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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Representation of Univariate Polynomials

P(X ) = X 10 − 4X 8 + 8X 7 + 5X 3 + 1

Representations

◮ Dense:

[1, 0,−4, 8, 0, 0, 0, 5, 0, 0, 1]

◮ Sparse:

{

(10 : 1), (8 : −4), (7 : 8), (3 : 5), (0 : 1)
}
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Representation of Multivariate Polynomials

P(X ,Y ,Z ) = X 2Y 3Z 5 − 4X 3Y 3Z 2 + 8X 5Z 2 + 5XYZ + 1

Representations

◮ Dense:

[1, . . . ,−4, . . . , 8, . . . , 5, . . . , 1]

◮ Lacunary (supersparse):

{

(2, 3, 5 : 1), (3, 3, 2 : −4), (5, 0, 2 : 8), (1, 1, 1 : 5), (0 : 1)
}
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Representations
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◮ Sparse:
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = X 4 + 4X 3Y + 6X 2Y 2 + 4XY 3 + X 2Z + 2XYZ

+ Y 2Z + X 2 + Y 4 + 2XY + Y 2 + Z 2 + 2Z + 1
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Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)
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Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )2
(
(X + Y )2 + (Z + 1)

)
+ (Z + 1)2
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Y
t

Z
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Arithmetic Branching Programs

s

X

Y

X

X

Y
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Arithmetic Branching Programs

s

X

Y

X

X

Y
t

Z

X (Y + Z )
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Arithmetic Branching Programs

s

X

Y

X

X

Y
t

Z

(X + Y )(Y + Z )

4 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Y
t

Z
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Y
t

Z

2XY + (X + Y )(Y + Z )
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations
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Some questions

◮ Links between representations

• Circuits
• Branching programs
• Determinant of matrices
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Some questions

◮ Links between representations

• Circuits
• Branching programs
• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant
• Permanent

◮ Complexity of problems concerning polynomials

• Existence of roots dense, sparse
• Factorization lacunary
• Polynomial Identity Testing circuit
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Outline

1. Resolution of polynomial systems

2. Determinantal Representations of Polynomials

3. Factorization of lacunary polynomials
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1. Resolution of polynomial systems



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0

Input: System of polynomials f = (f1, f2, f3),
fj ∈ Z[X ,Y ,Z ], homogeneous

Question: Is there a point a = (a1, a2, a3) ∈ C3, nonzero, s.t.

f1(a) = f2(a) = f3(a) = 0?
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Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0

Input: System of polynomials f = (f1, f2, f3),
fj ∈ Z[X ,Y ,Z ], homogeneous

Question: Is there a point a = (a1, a2, a3) ∈ C3, nonzero, s.t.

f (a) = 0?
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?
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More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)
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◮ s = n + 1: Resultant: Algebraic tool to answer the question

9 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)

◮ s > n + 1: Hard problem (NP-hard)

◮ s = n + 1: Resultant: Algebraic tool to answer the question

 Trivial? Easy? Hard?
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ K̄n s.t. f (a) = 0?
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Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ K̄n s.t. f (a) = 0?

HOMPOLSYS(K)

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?
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Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ K̄n s.t. f (a) = 0?

HOMPOLSYS(K)

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?

RESULTANT(K)

Input: f1, . . . , fn+1 ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ K̄n+1 s.t. f (a) = 0?
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.
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Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP
2
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Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Corollary

Under GRH, HOMPOLSYS(Z) and RESULTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add
∑

i
XiYi − 1 to the system.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP
2
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Corollary

Under GRH, HOMPOLSYS(Z) and RESULTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add
∑

i
XiYi − 1 to the system.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP
2

Positive characteristics

If p is prime, (HOM)POLSYS(Fp) & RESULTANT(Fp) are in PSPACE.
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q
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Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.
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Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.
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RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

12 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

POLSYS HOMPOLSYS RESULTANT
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Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

POLSYS HOMPOLSYS RESULTANT

Z NP-hard NP-hard NP-hard
Fp NP-hard NP-hard Open

◮ What happens for RESULTANT(Fp), p > 0?
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Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:
# homogeneous polynomials ≥ # variables
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Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:
# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials
• Increase the number of variables

Theorem (G.-Koiran-Portier’10-12)

Let p be a prime number.
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Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:
# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials
• Increase the number of variables

Theorem (G.-Koiran-Portier’10-12)

Let p be a prime number.

◮ RESULTANT(Fp) is NP-hard for sparse polynomials.

