+v)=0
— Pi(X,uX+v)=---=P(X,uX+v)=0

Find linear factors of low-degree polynomials
~ [Kaltofen'82, ..., Lecerf'07]
K: algebraic number field
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Factorization of lacunary polynomials

Positive characteristic

Theorem

k—
et P — Zanaf(l + X)% # 0, where p > max;(a; + ;) and

Jj=1
aj € Fps. Then val(P) < max;(o;j + (k+21—1))_
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k
Let P = ZanO‘f(l + X)% # 0, where p > max;(a; + ;) and
j=1

aj € Fps. Then val(P) < max;(a; + (k+21*j))_

Theorem

Let P =3, ajX%4YPi € Fy[X, Y], where p > max;(aj + 5;).
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> doable in randomized polynomial time if uvw # 0 ;




on+1

1+ X)) +1+X)P" =X (X +1)

Theorem

k
Let P = ZanO‘f(l + X)% # 0, where p > max;(a; + ;) and
j=1

aj € Fps. Then val(P) < max;(a; + (k+21*j))_

Theorem

Let P =3, ajX%4YPi € Fy[X, Y], where p > max;(aj + 5;).
Finding factors of the form (uX + vY + w) is

> doable in randomized polynomial time if uvw # 0 ;

» NP-hard under randomized reductions otherwise.
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Finding multilinear factors of bivariate lacunary polynomials

More elementary proofs for [Kaltofen-Koiran'05]

K
There exists P = Z aiX%(uX 4 v)% st. val(P) = a; + (2k — 3)
j=1

Results in large positive characteristic

Main open problem

Extend to low-degree factors of multivariate polynomials
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