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Symmetric Determinantal Representation
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Abstract. We deploy algebraic complexity theoretic techniques to construct
symmetric determinantal representations of formulas and weakly skew circuits.
Our representations produce matrices of much smaller dimensions than those
given in the convex geometry literature when applied to polynomials having a
concise representation (as a sum of monomials, or more generally as an arith-
metic formula or a weakly skew circuit). These representations are valid in any
field of characteristic different from 2. In characteristic 2 we are led to an al-
most complete solution to a question of Bürgisser on the VNP-completeness of
the partial permanent. In particular, we show that the partial permanent can-
not be VNP-complete in a finite field of characteristic 2 unless the polynomial
hierarchy collapses.

1. Introduction

1.1. Motivation. A linear matrix expression (symmetric linear matrix form,
affine symmetric matrix pencil) is a symmetric matrix with the entries being linear
forms in the variables x1, . . . , xn and real number coefficients:

(1) A(x1, . . . , xn) = A0 + x1A1 + · · ·+ xnAn, Ai symmetric in R
t×t.

A linear matrix inequality (LMI) restricts to those values ξi ∈ R of the xi such that
A(ξ1, . . . , ξn) � 0, i.e., is positive semidefinite. The set of all such values defines a
spectrahedron.

A real zero polynomial is a polynomial p with real coefficients such that for
every x ∈ R

n and every μ ∈ C, p(μx) = 0 implies μ ∈ R. The Lax conjecture
and generalized Lax conjecture seek for representations of real zero polynomials
f(x1, . . ., xn) as f = det(A) with A as in (1) and A0 � 0. This is in fact an
equivalent formulation of the original Lax conjecture which was stated in terms of
hyperbolic polynomials (see [18] for this equivalence). Furthermore, the matrices
are required to have dimension d where d is the degree of the polynomial. For
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n = 2 such representations always exist while a counting argument shows that this
is impossible for n > 2 [12] (actually, Lewis, Parrilo and Ramana [18] give the
first proof of the Lax conjecture in its original form based on the results of Helton
and Vinnikov [12]). Two relaxations have been suggested to evade this counting
argument: At first it was suggested to remove the dimension constraint and seek
for bigger matrices, and this was further relaxed by seeking for representations of
some power of the input polynomial. Counterexamples to both relaxations have
recently been constructed by Brändén [3].

Another relaxation is to drop the condition A0 � 0 and represent any f as
det(A) [11, 24]. However, the purely algebraic construction of Quarez [24] leads
to exponential matrix dimensions t. Here we continue the line of work initiated
in [11, 24] but we proceed differently by symmetrizing the complexity theoretic
construction by Valiant [27]. Our construction yields smaller dimensional matrices
not only for polynomials represented as sums of monomials but also for polynomials
represented by formulas and weakly skew circuits [22, 14]. Even though in the most
general case the bounds we obtained are slightly worse than Quarez’s [24], in a lot
of interesting cases such as polynomials with a polynomial size formula or weakly-
skew circuit, or in the case of the permanent, our constructions yield much smaller
matrices (see Section 4).

Our constructions are valid for any field of characteristic different from 2. For
fields of characteristic 2, it can be shown that some polynomials (such as e.g. the
polynomial xy+z) cannot be represented as determinants of symmetric matrices [9].
Note as a result that the 2-dimensional permanent xw+yz cannot be “symmetrized”
over characteristic 2 with any dimension. It would be interesting to exactly char-
acterize which polynomials admit such a representation in characteristic 2. For the
polynomial x+ y, we have

x+ y = det(

⎡
⎢⎢⎢⎢⎣

0 x 0 y −1
x 0 1 0 0
0 1 0 −1 0
y 0 −1 0 1/2
−1 0 0 1/2 0

⎤
⎥⎥⎥⎥⎦) = det(

⎡
⎢⎢⎣
x 0 0 1
0 y 0 1
0 0 1 0
1 1 0 0

⎤
⎥⎥⎦),

where the first matrix is derived from our construction, but the second is valid over
any commutative ring. It is easily shown that for every polynomial p, its square p2

admits a symmetric determinantal representation in characteristic 2. This is related
to a question of Bürgisser [4]: Is the partial permanent VNP-complete over fields
of characteristic 2? We give an almost complete negative answer to this question.

Our results give as a by-product an interesting result which was not known to
the authors’ knowledge: Let A be an (n×n) matrix with indeterminate coefficients
(ranging over a field of characteristic different from 2), then there exists a symmetric
matrix B of dimensions O(n5) which entries are the indeterminates from A and
constants from the field such that detA = detB. This relies on the existence of a
size-O(n5) weakly-skew circuit to compute the determinant of an (n × n) matrix
[2, 22], and this weakly-skew circuit can be represented by a determinant of a
symmetric matrix as proved in this paper. The dimensions of B can be reduced
to O(n4) if we replace the weakly skew circuits from [2, 22] by the skew circuits
of size O(n4) constructed by Mahajan and Vinay [20]. These authors construct
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an arithmetic branching program for the determinant with O(n4) edges,1 and the
arithmetic branching program can be evaluated by a skew circuit of size O(n4).
After learning of our result, Meena Mahajan and Prajakta Nimbhorkar have noticed
that the arithmetic branching program for the determinant can be transformed
directly into a symmetric determinant of dimensions O(n3) with techniques similar
to the ones used in this paper. We give a detailed proof in Subsection 3.2.

We add that the assymptotically smallest known division-free algebraic circuits
for the n × n determinant polynomial have size O(n2.70) [13, 15]. The circuits
actually can compute the characteristic polynomial and the adjoint and are based
on algebraic rather than combinatorial techniques. Weakly skew circuits of such
size appear not to be known.

Organization. Section 1.2 is devoted to an introduction to the algebraic complex-
ity theoretic used in our constructions, as well as a reminder of the existing related
constructions in algebraic complexity. Section 2 deals with symmetric representa-
tions of formulas while Section 3 focuses on weakly-skew circuits. Table 2 page 34
gives an overview of all the different constructions used in this paper. Section 4 then
proceeds to the comparisons between the results obtained so far and Quarez’s [24].
The special case of fields of characteristic 2 is studied in Section 5.
A shorter version of this paper [8] has been published in Proceedings of STACS
2011. It contains material from Section 3 and Section 5.

Acknowledgments. We learned of the symmetric representation problem from
Markus Schweighofer’s ISSAC 2009 Tutorial
http://www.math.uni-konstanz.de/˜schweigh/presentations/dcssblmi.pdf.

