Fast polynomial computations with space constraints

Calculs polynomiaux rapides avec contraintes de mémoire

Bruno Grenet

Habilitation à diriger les recherches 13 novembre 2025

Research area: Algebraic computing

Mathematical computing

- Numerical computing
- ► Algebraic computing

Objects in algebraic computing

- Integers, rational numbers, modular rings
- Polynomials, power series, matrices
- Polynomial systems, differential equations, ...

approximation of real & complex numbers exactly represented algebraic objects

$$0, 5, -2, \dots$$

$$\frac{1}{2}$$
, $\frac{2}{5}$, $-\frac{7}{3}$, ...

$$x^2 + 2x - 1$$

$$\begin{pmatrix} 1 & 6 & 2 \\ -3 & 1 & 4 \\ 12 & 0 & 7 \end{pmatrix}$$

Research area: Algebraic computing

Mathematical computing

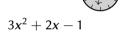
- Numerical computing
- Algebraic computing

approximation of real & complex numbers exactly represented algebraic objects

- Integers, rational numbers, modular rings
- Polynomials, power series, matrices
- Polynomial systems, differential equations, ...

$$0, 5, -2, \dots$$

$$0, 5, -2, \dots$$
 $\frac{1}{2}, \frac{2}{5}, -\frac{7}{3}, \dots$



$$\left(\begin{array}{rrr}
1 & 6 & 2 \\
-3 & 1 & 4 \\
12 & 0 & 7
\end{array}\right)$$

Investigations

- ► Algorithms & complexity
- ► Software development
- **Mathematics**

Some applications

- Security of data and communications error correction, cryptography
- Combinatorics, experimental mathematics
- Control theory, robotics
- ► Modelling (geometry, biology, ...)

Research area: Algebraic computing

Mathematical computing

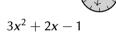
- Numerical computing
- Algebraic computing

approximation of real & complex numbers exactly represented algebraic objects

- Integers, rational numbers, modular rings
- Polynomials, power series, matrices
- Polynomial systems, differential equations, ...

$$0, 5, -2, \dots$$

$$0, 5, -2, \ldots$$
 $\frac{1}{2}, \frac{2}{5}, -\frac{7}{3}, \ldots$



$$\left(\begin{array}{rrr}
1 & 6 & 2 \\
-3 & 1 & 4 \\
12 & 0 & 7
\end{array}\right)$$

Investigations

- ► Algorithms & complexity
- Software development
- **Mathematics**

Some applications

Security of data and communications

error correction, cryptography

- Combinatorics, experimental mathematics
- Control theory, robotics
- Modelling (geometry, biology, ...)

Polynomial computations and space constraints

$$(x^3 + 7x^2 + 5x + 3) \times (2x^3 + 9x^2 + x + 4) = 2x^6 + 3x^5 + 4x^4 + 2x^3 + 3x + 2 \in \mathbb{Z}/10\mathbb{Z}[x]$$

Polynomial computations and space constraints

$$(x^3 + 7x^2 + 5x + 3) \times (2x^3 + 9x^2 + x + 4) = 2x^6 + 3x^5 + 4x^4 + 2x^3 + 3x + 2 \in \mathbb{Z}/10\mathbb{Z}[x]$$

Space complexity

- Space required to store intermediate results, in addition to inputs and output
- Large space may hinder the efficiency

Algorithms with small space complexity

Polynomial computations and space constraints

$$(x^3 + 7x^2 + 5x + 3) \times (2x^3 + 9x^2 + x + 4) = 2x^6 + 3x^5 + 4x^4 + 2x^3 + 3x + 2 \in \mathbb{Z}/10\mathbb{Z}[x]$$

Space complexity

- Space required to store intermediate results, in addition to inputs and output
- Large space may hinder the efficiency

Algorithms with small space complexity

Sparse polynomials

$$5x^{6} + 0x^{5} + 0x^{4} + 2x^{3} + 0x^{2} - x + 7$$

$$\downarrow$$

$$\{(6,5), (3,2), (1,-1), (0,7)\}$$

Algorithms for sparse polynomials

$$(x^{3} + 7x^{2} + 5x + 3) \times (2x^{3} + 9x^{2} + x + 4) \in \mathbb{Z}/10\mathbb{Z}[x]$$

$$\begin{array}{c} 1 & 7 & 5 & 3 \\ \times & 2 & 9 & 1 & 4 \\ \hline & 4 & 8 & 0 & 2 \\ & & + & 1 & 7 & 5 & 3 \\ & & + & 9 & 3 & 5 & 7 \\ & & + & 2 & 4 & 0 & 6 \\ \hline = & 2 & 3 & 4 & 2 & 0 & 3 & 2 \\ \end{array}$$

Complexity

► 16 **products** $\rightarrow n^2$ products

$$(x^3 + 7x^2 + 5x + 3) \times (2x^3 + 9x^2 + x + 4) \in \mathbb{Z}/10\mathbb{Z}[x]$$