◮ RESULTANT(Fq) is NP-hard for dense polynomials for some q = ps .
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Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]
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Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
... (unchanged)

fn(X )

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

fs(X ) − Y 2
s−n−1

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

fs(X ) − Y 2
s−n−1

















14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

fs(X ) − Y 2
s−n−1

















◮ f (a) = 0 =⇒ g(a, 0) = 0

14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

fs(X ) − Y 2
s−n−1

















◮ f (a) = 0 =⇒ g(a, 0) = 0

◮ Find λ such that (g(a, b) = 0 =⇒ b = 0)

14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

















f1(X )
...

fn(X )
fn+1(X ) + λY 2

1

fn+2(X )− Y 2
1 + λY 2

2
...

fs−1(X ) − Y 2
s−n−2 + λY 2

s−n−1

fs(X ) − Y 2
s−n−1

















◮ f (a) = 0 =⇒ g(a, 0) = 0

◮ Find λ such that (g(a, b) = 0 =⇒ b = 0 =⇒ f (a) = 0)

14 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems of
polynomials over finite fields

15 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems of
polynomials over finite fields

◮ Result on the evaluation of the resultant polynomial

15 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems of
polynomials over finite fields

◮ Result on the evaluation of the resultant polynomial

Main open problem

◮ Improve the PSPACE upper bound in positive characteristics. . .

◮ . . . or the NP lower bound.
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Determinant

Definition

Sn = permutations of {1, . . . , n}

detA =
∑

σ∈Sn

(−1)ǫ(σ)
n∏

i=1

Ai ,σ(i)
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(−1)ǫ(σ)
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i=1
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det





a b c

d e f

g h i



 = aei + bfg + cdh − afh − bdi − ceg
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◮ Complexity of the determinant
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◮ Complexity of the determinant

◮ Determinant vs. Permanent: Algebraic “P = NP?”

◮ Links between circuits, ABPs and the determinant
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Circuits

YX Z

YX YX Z

X X Y X Y ZYX

2X (X + Y ) + (X + Y )(Y + Z )

YX Z

Arithmetic circuit

Size 6

Inputs 3
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YX Z
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Results

Proposition (Valiant’79)

Formula of size s  Determinant of a matrix of dimension (s+2)
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Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s  Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

 Determinant of a matrix of dimension (s + i + 1)
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From Formulas to Branching Programs

ϕ1 ϕ2

s

B1

B2

t=t1

t2
α β

ϕ1

s

B1

t

ϕ2

B2

α β
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◮ Cycle covers ⇐⇒ Permutations
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From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

M =















0 2 0 0 Y X 0 0
0 −1 X 0 0 0 0 0
0 0 −1 Y 0 0 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1
−1 0 0 0 0 0 0 0















detM =
∑

σ∈Sn

(−1)ǫ(σ)
n∏

i=1

Mi ,σ(i)

◮ Cycle covers ⇐⇒ Permutations

◮ Up to signs, det(M) = sum of the weights of the cycle covers of G
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Branching Program for the Permanent

detA =
∑

σ∈Sn

(−1)ǫ(σ)
n∏

i=1

Ai ,σ(i)

det





a b c

d e f

g h i



 = aei + bfg + cdh− afh− bdi − ceg
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Branching Program for the Permanent

perA =
∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

per





a b c

d e f

g h i



 = aei + bfg + cdh+ afh+ bdi + ceg

Theorem (G.’12)

There exists a branching program of size 2n repre-
senting the permanent of dimension n.
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Branching Program for the Permanent

perA =
∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

per





a b c

d e f

g h i



 = aei + bfg + cdh+ afh+ bdi + ceg

Theorem (G.’12)

There exists a branching program of size 2n repre-
senting the permanent of dimension n.

X11

X12

X13

X21

X23

X31

X32

X33

X22

s

t
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Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant

of dimension N = 2n − 1.
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Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant

of dimension N = 2n − 1.

per





a b c

d e f

g h i



 = det













0 a d g 0 0 0
0 1 0 0 i f 0
0 0 1 0 0 c i

0 0 0 1 c 0 f

e 0 0 0 1 0 0
h 0 0 0 0 1 0
b 0 0 0 0 0 1












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Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s  Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

 Determinant of a matrix of dimension (s + i + 1)
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Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s  Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

 Determinant of a matrix of dimension (s + i + 1)

Theorem (G.-Kaltofen-Koiran-Portier’11)