We thank Meena Mahajan for pointing out [20], sketching the construction of
a symmetric determinant of dimensions O(n3) from a determinant of dimensions n
and reading our proof of it.

1.2. Known results and definitions. In his seminal paper Valiant [27] ex-
pressed the polynomial computed by an arithmetic formula as the determinant of
a matrix whose entries are constants or variables. If we define the skinny size e
of the formula as its number of arithmetic operations then the dimensions of the
matrix are at most e+2. The proof uses a weighted digraph construction where the
formula is encoded into paths from a source vertex to a target, sometimes known
as an Algebraic or Arithmetic Branching Program [23, 1]. This theorem shows
that every polynomial with a sub-exponential size formula can be expressed as a
determinant with sub-exponential dimensions, enhancing the prominence of linear
algebra. A slight variation of the theorem is also used to prove the universality
of the permanent for formulas which is one of the steps in the proof of its VNP-
completeness. In a tutorial, von zur Gathen [31] gives another way to express a
formula as a determinant: his proof does not use digraphs and his bound is 2e+2.
Refining his techniques, Liu and Regan [19] gave a construction leading to an upper
bound of e + 1 in a slightly more powerful model: multiplications by constant are
free and do not count into the size of the formula.

Our purpose here is to express a formula as a determinant of a symmetric
matrix. Multiplications by constant are also given for free. Our construction uses
paths in graphs, similar to the paths in digraphs in Valiant’s original proof. In fact,
this original construction appears to have a little flaw in it. Interestingly enough,

1This bound can be found on p.11 of their paper.
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this flaw has never been mentioned in the literature to the authors’ knowledge. A
slight change in the proof is given in [5, Exercise 21.7 (p570)] that settles a part
of the problem. And the same flaw appears in the proof of the universality of the
permanent in [4]. When adding two formulas, the resulting digraph can have two
arcs between the source and the target, which can lead to the sum of two variables
being an entry of the matrix, and this is not allowed as we seek for symmetric
matrices where each entry is either a constant or a variable. The first idea to
correct the proof is to keep the same parity for all s-t-paths as in Valiant’s original
proof, adding two new vertices and replacing one of the arcs by a length-three path.
This method is very simple but its disadvantage is that it increases the dimensions
of the final matrix to 2e+ 3. In the symmetric case we will use a −1 coefficient to
correct the parity differences between paths instead of adding new vertices. Using
this technique in the non-symmetric case allows us to prove Valiant’s theorem with
(e + 1) instead of (e + 2). Our technique also gives for free multiplications by
constants as in [19]. It uses digraphs and is to our opinion more intuitive than
direct work on matrices.

In [26, 22], results of the same flavor were proved for a more general class of
circuits, namely the weakly-skew circuits. Malod and Portier [22] can deduce from
those results a fairly simple proof of the VQP-completeness of the determinant
(under qp-projection). Moreover, they define a new class VPws of polynomials
represented by polynomial-size weakly-skew circuits (with no explicit restriction
on the degree of the polynomials) for which the determinant is complete under
p-projection. A formula is a circuit in which every vertex has out-degree 1 (but
the output). This means in particular that the underlying digraph is a tree. A
weakly-skew circuit is a kind of generalization of a formula, with a less constrained
structure on the underlying digraph. For an arithmetic circuit, the only restriction
on the digraph is the absence of directed cycles (that is the underlying digraph is
a directed acyclic graph). A circuit is said weakly-skew if every multiplication gate
α has the following property: the sub-circuit associated with one of its arguments
β is connected to the rest of the circuit only by the arrow going from β to α. This
means that the underlying digraph is disconnected as soon as the multiplication
gate α is removed. In a sense, one of the arguments of the multiplication gate was
specifically computed for this gate.

Toda [26] proved that the polynomial computed by a weakly-skew circuit of
skinny size e can be represented by the determinant of a matrix of dimensions
(2e + 2). This result was improved by Malod and Portier [22]: The construction
leads to a matrix of dimensions (m+1) where m is the fat size of the circuit (i.e. its
total number of gates, including the input gates). Note that for a circuit in general
and for a weakly-skew circuit in particular m ≤ 2e + 1. The latter construction
uses negated variables in the matrix. It is actually possible to get rid of them [14].
Although the skinny size is well suited for the formulas, the fat size appears more
appropriate for weakly-skew circuits. In Section 3, we symmetrize this construction
so that a polynomial expressed by a weakly-skew circuit equals the determinant
of a symmetric matrix. Our construction yields a symmetric matrix of dimensions
(2m + 1). In fact, this can be refined as well as the non-symmetric construction.
An even more appropriate size for a weakly-skew circuit is (e + i) where e is the
skinny size and i the number of inputs labelled by a variable (clearly e + i ≤ m).

64



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMMETRIC DETERMINANTAL REPRESENTATION 5

We can show that the bounds are still valid if we replace m by (e + i) and even
when multiplications by constants are free as in [19] (see Section 3.3).

Let us now give some formal definitions of the arithmetic circuits and related
notions.

Definition 1. An arithmetic circuit is a directed acyclic graph with vertices
of in-degree 0 or 2 and exactly one vertex of out-degree 0. Vertices of in-degree
0 are called inputs and labelled by a constant or a variable. The other vertices,
of in-degree 2, are labeled by × or + and called computation gates. The vertex
of out-degree 0 is called the output. The vertices of a circuit are commonly called
gates and its arcs arrows.

An arithmetic circuit with constant inputs in a field k and variables in a set x̄
naturally computes a polynomial f ∈ k[x̄].

Definition 2. If α is a gate of a circuit C, the sub-circuit associated to α is
the subgraph of C made of all the gates β such that there exists a oriented path
from β to α in C, including α. A gate α receiving arrows from β and γ is said to
be disjoint if the sub-circuits associated to β and γ are disjoint from one another.
The gates β and γ are called the arguments of α.

Definition 3. An arithmetic circuit is said weakly-skew if for any multiplica-
tion gate α, the sub-circuit associated to one of its arguments β is only connected
to the rest of the circuit by the arrow going from β to α: it is called the closed
sub-circuit of α. A gate which does not belong to a closed sub-circuit of C is said
to be reusable in C.

A formula is an arithmetic circuit in which all the gates are disjoint.