1 7 5 3 × 2 9 1 4 4 8 0 2 + 1 7 5 3 + 9 3 5 7 + 2 4 0 6

Complexity

► 16 products $\rightarrow n^2$ products

- **Constant space**
 - Compute each product in the output
 - Iteratively accumulate the results

Constant space

- Compute each product in the output
- Iteratively accumulate the results
- Sparse polynomials
 - Compute only relevant products
 - t nonzero terms $\rightarrow t^2$ products

Complexity

► 16 products $\rightarrow n^2$ products

$$(x^3 + 7x^2 + 5x + 3) \times (2x^3 + 9x^2 + x + 4) \in \mathbb{Z}/10\mathbb{Z}[x]$$

Complexity

► 16 products $\rightarrow n^2$ products

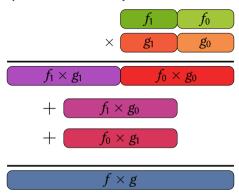
d Constant space

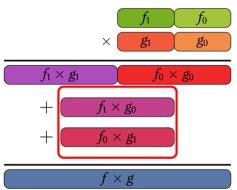
- Compute each product in the output
- ► Iteratively accumulate the results

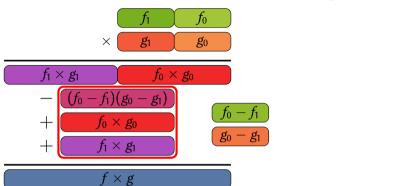
Sparse polynomials

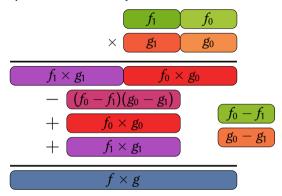
- Compute only relevant products
- ightharpoonup t nonzero terms $ightharpoonup t^2$ products

The classical algorithm handles space constraints easily





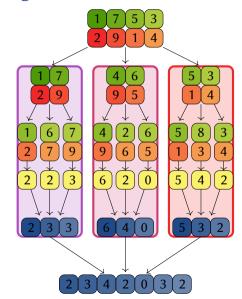




Complexity

¾ 9 products

$$\rightarrow n^{\log_2 3} \simeq n^{1.585}$$
 products



Complexity

▶ \mathcal{M} 9 products $\rightarrow n^{\log_2 3} \simeq n^{1.585} \text{ products}$

- Linear space
 - ► Store $f_0 f_1$, $g_0 g_1$
 - Store $f_0 \times g_0$, $f_1 \times g_1$
- Sparse polynomials
 - Possibly *dense* intermediate results
 - ▶ t nonzero terms $\rightarrow \gg t^2$ products

Complexity

¾9 products

$$\rightarrow$$
 $n^{\log_2 3} \simeq n^{1.585}$ products

Complexity

¾9 products

$$\rightarrow$$
 $n^{\log_2 3} \simeq n^{1.585}$ products

• Linear space

- ► Store $f_0 f_1$, $g_0 g_1$
- Store $f_0 \times g_0$, $f_1 \times g_1$

Sparse polynomials

- Possibly *dense* intermediate results
- ▶ t nonzero terms $\rightarrow \gg t^2$ products

Karatsuba's algorithm *does not* handle space constraints easily

Can we combine *fast algorithms* with *space constraints* in polynomial computations?

Part I. Time- and space-efficient computations

- Fast algorithms with (close to) constant space
 - Polynomial: multiplication, Euclidean division, evaluation, interpolation
 - Power series: multiplication, inversion, division
 - Matrix: multiplication, system solving, ...
- What is space complexity of functions?

Part II. Sparse polynomial computations

- Quasi-linear time sparse interpolation
 - Multiplication and exact division
 - Verification
- Polynomial-time low-degree factorization and (partial) divisibility test

Can we combine *fast algorithms* with *space constraints* in polynomial computations?

Part I. Time- and space-efficient computations

- Fast algorithms with (close to) constant space
 - Polynomial: multiplication, Euclidean division, evaluation, interpolation
 - Power series: multiplication, inversion, division
 - Matrix: multiplication, system solving, ...
- What is space complexity of functions?

Part II. Sparse polynomial computations

- Quasi-linear time sparse interpolation
 - Multiplication and exact division
 - Verification
- Polynomial-time low-degree factorization and (partial) divisibility test

I. Time- and space-efficient computations

What is space complexity?