If the underlying field has characteristic 6= 2,

◮ Formula of size s  Symmetric determinant of dimension 2s + 1

◮ Weakly-skew circuit of size s with i inputs

 Symmetric determinant of dimension 2(s + i) + 1
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From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t
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Determinants
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Y

Y
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X

2

s
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From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

1/2

S =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 1
2

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 X 0 0 0 0 0 0 0 0 0 0 0
0 0 X 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 Y 0 0 0 0 0 0 0 0 0
0 0 0 0 Y 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
X 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 0
0 0 0 0 0 0 0 0 0 0 Z 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 1 0 0 0 Y 0 1 0 1
1
2

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

1/2

S =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 1
2

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 X 0 0 0 0 0 0 0 0 0 0 0
0 0 X 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 Y 0 0 0 0 0 0 0 0 0
0 0 0 0 Y 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
X 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 0
0 0 0 0 0 0 0 0 0 0 Z 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 1 0 0 0 Y 0 1 0 1
1
2

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Corollary

Let M be an (n×n) matrix. Then there exists a symmetric matrix

S of dimension 2
3n

3 + o(n3) s.t. detM = det S .
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Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits
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Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

◮ Symmetric Determinants in characteristic 6= 2

Theorem (G.-Monteil-Thomassé’12)

In characteristic 2, some polynomials cannot be represented by a
symmetric determinant.
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Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

◮ Symmetric Determinants in characteristic 6= 2

Theorem (G.-Monteil-Thomassé’12)

In characteristic 2, some polynomials cannot be represented by a
symmetric determinant.

Main open question (Algebraic “P = NP?”)

What is the smallest N s.t. the permanent of dimension n is a
projection of the determinant of dimension N?
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Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2
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Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2

= (X − Y + Z )(X 4 + Y )(Z − X )

Factorization of a polynomial P

Find F1, . . . ,Ft s.t. P = F1 × · · · × Ft

P(X1, . . . ,Xn) =
k∑

j=1

ajX
α1j

1 · · ·X
αnj
n

=⇒ size(P) =
k∑

j=1

size(aj) + log(α1j) + · · ·+ log(αnj)
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Factorization of sparse univariate polynomials

P(X ) =
k∑

j=1

ajX
αj size(P) =

k∑

j=1

size(aj) + log(αj)
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P(X ) =
k∑

j=1

ajX
αj size(P) =

k∑

j=1

size(aj) + log(αj)

Proposition (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if aj ∈ Z.
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Factorization of sparse univariate polynomials

P(X ) =
k∑

j=1

ajX
αj size(P) =

k∑

j=1

size(aj) + log(αj)

Proposition (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if aj ∈ Z.

Proposition (Lenstra’99)

Polynomial-time algorithm to find factors of degree ≤ d if aj ∈ K,
where K is an algebraic number field.
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Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.
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Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-
cunary polynomials over Q.

Proposition (Kaltofen-Koiran’06)

Polynomial-time algorithm to find low-degree factors of multi-

variate lacunary polynomials over algebraic number fields.
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Common ideas

Gap Theorem

P =
ℓ∑

j=1

ajX
αjY βj

︸ ︷︷ ︸

P0

+
k∑

j=ℓ+1

ajX
αjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk .
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with α1 ≤ α2 ≤ · · · ≤ αk . Suppose that

αℓ+1 − αℓ > gap(P),

then F divides P iff F divides both P0 and P1.
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Common ideas

Gap Theorem

P =
ℓ∑

j=1

ajX
αjY βj

︸ ︷︷ ︸

P0

+
k∑

j=ℓ+1

ajX
αjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk . Suppose that

αℓ+1 − αℓ > gap(P),

then F divides P iff F divides both P0 and P1.

gap(P): function of the algebraic height of P .
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Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran’05]
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[Kaltofen-Koiran’05]
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 More elementary algorithms
 Gap Theorem valid over any field of characteristic 0
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Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

 More elementary algorithms
 Gap Theorem valid over any field of characteristic 0
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33 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials
[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

 More elementary algorithms
 Gap Theorem valid over any field of characteristic 0

◮ Extension to multilinear factors

◮ Results in positive characteristics
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Linear factors of bivariate polynomials

P(X ,Y ) =
k∑

j=1

ajX
αjY βj
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◮ Study of polynomials of the form
∑

j

ajX
αj (uX + v)βj
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Linear factors of bivariate polynomials