The reusability of a gate depends of course on the considered circuit C. For
instance, in Fig. 1(b), the weakly-skew circuit has two closed sub-circuits. The input
z is in the right closed sub-circuit and is therefore not reusable. But inside this
closed sub-circuit, it is reusable, and actually used as argument to the summation
gate twice. Figures 1(a) and (c) are respectively an equivalent arithmetic circuit
and an equivalent formula, that is the two circuits and the formula compute the
polynomial (x+ y)2 + 2yz.

Let us remark a fact that will be useful later: all the multiplication gates of a
weakly-skew circuit are disjoint (but this is not a sufficient condition).

In our constructions, we shall use graphs and digraphs. In particular, the
improved construction based on Valiant’s represents formulas by paths in a digraph.
On the other hand, to obtain symmetric determinantal representations the digraphs
have to be symmetric. These correspond to graphs. In order to avoid any confusion
between directed and undirected graphs, we shall exclusively use the term graph
for undirected ones, and otherwise use the term digraph. It is well-known that
cycle covers in digraphs are in one-to-one correspondence with permutations of the
vertices and therefore that the permanent of the adjacency matrix of a digraph can
be defined in terms of cycle covers of the digraph. Let us now give some definitions
for those facts, and see how it can be extended to graphs.

Definition 4. A cycle cover of a digraph G = (V,A) is a set of cycles such
that each vertex appears in exactly one cycle. The weight of a cycle cover is defined
to be the product of the weights of the arcs used in the cover. Let the sign of a
vertex cover be the sign of the corresponding permutation of the vertices, that is

65



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6 B. GRENET, E. L. KALTOFEN, P. KOIRAN, AND N. PORTIER

x y z

(a) An arithmetic circuit

x yx y z

(b) A weakly-skew circuit: The closed
sub-circuits are marked with gray boxes.

x yx y zy z

(c) A formula

Figure 1. An arithmetic circuit, a weakly-skew circuit and a for-
mula computing the same polynomial (x+ y)2 + 2yz.

(−1)N where N is the number of even cycles. Finally, let the signed weight of a
cycle cover be the product of its weight and sign.

For a graph G = (V,E), let Gd = (V,A) be the corresponding symmetric
digraph. Then a cycle cover of G is a cycle cover of Gd, and the definitions of
weight and sign are extended to this case. In particular, if there is a cycle cover of
G with a cycle C = (u1, . . . , uk), then a new cycle cover is defined if C is replaced
by the cycle (uk, . . . , u1). Those two cycle covers are considered as different cycle
covers of G.

Definition 5. Let G be a digraph. Its adjacency matrix is the (n×n) matrix
A such that Ai,j is equal to the weight of the arc from i to j (Ai,j = 0 is there is
no such arc). The definition is extended to the case of graphs, seen as symmetric
digraphs. In particular, the adjacency matrix of a graph is symmetric.

Lemma 1. Let G be a (di)graph, and A its adjacency matrix. Then the per-
manent of A equals the sum of the weights of all the cycle covers of G, and the
determinant of A is equal to the sum of the signed weights of all the cycle covers of
G.

Proof. The cycle covers are obviously in one-to-one correspondence with the
permutations of the set of vertices, and the sign of a cycle cover is defined to match
the sign of the corresponding permutation. Suppose that the vertices of V are
{1, . . . , n} and let Ai,j be the weight of the arc (i, j) in G. Let C a cycle cover
and σ the corresponding permutation. Then it is clear that the weight of C is
A1,σ(1) · · ·An,σ(n), hence the result. �

66



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMMETRIC DETERMINANTAL REPRESENTATION 7

Figure 2. A graph with a cycle cover (the arcs in the cover are
in black).

The validity of this proof for graphs follows from the definition of the cycle
covers of a graph in terms of the cycle covers of the corresponding symmetric
digraph. In the following, the notion of perfect matching is used. A perfect matching
in a graph G is a set M of edges of G such that every vertex is incident to exactly
one edge of M . The weight of a perfect matching is defined in this as the weight
of the corresponding cycle cover (with length-2 cycles). This means that this is the
product of the weights of the arcs it uses, or equivalently it is the square of the
product of the weights of the edges it uses. Note that this is the square of the usual
definition.

A path P in a digraph is a subset of vertices {u1, . . . , uk} such that for 1 ≤ i ≤
k− 1, there exists an arc from ui to ui+1 with nonzero weight. The size |P | of such
a path is k.

2. Formulas

2.1. Non-symmetric case. In this section, as in Sections 2.2 and 3, a field k
of characteristic different from 2 is fixed and the constant inputs of the formulas and
the weakly-skew circuits are taken from k. The variables are supposed to belong
to a countable set x̄ = {x1, x2, . . . }. Following [19], we define a formula size that
does not take into account multiplications by constants.

Definition 6. Consider formulas with inputs being variables or constants from
k. The green size gsize(ϕ) of a formula ϕ is defined inductively as follows:

• The green size of a constant or a variable is 0;
• If c is a constant then the green size of c× ϕ is equal to the green size of
ϕ;

• If ϕ1 and ϕ2 are formulas, then gsize(ϕ1+ϕ2) = gsize(ϕ1)+gsize(ϕ2)+1.
• If ϕ1 and ϕ2 are non-constant formulas, then gsize(ϕ1×ϕ2) = gsize(ϕ1)+
gsize(ϕ2) + 1

An even smaller size can be defined by deciding that every variable-free formula
has size zero and Theorem 1 can easily be extended to this case. A formal definition
of this size is given is Section 3.3 in the context of weakly-skew circuits.
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ϕ1

s

G1

t

ϕ2

G2

Figure 3. G1, c1 and G2, c2 are respectively associated to ϕ1 and
ϕ2; ϕ = ϕ1 × ϕ2.

Theorem 1 ([19]). For every formula ϕ of green size e with at least one ad-
dition there is a square matrix A of dimensions e + 1 whose entries are inputs of
the formula and elements of {0, 1,−1, 1/2} such that ϕ = det(A).

We remark that if ϕ has no addition it is of the form cx1 . . . xn and it has size
(n − 1). Then a suitable matrix is the (n + 1) × (n + 1) diagonal matrix made of
the n variables and the constant c. Thus the dimensions of the matrix are at most
n + 1 = e + 2, and are n = e + 1 if c = 1. Note that this latter bound is minimal
as the determinant of a (d × d) matrix is a degree-d polynomial. The dimensions
(n+ 1) are not minimal when c �= 1 as shown by the (3× 3) matrix⎡

⎣0 x y
x 0 z
y z 0

⎤
⎦

representing 2xyz. One can also see that the n bound cannot be general as there
is no (2× 2) matrix representing the polynomial 2xy.