Algebraic RAM

- Algebraic registers containing one ring element each
- ightharpoonup Registers for pointers of size $O(\log n)$

for some ring R

n = # input registers

Space complexity

- Number of registers used, not counting the input and output registers
- Distinction between algebraic registers and pointers

Relation with standard complexity classes

- ▶ Depends on the *relative* size of n and #R
- Assuming $\log(n) \simeq \log(\#R)$:
 - lacktriangle constant number of registers of both kinds \simeq complexity class FL
 - \triangleright O(1) algebraic registers, $O(\log n)$ pointers \simeq complexity class FSPACE($\log^2 n$)

Permission models

ro/wo: read-only inputs & write-only output

- declassical model in complexity theory
- \P further from practice, multiplication requires $\Omega(n^2)$ time × space [Abrahamson (1985)]

ro/rw: read-only inputs & read-write output

- decloser to practice, allows parallel access to the inputs
- 👎 somewhat restrictive in a sequential model

rw/rw: read-write inputs & read-write output, inputs restored at the end

- id still consistent with practice, allows recursive calls / use as subroutines
- 👎 not suitable for parallel programming

Goal: time- and space-efficient algorithms in the ro/rw and rw/rw models

- Multiplication
- Euclidean division

Results for multiplication algorithms

	algorithm	model	time	alg. sp.	# pointers	
	Classical	ro/wo	$O(n^2)$	O(1)	O(1)	folklore
ſ	Karatsuba	ro/wo	$O(n^{\log 3})$	O(n)	$O(\log n)$	Karatsuba (1962)
ı		ro/rw		n	$O(\log n)$	Thomé (2002)
		ro/rw		O(1)	$O(\log n)$	Roche (2009)
	Toom-Cook	ro/wo	$O(n^{\log_3 5})$	O(n)	$O(\log n)$	Toom (1963)
I	FFT-based (given $\omega^{2n}=1$)	ro/wo	$O(n \log n)$	O(n)	O(1)	Cooley, Tukey (1965)
ı		ro/rw		O(1)	O(1)	Roche (2009) (if $n = 2^k$)
l		ro/rw		O(1)	O(1)	Harvey, Roche (2010)

Results for multiplication algorithms

	algorithm	model	time	alg. sp.	# pointers	
	Classical	ro/wo	$O(n^2)$	O(1)	O(1)	folklore
	Karatsuba	ro/wo	$O(n^{\log 3})$	O(n)	$O(\log n)$	Karatsuba (1962)
		ro/rw		n	$O(\log n)$	Thomé (2002)
		ro/rw		O(1)	$O(\log n)$	Roche (2009)
	Toom-Cook	ro/wo	$O(n^{\log_3 5})$	O(n)	$O(\log n)$	Toom (1963)
	FFT-based (given $\omega^{2n}=1$)	ro/wo	$O(n \log n)$	O(n)	O(1)	Cooley, Tukey (1965)
		ro/rw		O(1)	O(1)	Roche (2009) (if $n = 2^k$)
		ro/rw		O(1)	O(1)	Harvey, Roche (2010)

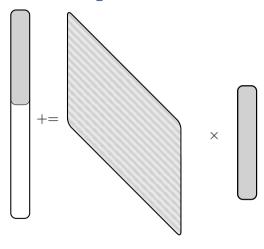
Our result [Giorgi, G., Roche (2019)]

Any linear-space multiplication algorithm can be made constant-space with the same asymptotic time complexity in the ro/rw model

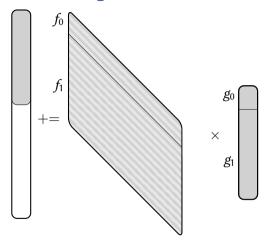
$h = f \times g$ as a matrix-vector product

$$\begin{bmatrix}
h_0 \\
h_1 \\
h_2 \\
h_3 \\
h_4 \\
h_5 \\
h_6 \\
h_7 \\
h_8 \\
h_9 \\
h_{10}
\end{bmatrix} =
\begin{bmatrix}
f_0 \\
f_1 \\
\\
f_1 \\
f_1 \\
f_1 \\
f_2 \\
f_1 \\
f_0 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_5 \\
g_6 \\
g_1 \\
g_2 \\
g_3 \\
g_4 \\
g_5 \\
g_5 \\
g_6 \\
g_7 \\
g_8 \\$$

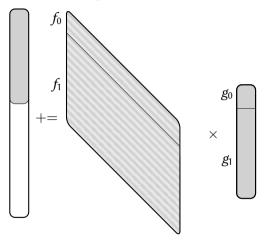
$$h = f \times g$$



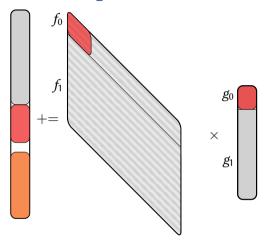
$$h += f \times g$$



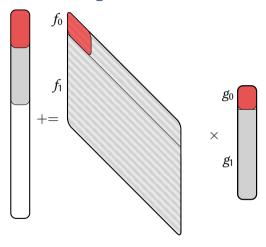
$$h += (f_0 + X^k f_1) \times (g_0 + X^k g_1)$$



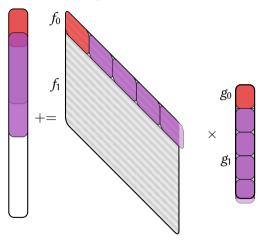
$$h += f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$