P(X ,Y ) =
k∑

j=1

ajX
αjY βj

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ Study of polynomials of the form
∑

j

ajX
αj (uX + v)βj

◮ K: any field of characteristic 0
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Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]
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1≤j≤k

(
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(
k + 1− j
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k∑

j=1

ajX
αj (uX + v)βj 6≡ 0, with α1 ≤ · · · ≤ αk

=⇒ val(P) ≤ α1 +

(
k

2

)

◮ Xαj (uX + v)βj linearly independent

◮ Hajós’ Lemma: if α1 = · · · = αk , val(P) ≤ α1 + (k − 1)
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The Wronskian

Definition

Let f1, . . . , fk ∈ K[X ]. Then

W(f1, . . . , fk) = det








f1 f2 . . . fk
f ′1 f ′2 . . . f ′k
...

...
...

f
(k−1)
1 f

(k−1)
2 . . . f

(k−1)
k







.
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(k−1)
1 f

(k−1)
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




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.

Proposition (Bôcher, 1900)

W(f1, . . . , fk) 6= 0 ⇐⇒ the fj ’s are linearly independent.
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k
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Lemma

Let fj = Xαj (uX + v)βj , linearly independent, s.t. αj , βj ≥ k − 1.

val(W(f1, . . . , fk)) ≤
k∑

j=1

αj
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)

Lemma

Let fj = Xαj (uX + v)βj , linearly independent, s.t. αj , βj ≥ k − 1.

val(W(f1, . . . , fk)) ≤
k∑

j=1

αj

Proof of the theorem.
k∑

j=1

αj ≥ val(W(f1, . . . , fk)) ≥ val(P) +

k∑

j=2

αj −

(
k

2

)
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Gap Theorem

Theorem

Let

P =

ℓ∑

j=1

ajX
αj (uX + v)βj

︸ ︷︷ ︸

P0

+

k∑

j=ℓ+1

ajX
αj (uX + v)βj

︸ ︷︷ ︸

P1

with u, v 6= 0, α1 ≤ · · · ≤ αk . If

αℓ+1 > max
1≤j≤ℓ

(

αj +

(
ℓ+ 1− j

2

))

,

then P ≡ 0 iff both P0 ≡ 0 and P1 ≡ 0.
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ajX
αj (uX + v)βj

︸ ︷︷ ︸

P1

with u, v 6= 0, α1 ≤ · · · ≤ αk . If ℓ is the smallest index s.t.

αℓ+1 > α1 +

(
ℓ

2

)

,

then P ≡ 0 iff both P0 ≡ 0 and P1 ≡ 0.
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Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0
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Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm  test a given linear factor

◮ How to find linear factors?

Gap theorem

P(X , uX + v) ≡ 0

⇐⇒ P1(X , uX + v) ≡ · · · ≡ Ps(X , uX + v) ≡ 0

◮ Find linear factors of low-degree polynomials
 [Kaltofen’82, . . . , Lecerf’07]

◮ K: algebraic number field

39 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2
n

+ (1 + X )2
n+1

= X 2n(X + 1)
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Positive characteristic

(1 + X )2
n

+ (1 + X )2
n+1

= X 2n(X + 1)

Theorem

Let P =

k∑

j=1

ajX
αj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +
(
k+1−j

2

)
).
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αj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +
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k+1−j

2

)
).

Theorem

Let P =
∑

j ajX
αjY βj ∈ Fps [X ,Y ], where p > maxj(αj + βj).

Finding factors of the form (uX + vY + w) is

◮ doable in randomized polynomial time if uvw 6= 0 ;

40 / 43
Bruno Grenet  PhD Defense – Nov. 29, 2012

N



Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2
n

+ (1 + X )2
n+1

= X 2n(X + 1)

Theorem

Let P =
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αj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +
(
k+1−j

2

)
).

Theorem

Let P =
∑

j ajX
αjY βj ∈ Fps [X ,Y ], where p > maxj(αj + βj).

Finding factors of the form (uX + vY + w) is

◮ doable in randomized polynomial time if uvw 6= 0 ;

◮ NP-hard under randomized reductions otherwise.
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Conclusion

Finding multilinear factors of bivariate lacunary polynomials

◮ More elementary proofs for [Kaltofen-Koiran’05]

◮ There exists P =

k∑

j=1

ajX
αj (uX + v)βj s.t. val(P) = α1 + (2k − 3)

◮ Results in large positive characteristic

Main open problem

Extend to low-degree factors of multivariate polynomials
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