Lemma 2. Let ϕ be an arithmetic formula of green size e. Then there exists
a constant c0 and an edge-weighted digraph G with at most e + 2 vertices and two
distinct vertices s and t such that

c0 ·
∑

s-t-path P

(−1)|P | w(P ) = ϕ.

Proof of Lemma 2. We prove the lemma by induction on formulas. If ϕ is
equal to a variable x (resp. a constant c) then G has two vertices s and t and an
edge (s, t) labelled by x (resp. c) and the constant c0 is equal to 1.

If ϕ = c × ϕ′ let G′ be the digraph and c′0 the constant satisfying the lemma
for the formula ϕ′. Then obviously G = G′ and c0 = c′0c satisfy the lemma for ϕ.

If ϕ = ϕ1 × ϕ2, let G1 and c1 (resp. G2 and c2) satisfying the lemma for
ϕ1 (resp. ϕ2). Then let c = c1c2 and G be the disjoint union of G1 and G2,
except for t1 and s2 which are merged (see Fig 3). The size of G is equal to
|G1|+ |G2|−1 ≤ gsize(ϕ1)+gsize(ϕ2)+3 = gsize(ϕ)+2. A s-t-path P in G is a s1-
t1-path P1 in G1 followed by a s2-t2-path P2 in G2 and we have |P | = |P1|+ |P2|−1
and w(P ) = w(P1)× w(P2), hence the result.

If ϕ = ϕ1 + ϕ2, let G1 and c1 (resp. G2 and c2) satisfying the lemma for ϕ1

(resp. ϕ2). If c1 = 0 then ϕ and ϕ2 compute the same polynomial and we just
have to take G = G2 and c = c2. Suppose now c1 �= 0. Then we define G as the
disjoint union of G1 and G2, except for s1 and s2 which are merged, and with an
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ϕ1 ϕ2

s

G1

G2

t1

t2
−c2/c1

Figure 4. G1, c1 and G2, c2 are respectively associated to ϕ1 and
ϕ2; ϕ = ϕ1 + ϕ2.

edge (t2, t1) of weight −c2/c1 (see Fig 4). The size of G satisfies the same relation
as in the multiplication case. Let c0 = c1. A s-t-path P in G is a s1-t1-path in G1

or a s2-t2-path P2 in G2 followed by the edge (t2, t1), and in the second case we
have w(P ) = w(P2)(−c2/c1) and |P | = |P2| + 1, hence the result. Remark that t2
has only one outgoing edge and its weight is a constant, and that this property will
not be changed in the inductive construction. This property will be useful to prove
the bound in the theorem. �

Proof of Theorem 1. Let ϕ be an arithmetic formula of green size e and
let G and c0 be given by Lemma 2. Let Ḡ be the digraph obtained from G in the
following way. We merge s and t. As remarked in the proof of Lemma 2 there is
a vertex v that has only one outgoing edge and its weight is a constant c (as ϕ is
supposed to have at least one addition). We change its weight to c0c and add a
loop weighted by c0 on v. We put a loop with weight 1 on every other vertex than
v and s.

Let {1, . . . , e+1} be the vertices of Ḡ and A its adjacency matrix. Let us have
a closer look at cycle covers of Ḡ. The cycles in Ḡ are cycles containing s (which are
in bijection with s-t-paths in G) and loops. In a cycle cover C the vertex s belongs
to a cycle S. Its weight w(s) is the weight of the corresponding s-t-path P in G
and its cardinal is |S| = |P | − 1. If the vertex v appears in S then w(S) = c0w(P )
and every other cycle in C is a loop of weight 1. Otherwise w(S) = w(P ) and C
contains the loop v of weight c0. In both case w(C) = c0w(P ). Let us recall that
sgn(C) is the signature of the underlying permutation: here it is −1 if S is even
and 1 otherwise, and so it is equal to (−1)|P |. Using Lemma 1 we get

det(A) =
∑

cycle cover
C of Ḡ

sgn(C)w(C) = c0 ·
∑

s-t-path
P∈G

(−1)|P | w(P ) = ϕ.

�

2.2. Symmetric case. The aim of this section is to write an arithmetic for-
mula as a determinant of a symmetric matrix, whose entries are constants or vari-
ables. Recall that in this section as in Section 3, a field k of characteristic different
from 2 is fixed, and the input constants are taken from this field. In the sequel,
every constructed graph is undirected. At first, the result is proved for the skinny
size of the formula. We recall that the skinny size of ϕ is the number of arithmetic
operators it contains.
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Theorem 2. Let ϕ be an arithmetic formula of skinny size e. Then there exists
a matrix A of dimensions at most 2e + 3 whose entries are inputs of the formula
and elements of {0, 1,−1, 1/2} such that ϕ = detA.

This theorem is a corollary of the following lemma.

Lemma 3. Let ϕ be an arithmetic formula of skinny size e. Then there exists
a graph G with at most 2e+ 2 vertices and two distinct vertices s and t such that

(1) The graph G has an even number of vertices, every cycle in G is even and
every s-t-path has an even number of vertices.

(2) The subgraph G \ {s, t} is empty if e = 0 and for e ≥ 1 it has only one
cycle cover: It is a perfect matching of weight 1. For every s-t-path P in
G, the subgraph G \ P is empty or has only one cycle cover: as above it
is a perfect matching of weight 1.

(3) The following equality holds in G:∑
s-t-path P

(−1)|P |/2+1 w(P ) = ϕ

The graph G is called the graph associated to ϕ.

The first property of the lemma ensures that because of a parity argument
every cycle cover of the final constructed graph Ḡ used in the proof of Theorem 2
(see Fig. 5) includes exactly one path between s and t. The second property ensures
that the weight of the cycle cover is the weight of the cycle involving s and t, that
is every other cycle has weight 1, and that other cycles of the cover are of length
2. The third property gives the relation between the graph and the formula.