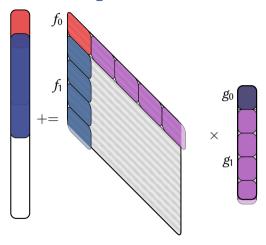
$$h += f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$



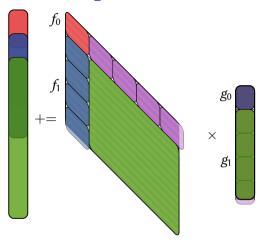
$$h += f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$



$$h += f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$



$$h + = f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$



$$h + = f_0 g_0 + X^k (f_0 g_1 + f_1 g_0) + X^{2k} f_1 g_1$$

Cumulative and in-place operations - rw/rw model

Three kinds of operations

```
Standard: h := f \times g: (f, g, h) \mapsto (f, g, f \times g)
Cumulative: h += f \times g: (f, g, h) \mapsto (f, g, h + f \times g)
In-place: f *= g: (f, g) \mapsto (f \times g, g)
```

Our results

[Dumas, G. (2024 & 2026)]

problem	model	time	alg. sp.	# pointers
$h += f \times g$ (general)	rw/rw	O(M(n))	O(1)	$O(\log n)$
$h += f \times g$ (with FFT)	rw/rw	O(M(n))	O(1)	O(1)
$h += f \times g \mod x^n$	rw/rw	O(M(n))	O(1)	O(1)
$f *= g \mod x^n$	rw/rw	$O(M(n) \log n)$	O(1)	$O(\log n)$
$f/=g \mod x^n$	rw/rw	$O(M(n) \log n)$	O(1)	$O(\log n)$

Results for Euclidean division

	algorithm	model	output	time	alg. sp.	
	Classical algorithm	ro/wo	Quotient + Remainder	$O(n^2)$	O(1)	
			Quotient only			Monagan (1993)
			Remainder only			Monagan (1993)
	Fast algorithm	ro/wo	Quotient + Remainder		O(n)	(1070)
			Quotient only	O(M(n))		Strassen (1973),
			Remainder only			

Results for Euclidean division

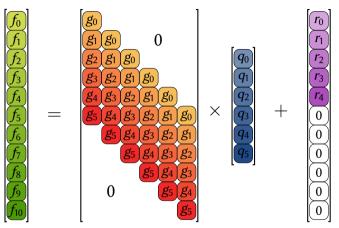
	algorithm	model	output	time	alg. sp.	
	Classical algorithm	ro/wo	Quotient + Remainder		O(1)	
			Quotient only	$O(n^2)$		Monagan (1993)
ı			Remainder only			Monagan (1993)
	Fast algorithm	ro/wo	Quotient + Remainder		O(n)	(1070)
			Quotient only	O(M(n))		Strassen (1973),
			Remainder only			

Our results

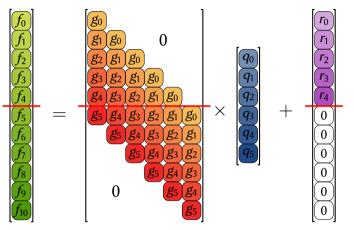
		Quotient + Remainder $O(M(n))$		O(1)	
Fast and	ro/rw	Quotient only	$O(M(n) \log n)$	O(1)	l
low space		Remainder only	O(M(n))	n + O(1)	
	rw/rw	Remainder only	$O(M(n) \log n)$	O(1)	J

Giorgi, G., Roche (2020)

Dumas G. (2024)



$$f = g \times q + r$$



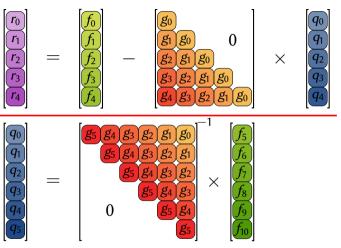
$$f = g \times q + r$$

$$\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
f_3 \\
f_4
\end{bmatrix} = \begin{bmatrix}
g_0 \\
g_1 g_0 \\
g_2 g_1 g_0 \\
g_3 g_2 g_1 g_0
\\
g_3 g_2 g_1 g_0
\\
g_4 g_3 g_2 g_1 g_0
\end{bmatrix} \times \begin{bmatrix}
q_0 \\
q_1 \\
\vdots \\
q_4 \\
q_5
\end{bmatrix} + \begin{bmatrix}
r_0 \\
r_1 \\
r_2 \\
r_3 \\
r_4
\end{bmatrix}$$