As in Valiant’s construction for the not necessarily symmetric case, the formula
ϕ will be encoded in the weights of paths between s and t, but in a slightly different
way. In Valiant’s construction, a cycle cover of the digraph is made of a cycle
including a s-t-path, other cycles being loops. Moreover every s-t-path has the
same parity and so every cycle cover has the same parity of odd cycles and the
underlying permutation has the same signature. With this property of the digraph
the determinant of its adjacency matrix is equal to its permanent up to the sign.
In our construction a cycle cover of the graph is made of a cycle including a s-t-
path, other cycles being length-2 cycles. A length-2 cycle has a negative signature
and every s-t-path of the graph has an even cardinality, so the sign of the cycle
permutation is −1 to the number of length 2 cycles. This shows that the sign of
the cycle permutation is a function of the length of the involved s-t-path modulo
4. There is a way to ensure that this sign does not depend on the chosen s-t-path:
replace the graph G associated to a size-0 formula x in the proof of Lemma 3 by
a 4-vertices path with weight x on its first edge, and replace weights −1 (Fig. 5,
Fig. 7 and Fig. 8) by weights 1. This yields a matrix with entries in k ∪ x̄ whose
determinant and permanent are equal to ϕ, but its dimensions can be 4e + 5. To
achieve the 2e+ 3 bound, we construct a matrix A whose determinant can be very
different from the permanent: For example, the permanent of the matrix associated
to ϕ = x+x is 0 when its determinant is 2x. Nonetheless we can very easily obtain a
matrix B having the same dimensions as A and such that permB = ϕ by replacing
every −1 entry in A by 1.
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s

G

t
1/2

c

(−1)
|G|
2 +1

Figure 5. Construction of Ḡ from G.

Proof of Theorem 2. Let G be the graph associated to ϕ and let Ḡ be the
graph G augmented with a new vertex c and the edges tc of weight 1/2 and cs of
weight (−1)|G|/2−1 (see Fig. 5).

Conditions (1) and (2) imply that there is a bijection between paths from s to t
or t to s and cycle covers in Ḡ. More precisely, every cycle cover in Ḡ has a unique
odd cycle and it is of the form cPc where P is a s-t-path or a t-s-path. Indeed,
the graph Ḡ has an odd number of vertices. Suppose there is a cycle cover of Ḡ
involving the length-2 cycle tct. Other cycles of this cover are cycles of G and thus
by (1) they are all even. This is not possible as an odd set can not be partitioned
into even subsets. For the same reason, there is no cycle cover of Ḡ involving the
cycle scs. Thus every cycle cover of Ḡ has a cycle including c and a path P between
s and t.

Let us recall that the sign of a cycle cover is the sign of the underlying per-
mutation, i.e. −1 if it has an odd number of even cycles and 1 otherwise, and let
us define the signed weight of a cycle cover as the product of its weight and sign.
Let C be a cycle cover of Ḡ involving the s-t-path P . By property (2) there is only
one way to complete the cover. Thus the weight of the cycle cover is the weight of
P multiplied by (1/2 (−1)|G|/2+1) and its sign is the sign of a perfect matching of
cardinality |G \P |, so it is (−1)(|G\P |)/2. By symmetry, the inverse cycle cover has
the same signed weight. So the sum of the signed weights of all cycle covers of Ḡ
is equal to twice the sum over all s-t-path P of (1/2 (−1)|P |/2+1 w(P )). According
to Lemma 3 it is equal to ϕ. The result follows from Lemma 1.

�

Proof of Lemma 3. We proceed by structural induction. In other words, we
first prove the lemma for the simplest possible formula, namely x, and then show
that the assertion of Lemma 3 is stable under addition and multiplication.

Let ϕ = x be an arithmetic formula of size 0. Then the graph G associated to ϕ
by definition has two vertices s and t and an edge st of weight x. It verifies trivially
properties (1) and (2) and its only s-t-path is st and we have: (−1)2/2+1x = ϕ.

Let ϕ = ϕ1 + ϕ2 and G1 and G2 be the graphs associated to ϕ1 and ϕ2. First
let us suppose s1t1 or s2t2 has weight 0. This means in particular that ϕ1 or ϕ2

is of size at least 1. Let s = s1 = s2 and t = t1 = t2. Suppose G1 \ {s1, t1} and
G2 \ {s2, t2} have disjoints sets of vertices and let G = G1 ∪G2 (see Fig. 6). Then
|G| = |G1|+ |G2| − 2 ≤ 2|ϕ1|+ 2|ϕ2|+ 2 = 2|ϕ|.

If s1t1 is an edge in G1 and s2t2 is an edge in G2 then the preceding construc-
tion would lead to two edges between s and t. They could be transformed into a
single edge if adding the two weights, but then the weight could be a sum of two
variables, and it is something that is not allowed in this context. So the graph G1 is
transformed into a graph G′

1 by adding two vertices u and v, removing the edge s1t1
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ϕ1 ϕ2

G1 G2

s

t

Figure 6. Graph associated to ϕ = ϕ1 + ϕ2.

s1

t1

x u

v
−1

s1
x

t1

Figure 7. Transformation of G1 into G′
1.

with weight x and adding the edges s1u with weight x, uv with weight 1 and vt1
with weight −1 (see Fig. 7). We can verify easily that G′

1 satisfies the three condi-
tions of Lemma 3. In particular for the third condition, the term x corresponding
to the path s1t1 in G1 in the sum is replaced by the term corresponding to the path
s1uvt1 in G′

1: −(−1)4/2+1x = x. We then construct the graph G associated to ϕ
as above but with G′

1 replacing G1. It size is at most 2|ϕ|+ 2.
Now let us prove that the graph associated to ϕ satisfies the three properties

of the lemma.
(1) G has an even number of vertices and the cardinality of every s-t-path is

even. A cycle in G is a cycle in G1, or a cycle in G2, or a path from s to
t in G1 or G2 followed by path from t to s in G1 or G2, and consequently
every cycle in G is even.

(2) If G1 \{s1, t1} and G2 \{s2, t2} are non-empty they are disconnected, and
a cycle cover of the subgraph G \ {s, t} is constituted by a cycle cover of
G1 \ {s1, t1} and a cycle cover of G2 \ {s2, t2}. So G \ {s, t} has only one
cycle cover and it is a perfect matching of weight 1. If G1 \ {s1, t1} is
empty then G \ {s, t} = G2 \ {s2, t2} and has only one cycle cover and it
is a perfect matching of weight 1.

Let P be a path between s and t in G. We can suppose wlog that the
subgraph G \ P is the union of the two graphs G1 \ P and G2 \ {s2, t2},
which are disconnected from one another. The property to prove is then
straightforward from the induction hypothesis.

(3) A path of G is a path of G1 or a path of G2, which proves the equality.
Let ϕ = ϕ1 × ϕ2 and G1 and G2 be the graphs associated to ϕ1 and ϕ2.

Suppose G1 and G2 have disjoints sets of vertices and let G be G1 ∪ G2 with an
additional edge t1s2 of weight −1, and let s = s1 and t = t2 (see Fig.8). Then
|G| = |G1|+ |G2| ≤ 2|ϕ1|+ 2|ϕ2|+ 4 = 2|ϕ|+ 2. Let us prove that G satisfies the
three properties of the lemma.

72



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMMETRIC DETERMINANTAL REPRESENTATION 13

ϕ1 ϕ2

s

t1

s2
−1

G1

G2

t

−1

Figure 8. Graph associated to ϕ = ϕ1 × ϕ2.

(1) G has an even number of vertices and every path from s to t has an even
cardinality. A cycle in G is either a cycle in G1, or a cycle in G2 or the
length-2 cycle t1s2, and consequently every cycle in G is even.

(2) Let us consider a cycle cover of G \ {s, t}. The vertex t1 can be in a cycle
of G1 or in the cycle t1s2. If it is in a cycle of G1 then we have a cycle
cover of G1 \ {s1}, which is not possible because it is an odd set and all
its cycles are even. Thus the cycle cover of G \ {s, t} can be partitioned
into t1s2 of weight (−1)2, a cycle cover of G1 \ {s1, t1} and a cycle cover
of G2 \ {s2, t2}. Those cycle covers are unique and so there is only one
cycle cover of G \ {x, y} and it is a perfect matching of weight 1.

Let P be a path between s and t in G. It is a path P1 from s1 to t1
in G1 followed by t1s2 and a path P2 from s2 to t2 in G2. So G \P is the
union of the two graphs G1\P1 and G2\P2, which are disconnected (if non
empty) from one another. The property to prove is then straightforward
from the induction hypothesis.

(3) A s-t-path P in G can be decomposed into three paths: a s1-t1-path P1,
t1s2 which is of weight −1 and a s2-t2-path P2.

Thus

(−1)
|P |
2 +1 w(P ) = (−1)

|P1|+|P2|
2 +1w(P1)(−1)w(P2)

= (−1)
|P1|
2 +1 w(P1)× (−1)

|P2|
2 +1 w(P2)

and so

∑
P

(−1)
|P |
2 +1 w(P ) =

∑
P1

(−1)
|P1|
2 +1w(P1)×

∑
P2

(−1)
|P2|
2 +1w(P2)

= ϕ1 × ϕ2

= ϕ.

�

The upper bound (2e + 2) of Lemma 3 is tight as shown by Fig. 9. It can be
shown easily that this construction yields a graph of size at least |ϕ|+ 2, and this
lower bound is tight as shown by Fig. 10.

In fact, as in the non-symmetric case, the skinny size can be replaced by the
green size of the formula defined in Definition 6.
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x1

x2 x3 xn+1

−1 −1
−1

....

Figure 9. Graph associated to ϕ = x1 + · · ·+ xn+1: |ϕ| = n and
|G| = 2n+ 2.

x1 x2 x3 xn

y −1

x′
1

x′
2

x′
3

x′
n

−1 −1 −1....

Figure 10. Graph associated to ϕ = x1x
′
1 + x2x

′
2 · · ·+ xnx

′
n + y:

|ϕ| = 2n and |G| = 2n+ 2.

Theorem 3. For every formula ϕ of green size e there is a square matrix
A of dimensions 2e + 3 whose entries are inputs of the formula and elements of
{0, 1,−1, 1/2} such that ϕ = detA.

Proof. It is sufficient to show how to have the constants for free in the con-
struction of Lemma 3. We also proceed by structural induction. In fact, the
construction remains almost the same but with the last property changed. For
an arithmetic formula ϕ of green size e, there exists a graph G that satisfies the
conditions of Lemma 3 but the third one is replaced by the existence of a constant
c0 such that

c0 ·
∑

s-t-path P

(−1)|P |/2+1 w(P ) = ϕ.

Let ϕ = x be an arithmetic formula of size 0. Then the graph G associated to
ϕ by definition has two vertices s and t and an edge st of weight x. The associated
constant is c0 = 1.

Let ϕ = cψ and G, c0 be associated to ψ. Then G, cc0 is associated to ϕ.
Let ϕ = ϕ1 ×ϕ2 and G1, c1 (resp. G2, c2) be associated to ϕ1 (resp. ϕ2). The

graph G associated to ϕ is exactly the same as in the proof of Lemma 3 and the
constant is c1c2.

Let ϕ = ϕ1+ϕ2 and G1, c1 (resp. G2, c2) be the graph and constant associated
to ϕ1 (resp. ϕ2). We suppose that G1 and G2 have distinct sets of vertices except
for s1 = s2. The graph G is obtained by adding a new vertex u, an edge t2u with
weight 1 and an edge ut1 with weight −c2/c1, and the associated constant is c1 (see
Fig. 11).

This defines a size-(2e + 2) graph G associated to a green size-e formula ϕ. It
remains to turn this graph into a matrix. Let Ḡ be the graph G augmented with
a new vertex c and the edges tc of weight c0/2 and cs of weight (−1)|G|/2−1. The
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ϕ1 ϕ2

s

t1

t2
u

G1

G2

−c2/c1

Figure 11. ϕ = ϕ1 + ϕ2; G1, c1 and G2, c2 are respectively asso-
ciated to ϕ1 and ϕ2.

adjacency matrix A of Ḡ satisfies ϕ = det(A) and the proof is similar to the one of
Theorem 2. �

The bound obtained in Theorem 3 can be sharpened when k = R or C. The
idea is to build Ḡ by merging s and t instead of adding a new vertex. Suppose
that ϕ has at least one addition gate. Let w =

√
|c0|/2. In the construction for

this addition gate (see Fig. 11), multiply the weights of t2u and ut1 by w. A cycle
cover of the graph either goes through the path t2ut1, or contains the edge ut2 in
its perfect matching part. In both cases, its weight is multiplied by w2. Now if
(−1)|G|/2+1c0/2 > 0, then the graph obtained has the satisfying properties, and the
new bound is 2e+ 1. If it is negative, two solutions can be applied. Either k is the
field of complex numbers and it is sufficient to replace w by iw (where i2 = −1)
to get the same bound 2e + 1. Otherwise, if k is the field of real numbers, it is
sufficient to add a new vertex with a loop of weight −1 (this corresponds to adding
a new line and a new column, filled with zeroes but the diagonal element with −1)
to get the bound (2e+ 2).