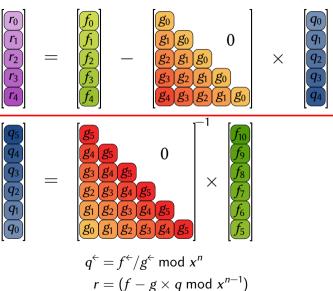
$$\begin{bmatrix}
f_5 \\
f_6 \\
f_7 \\
f_8 \\
f_9 \\
f_{10}
\end{bmatrix} = \begin{bmatrix}
g_5 g_4 g_3 g_2 g_1 g_0 \\
g_5 g_4 g_3 g_2 g_1
\\
g_5 g_4 g_3 g_2 g_1
\\
g_5 g_4 g_3 g_2
\end{bmatrix} \times \begin{bmatrix}
q_0 \\
q_1 \\
q_2 \\
q_3 \\
q_4 \\
q_5
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

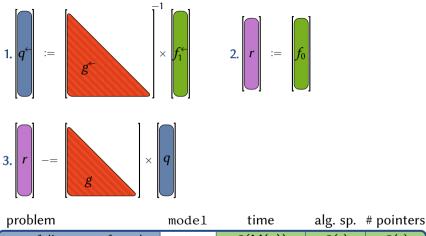
$$f = g \times q + r$$

$$f = g \times q + r$$

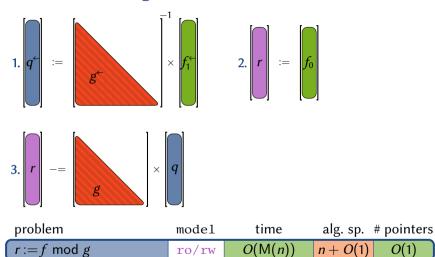


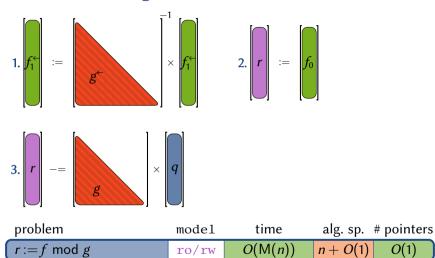
$$f = g \times q + r$$

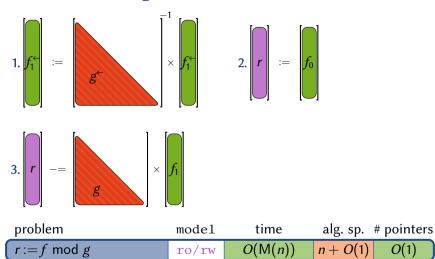


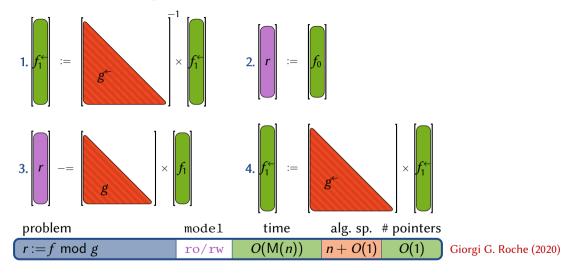


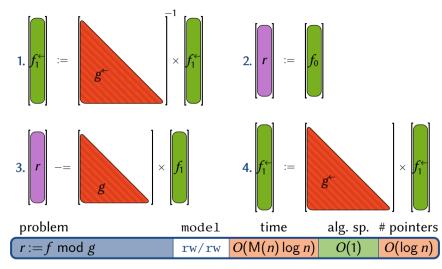
 $q := f \operatorname{div} g, r := f \operatorname{mod} g$ O(M(n))ro/rw











Dumas G. (2024 & 2026)

Summary

Time- and space-efficient polynomial computations

- Many fast algorithms can be made
 - (almost) constant-space
 - with (almost) the same asymptotic time complexity
- Requires to move away from the classical ro/wo model
- Promising results in practice

Automatic derivations

[Dumas G. (2024 & 2026)]

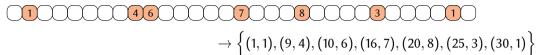
- Make bilinear algorithms constant-space automatically in the rw/rw model
- ► Application: constant-space Strassen's alg., fast in-place linear algebra

Open problems

- Improved complexities, $rw/rw \rightarrow ro/rw$, other operations such as GCD, ...
- Right models for time-space complexity of functions?
- Can you replace f by $f \times g$ without extra space? [Roche'09]

II. Sparse polynomial computations

Sparse representation of polynomials



Sparse representation of polynomials

$$\rightarrow \left\{ (1,1), (9,4), (10,6), (16,7), (20,8), (25,3), (30,1) \right\}$$

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \in \mathsf{R}[x] \qquad o \qquad \Big\{ ig(c_i, e_i ig) : 0 \leq i < t, c_i
eq 0 \Big\}$$

Notations

R: ring of coefficients f° : degree of f $\max_{i} e_{i}$ $f_{\#}$: sparsity of f t f_{∞} : height of f if $R = \mathbb{Z}$ $\max_{i} |c_{i}|$ q if $R = \mathbb{F}_{q}$ S_{f} : support of f $\{e_{i}: 0 \leq i < t\}$ size(f): $f_{\#}(\log f^{\circ} + \log f_{\infty})$

Sparse polynomial multiplication

Problem

algorithm

ightharpoonup Compute $h = f \times g$, with

$$t = \max(f_{\#}, g_{\#}), d = \max(f^{\circ}, g^{\circ}), m = \max(f_{\infty}, g_{\infty})$$

$$ightharpoonup s = \#(S_f + S_g)$$

structural sparsity: $h_{\#} \leq s \leq f_{\#}g_{\#}$

algorithin	ring	tille	
Classical	any	$O(t^2 \log t)$	folklore
Quadratic	any	$O(t^2)$	Johnson (1974)
Output-sensitive	any	$\tilde{O}(s \log m + t \log d)$	Arnold Roche (2015)

Sparse polynomial multiplication

Problem

- | -- - -: 4 |- ---

- ightharpoonup Compute $h = f \times g$, with
 - $t = \max(f_{\#}, g_{\#}), d = \max(f^{\circ}, g^{\circ}), m = \max(f_{\infty}, g_{\infty})$
 - $s = \#(S_f + S_g)$

structural sparsity: $h_{\#} \leq s \leq f_{\#}g_{\#}$

algorithm	ring	time	
Classical	any	$O(t^2 \log t)$	folk
Quadratic	any	$O(t^2)$	Joh
Output-sensitive	any	$\tilde{O}(s \log m + t \log d)$	Arn

klore nnson (1974)

nold Roche (2015)

Our result

[Giorgi, G., Perret du Cray (2020)]

 $\tilde{O}(\tau \log m + \tau \log d)$ where $\tau = \max(f_{\#}, g_{\#}, h_{\#})$ Quasi-linear

The main tool: Sparse interpolation

General definition

Inputs: A way to *evaluate* a sparse polynomial $f \in R[x]$

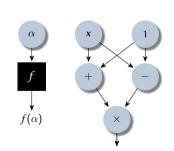
Bounds $\delta \geq f^{\circ}$, $\tau \geq f_{\#}$, and $\gamma \geq f_{\infty}$

Output: The sparse representation of $f = \sum_{i=0}^{t-1} c_i x^{e_i}$

(optional)

Many variants

- ▶ Ring of coefficients: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_q , $\mathbb{Z}/n\mathbb{Z}$
- Number of variables: univariate or multivariate
- Input representation:
 - black box
 - straight-line program (SLP) / arithmetic circuit



The main tool: Sparse interpolation

General definition

Inputs: A way to *evaluate* a sparse polynomial $f \in R[x]$

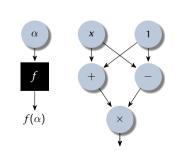
Bounds $\delta \geq f^{\circ}$, $\tau \geq f_{\#}$, and $\gamma \geq f_{\infty}$

Output: The sparse representation of $f = \sum_{i=0}^{t-1} c_i x^{e_i}$

(optional)

Many variants

- ightharpoonup Ring of coefficients: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_q , $\mathbb{Z}/n\mathbb{Z}$
- Number of variables: univariate or multivariate
- Input representation:
 - black box
 - ► straight-line program (SLP) / arithmetic circuit



Black-box sparse interpolation

$$f = \sum_{i=0}^{t-1} c_i x^{e_i} \to f(\omega^j) = \sum_{i=0}^{t-1} c_i (\omega^{e_i})^j$$

Lemma [Blahut (1979)]

If ω has order $> f^{\circ}$, the minimal polynomial of $(f(\omega^{j}))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Algorithm sketch

- 1. Compute $(f(\omega^j))_{0 \le j < 2\tau}$ using f
- 2. Compute its minimal polynomial Λ , and its roots
- **3**. Get the exponents e_i from the roots ω^{e_i} of Λ
- 4. Get the coefficients c_i by solving a transposed Vandermonde system

Black-box sparse interpolation

$$f=\sum_{i=0}^{t-1}c_ix^{e_i}
ightarrow f(\omega^j)=\sum_{i=0}^{t-1}c_i(\omega^{e_i})^j$$

Lemma [Blahut (1979)]

If ω has order $> f^{\circ}$, the minimal polynomial of $(f(\omega^{j}))_{j\geq 0}$ is $\Lambda(x) = \prod_{i=0}^{t-1} (x - \omega^{e_i})$.

Algorithm sketch

- 1. Compute $(f(\omega^j))_{0 \le j < 2\tau}$ using f
- 2. Compute its minimal polynomial Λ , and its roots
- 3. Get the exponents e_i from the roots ω^{e_i} of Λ
- 4. Get the coefficients c_i by solving a transposed Vandermonde system

Theorem

[Prony (1795), Ben-Or-Tiwari (1988), ...]