3. Weakly skew circuits

In this section, we extend the previous results to the case of weakly-skew cir-
cuits. Recall that those circuits are defined from arithmetic circuits by a restriction
on the multiplication gate: the sub-circuit associated to one of the arguments of
a multiplication gate α has to be closed, that is only connected to the rest of the
circuit by the arrow going to α. A gate that is not in any such closed sub-circuit is
said to be reusable.

The main difficulty to extend the results is the existence of several reusable
gates. In the case of formulas, there is a single output. Therefore, there is a single
vertex t in the graph for which the sum of the weights of the s-t-paths has to equal a
given expression. This is no longer the case for weakly-skew circuits. If the matrix
we wish to construct is not symmetric, that is if the graph is oriented, this difficulty
is overcome by ensuring that the graph is a directed acyclic graph. In that way,
adding a new vertex cannot change the expressions computed at previously added
vertices. But in the symmetric case, adding a new vertex, for example in the case
of an addition gate, creates some new paths in the graph. Thus it changes the sum
of the weights of the s-tα-paths for some vertex tα.

A solution to this problem is given in Lemma 4 by introducing the notion of
acceptable paths: A path P in a graph G is said acceptable if G \P admits a cycle
cover.
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3.1. Symmetric determinantal representation. For the weakly-skew cir-
cuits, the green size is no longer appropriate. Hence, the results of this section are
expressed in terms of the fat size of the circuits: the fat size of a circuit is its total
number of gates, including the input gates. This measure of circuit size is refined
in Section 3.3.

Theorem 4. Let f be a polynomial computable by a weakly-skew circuit of fat
size m. Then there exists a symmetric matrix A of dimensions at most 2m + 1
whose entries are inputs of the circuit and elements from {0, 1,−1, 1/2} such that
f = detA.

The proof relies on the following lemma. It applies to so-called multiple-output
weakly-skew circuits. This generalization just consists of circuits for which there
exist several out-degree-0 gates.

Lemma 4. Let C be a multiple-output weakly-skew circuit of fat size m. There
exists a graph G with at most 2m+1 vertices and a distinguished vertex s such that
|G| is odd, every cycle in G is even, and for every reusable gate α ∈ C there exists
a vertex tα ∈ G such that

(1) Every s-tα-path (whether acceptable or not) has an odd number of vertices;
(2) For every acceptable s-tα-path P in G, the subgraph G \P is either empty

or has a unique cycle cover, which is a perfect matching of weight 1;
(3) The following equality holds in G:

(2)
∑

acceptable
s-tα-path P

(−1)
|P |−1

2 w(P ) = fα

where fα is the polynomial computed by the gate α.
Furthermore, the graph G\{s} has a unique cycle cover which is a perfect matching
of weight 1.

Proof. The graph G is built by induction on the (fat) size of the circuit, the
required properties being verified at each step of the induction. If α is a reusable
gate of C, then tα is said to be a reusable vertex of G.

A size-1 circuit is an input gate α with label x. The corresponding graph G has
three vertices: s, tα and an additional vertex vα. There is an edge between s and
vα of weight x, and an edge between vα and tα of weight −1. It is straightforward
to check that G satisfy the conditions of the lemma.

Let m > 1 and suppose that the lemma holds for any multiple-output weakly-
skew circuit of size less than m. Let C be a multiple output weakly-skew circuit of
size m, and α be any of its outputs.

If α is an input gate with label x, let C ′ = C \ {α} and G′ the corresponding
graph with a distinguished vertex s. The graph G is obtained from G′ by adding
two new vertices vα and tα, an edge of weight x between s and vα and an edge of
weight −1 between vα and tα (see Fig. 12). The vertex s is the distinguished vertex
of G. The size of G is |G| = |G′| + 2 ≤ (2(m − 1) + 1) + 2 = 2m + 1. Thus |G|
is odd. A cycle in G is either a cycle in G′ or one of the two cycles svα or vαtα,
so every cycle in G is even. The size-3 path from s to tα is acceptable (as G′ \ {s}
has a unique cycle cover of weight 1) and satisfies (2). Now, any other reusable
gate β belongs to C ′, so the conditions are satisfied by induction hypothesis (it is
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x C ′

s
x

vα

−1 G′

tα

Figure 12. Induction step when α is an input gate.

β

C ′

s

γ tγ
G′

tα

C ′
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β
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tβ tβ

tα

vα vα−1 −1
2

Figure 13. Induction step when α is an addition gate.

sufficient to remark that when s is removed, vα and tα are disconnected from the
rest of the circuit, and a cycle cover has to match those two vertices).

If α is an addition gate, let C ′ = C\{α} and suppose that α receives arrows from
gates β and γ. Note that β and γ are reusable. Let G′ be the graph corresponding
to C ′, and s be its distinguished vertex. G′ contains two reusable vertices tβ and
tγ . The graph G is obtained by adding two vertices vα and tα, and the following
edges: tβvα and tγvα of weight 1, and vαtα of weight −1 (see Fig. 13). If β = γ,
then G′ contains a vertex tβ , and we merge the two edges adjacent to tβ and tγ
into an edge tβvα of weight 2. Then |G| = |G′| + 2 ≤ 2m + 1, and |G| remains
odd.

Every s-tδ-path for some reusable gate δ in C ′ is even. A cycle in G is either
a cycle in G′, or the cycle vαtα, or is made of a tβ-tγ-path P in G′ plus the vertex
vα. Let P ′ be a s-tβ-path and u the first vertex of P ′ belonging to P . Then,
P ′ = s, . . . , u, . . . , tβ and P ′′ = s, . . . , u, . . . , tγ are both path with an odd number
of vertices. In particular the sizes of u, . . . , tβ and u, . . . , tγ are of same parity. Thus
P is of odd size and P ∪{vα} is an even-size cycle. Hence, every cycle in G is even.
An acceptable path in G is either an acceptable path in G′ or a path from s to tα.
Indeed, the only way to cover tα in a cycle cover is to match it with vα. Therefore,
no acceptable path goes through tβ, vα and tγ . So, the reusable gates in C ′ satisfy
the conditions of the lemma by induction. Any acceptable path P from s to tα is
an acceptable path P ′ from s to tβ or tγ followed by a path from tβ or tγ to tα.
Thus |P | = |P ′|+ 2 is odd and G \P = G′ \ P ′ has a unique cycle cover which is a
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β

C1

s

γ tγ

G1

tα = tβ

C2
G2

Figure 14. Induction step when α is a multiplication gate.

perfect matching of weight 1. Finally,∑
acceptable
s-tα-path P

(−1)
|P |−1

2 w(P )

=
∑

acceptable
s-tβ-path Pβ

(−1)
|Pβ |+2−1

2 (−1 · w(Pβ)) +
∑

acceptable
s-tγ -path Pγ

(−1)
|Pγ |+2−1

2 (−1 · w(Pγ))

=
∑
Pβ

(−1)
|Pβ |−1

2 w(Pβ) +
∑
Pγ

(−1)
|Pγ |−1

2 w(Pγ)

=fβ + fγ = fα.