Given black box access to $f \in \mathbb{F}_q[x]$ and bounds $\tau \geq f_\#$ and $\delta \geq f^\circ$, one can compute the sparse representation of f in $\tilde{\mathcal{O}}(\sqrt{\tau \delta} \log q + \tau \log^2 q)$ bit operations

SLP sparse interpolation

From an SLP,

ightharpoonup f can be computed explicitly in time $\mathcal{O}(f^{\circ})$

- expression swell
- ► $f \mod x^p 1 = \sum_i c_i x^{e_i \mod p}$ can be computed in time $\tilde{\mathcal{O}}(p)$ [Garg-Schost (2009)]

Loss of information

- Exponents only known modulo p
 - lacktriangle Embed them into the coefficients using an SLP for f'

[Huang (2019)]

- Possible collisions between monomials
 - Correct errors using several random primes p

[Arnold Giesbrecht Roche (2013)]

Theorem

[Garg-Schost (2009), ..., Huang (2019)]

Given a size- ℓ SLP for $f \in \mathbb{F}_q[x]$, $f^{\circ} \geq char(\mathbb{F}_q)$, and bounds $\tau \geq f_{\#}$ and $\delta \geq f^{\circ}$, one can compute the sparse representation of f in $\mathcal{O}(\ell\tau \log(\delta) \times \log(q))$ bit operations

Our sparse interpolation algorithm

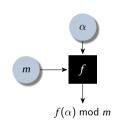
Theorem

[Giorgi, G., Perret du Cray, Roche (2022)]

Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds $\tau \geq f_{\#}$, $\delta \geq f^{\circ}$, $\gamma \geq f_{\infty}$, one can compute the sparse representation of f in $\mathcal{O}(\tau(\log(\delta) + \log(q)))$ bit operations

Modular black box

- Can be implemented given an SLP
- lacksquare Pure black box: evaluations on $\mathbb{Z}\setminus\{0,\pm 1\}$ have size $\Omega(\delta)$



Our sparse interpolation algorithm

Theorem

[Giorgi, G., Perret du Cray, Roche (2022)]

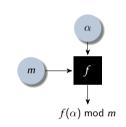
Given a modular black box for $f \in \mathbb{Z}[x]$ and bounds $\tau \geq f_{\#}$, $\delta \geq f^{\circ}$, $\gamma \geq f_{\infty}$, one can compute the sparse representation of f in $\mathcal{O}(\tau(\log(\delta) + \log(q)))$ bit operations

Modular black box

- Can be implemented given an SLP
- Pure black box: evaluations on $\mathbb{Z}\setminus\{0,\pm 1\}$ have size $\Omega(\delta)$

Remark

▶ If $\omega^p = 1$, $f(\omega^j) = f_{[p]}(\omega^j)$ where $f_{[p]} = f \mod x^p - 1$



Sketch of the algorithm

- 1. Exponents of $f_{[p]}$: interpolation of f with ω of order p in a small \mathbb{F}_q
- 2. Coefficients of $f_{[p]}$ and $f'_{[p]}$: interpolation of f and f' with ω_k of order p in $\mathbb{Z}/q^k\mathbb{Z}$
- 3. Deduce *some* terms $c_i x^{e_i^\mu}$ of f
- 4. Repeat with several random primes p and q

deal with collisions

Back to polynomial multiplication

The problem

Inputs: $f, g \in \mathbb{Z}[x]$ in sparse representation

Output: $h = f \times g$

Approach and difficulty

- Use sparse interpolation to compute *h*
- ightharpoonup Implement the modular black-box using f and g
- ▶ The algorithms require a bound $\tau \ge h_\#$

The solution

- Use an *a priori* bound
- ▶ Check the result *a posteriori*, and increase the bound if it is incorrect

New problem: product verification

Inputs: $f, g, h \in \mathbb{Z}[x]$ in sparse representation

Output: Does $h = f \times g$?

Verification of polynomial product $h = f \times g$

Classical approach

- 1. Sample a random element $\alpha \in R$
- 2. Return $h(\alpha) \stackrel{?}{=} f(\alpha) \times g(\alpha)$
 - Works if R is large enough
 - ▶ If $R = \mathbb{Z}$, check the result *modulo* a random prime q

Case of sparse polynomials

- Too costly approach:
 - ▶ Evaluation of f on $\alpha \in \mathbb{Z}_{\neq 0,\pm 1}$ has cost $\Omega(f^{\circ})$

output size

Evaluation of f on $\alpha \in \mathbb{Z}/q\mathbb{Z}$ has cost $\tilde{\mathcal{O}}(t \log(f^{\circ}) \log(q))$ binary exponentation

Solution: check $h = f \times g \mod (x^p - 1)$ for some random prime p

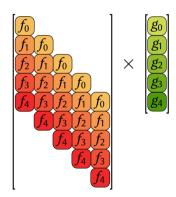
Modular product evaluation

Input:
$$f, g \in \mathbb{Z}[x], p, q \in \mathbb{Z}_{>0}, \alpha \in \mathbb{Z}/q\mathbb{Z}$$

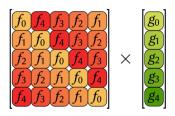
Output:
$$(f \times g \mod x^p - 1)(\alpha)$$

without computing $f \times g \mod x^p - 1$

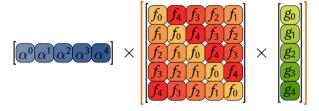
$$f \times g$$



$$f \times g \mod (x^p - 1)$$



$$(f \times g \bmod (x^p - 1))(\alpha)$$



$$(f \times g \mod (x^p - 1))(\alpha)$$

$$\begin{bmatrix} \alpha^{0} \alpha^{1} \alpha^{2} \alpha^{3} \alpha^{4} \end{bmatrix} \times \begin{bmatrix} f_{0} & f_{4} & f_{3} & f_{2} & f_{1} \\ f_{1} & f_{0} & f_{4} & f_{3} & f_{2} \\ f_{2} & f_{1} & f_{0} & f_{4} & f_{3} \\ f_{3} & f_{2} & f_{1} & f_{0} & f_{4} \\ f_{4} & f_{3} & f_{2} & f_{1} & f_{0} \end{bmatrix} \times \begin{bmatrix} g_{0} \\ g_{1} \\ g_{2} \\ g_{3} \\ g_{4} \end{bmatrix}$$

$$(f \times g \mod (x^p - 1))(\alpha)$$

$$\begin{bmatrix} \alpha^{0}\alpha^{1}\alpha^{2}\alpha^{3}\alpha^{4} \end{bmatrix} \times \begin{bmatrix} f_{0} & f_{4} & f_{3} & f_{2} & f_{1} \\ f_{1} & f_{0} & f_{4} & f_{3} & f_{2} \\ f_{2} & f_{1} & f_{0} & f_{4} & f_{3} \\ f_{3} & f_{2} & f_{1} & f_{0} & f_{4} \\ f_{4} & f_{3} & f_{2} & f_{1} & f_{0} \end{bmatrix} \times \begin{bmatrix} g_{0} \\ g_{1} \\ g_{2} \\ g_{3} \\ g_{4} \end{bmatrix}$$

Theorem

Modular product evaluation in

- \triangleright O(p) ring operations
- $ightharpoonup O(t \log(t \log d))$ ring operations

[Giorgi (2018)]

[Giorgi G. Perret du Cray (2023)]

Summary

Fast sparse polynomial computations

Quasi-linear sparse interpolation
 Quasi-linear (sparse) modular product verification
 Quasi-linear sparse multiplication
 over any ring
 over any ring

Other consequences

Quasi-linear sparse exact division over \mathbb{Z} Polynomials with unbalanced coefficients over \mathbb{Z}

- Fast sparse interpolation and multiplication
- Quasi-linear dense multiplication

Open problems

- Extend to finite fields, quasi-linear sparse unbalanced multiplication, ...
- ▶ Given 2*t* evaluations of a *t*-sparse $f \in \mathbb{R}[x]$ on positive reals, how to reconstruct f?
- ► Given *t*-sparse f, $g \in \mathbb{R}[x]$, can fg + 1 have $\Omega(t^2)$ real roots?

Conclusion & perspectives

Revisit results on polynomial computations

- Behavior in the presence of space constraints
- Questions related to complexity theory
 - Definition(s) of space complexity
 - Frontier P / NP-hard

divisibility/factorization of sparse polynomials

Constant-space algorithm in quantum computing

- Reversible algorithms in the rw/rw model suitable for quantum computing
- ightharpoonup Example: Karatsuba's algorithm with O(1) ancilla qubits [Ottow's internship (2021)]
- Application to Shor's or Regev's factorization algorithms

Sparse interpolation, linear codes, cryptography

[Giorgi G. Simkin (2025)]

- ▶ Sparse interpolation \approx syndrome decoding of Reed-Solomon codes
- lacktriangle Can be used in *oblivious ciphertext (de)compression* ightarrow PIR, searchable encryption, ...

Conclusion & perspectives

Revisit results on polynomial computations

- ▶ Behavior in the presence of space constraints
- Questions related to complexity theory
 - ► Definition(s) of space complexity
 - Frontier P / NP-hard

divisibility/factorization of sparse polynomials

Constant-space algorithm in quantum computing

- ► Reversible algorithms in the rw/rw model suitable for quantum computing
- ightharpoonup Example: Karatsuba's algorithm with O(1) ancilla qubits [Ottow's internship (2021)]
- Application to Shor's or Regev's factorization algorithms

Sparse interpolation, linear codes, cryptography

[Giorgi G. Simkin (2025)]

- ▶ Sparse interpolation \approx syndrome decoding of Reed-Solomon codes
- ightharpoonup Can be used in *oblivious ciphertext (de)compression* ightarrow PIR, searchable encryption, ...

Thank you!