If α is a multiplication gate, α receives arrows from two distinct gates β and
γ. Exactly one of those gates, say β, is not reusable and removing the gate α
yields two disjoint circuits C1 and C2 (say β belongs to C1 and γ to C2). Let
G1 and G2 be the respective graphs obtained by induction from C1 and C2, with
distinguished vertices s1 and s2 respectively. The graph G is obtained as in Fig. 14
as the union of G1 and G2 where tγ and s1 are merged, the distinguished vertex
s of G being the distinguished vertex s2 of G2, and tα being equal to tβ . Then
|G| = |G1|+ |G2|− 1, so |G| is odd, and if m1 and m2 are the respective sizes of C1

and C2 (m = m1+m2+1), then |G| ≤ 2m1+1+2m2 +1− 1 = 2m− 1. A cycle in
G is either a cycle in G1 or a cycle in G2 and is therefore even. The reusable gates
of C are α and the reusable gates of C2 (by definition, C1 is closed and in particular
tβ is not reusable). A path (in G) from s to a reusable gate of G2 cannot enter G1

so the reusable gates of G2 satisfy the first and the third conditions in the lemma.
Furthermore, if such a path P is removed from G, the only cycle cover of G \ P
has to be made of a cycle cover of G2 \ P and a cycle cover of G1 \ s1. Indeed, the
vertex s1 = tγ has to be either in a cycle cover of G1 or in a cycle cover of G2. But
G2 \ (P ∪ {tγ}) is a graph of odd size and cannot be covered by cycles of even size
and G1 is also of odd size. Thus, the reusable gates in G2 also satisfy the second
condition of the lemma. It remains to prove that the reusable gate α satisfies the
conditions of the lemma:

(1) A s-tα-path P is a s-tγ-path Pγ followed by a s1-tβ-path Pβ. Thus |P | =
|Pγ |+ |Pβ | − 1 as tγ = s1 and |P | is odd.

(2) The graph G \ P is the disjoint union of (G2 \ Pγ) and (G1 \ Pβ), so by
induction G \ P is either empty or has a unique cycle cover which is a
perfect matching of weight 1.
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(3) As w(P ) = w(Pγ)w(Pβ), we have

(−1)
|P |−1

2 w(P ) = (−1)
|Pγ |+|Pβ |−2

2 w(Pγ)w(Pβ)

= (−1)
|Pγ |−1

2 w(Pγ)× (−1)
|Pβ |−1

2 w(Pβ),

whence∑
P

(−1)
|P |−1

2 w(P ) =
∑
Pγ

(−1)
|Pγ |−1

2 w(Pγ)×
∑
Pβ

(−1)
|Pβ |−1

2 w(Pβ)

= fγ × fβ

= fα.

Finally, the only way to cover G \ {s} is to cover G2 \ {s2} on one hand and
G1 \ {s1} on the other hand for parity reasons as before. The weight of this cover
is the product of the weights of the covers of G1 and G2, that is 1. �

Proof of Theorem 4. Let C be a weakly-skew circuit computing the poly-
nomial f , and G be the graph built from C in Lemma 4. The circuit C has a unique
output, and there exists in G a vertex t corresponding to this output. Let G′ be the
graph obtained from G by adding an edge between t and s of weight 1

2 (−1)
|G|−1

2 .
There is no cycle cover of G′ containing the 2-cycle st. Indeed, |G′ \ {s, t}| is

odd and G contains only even cycles. This means that a cycle cover of G′ contains
a cycle made of a s-t-path plus (t, s) or a t-s-path plus (s, t). Let P be such a path.
Then G′ \P = G\P . Hence, by Lemma 4, there is exactly one cycle cover of G′ \P
and it is a perfect matching of weight 1. This means that there is a one-to-one
correspondence between the cycle covers of G′ and the paths from s to t or from t
to s. There is also a one-to-one correspondence between the paths from s to t and
the paths from t to s.

Let us recall that the sign of a cycle cover is the sign of the underlying per-
mutation and its signed weight is the product of its sign and weight. Let C be a
cycle cover of G′ involving the s-t-path P . The previous paragraph shows that the
weight of C equals 1

2 (−1)
|G|−1

2 w(P ). As C has an odd cycle and a perfect matching,
its sign is (−1)|G\P |/2, that is the number of couples in the perfect matching. The
inverse cycle cover C̄ of G′ has the same signed weight as C. Hence the sum of the
signed weights of all cycle covers of G′ equals twice the sum over all s-t-paths P

of 1
2 (−1)

|G|−1
2 (−1)

|G\P |
2 w(P ) = 1

2 (−1)
|P |−1

2 w(P ). By Lemma 4, this equals f and
Lemma 1 concludes the proof.

�
3.2. Symmetric determinantal representation of the determinant. Let

us denote by DETn the formal determinant of the n × n matrix (xi,j). This pol-
ynomial has a weakly-skew circuit of size-O(n5) ([2, 22]) or even O(n4) if we use
algebraic branching program constructed by Mahajan and Vinay [20]. This weakly-
skew circuit can be represented by a determinant of a symmetric matrix as proved
in this paper in Theorem 4.

After a talk from one of us presenting our results, Meena Mahajan and Prajakta
Nimbhorkar have communicated us the following theorem, which shows that for the
determinant polynomial, the symmetrization can be done more efficiently that in
the general case. As this result is not published, we find interesting to give here its
proof.
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Theorem 5 (Meena Mahajan and Prajakta Nimbhorkar). For every n there
is a symmetric matrix M of dimensions 4n3 + 7 and entries in {xi,j | 1 ≤ i, j ≤
n} ∪ {0; 1;−1; 1/2} such that DETn = detM .

Proof. Construct the weighted graph G′ computing DETn with the method
used in Section 3 of [20]. It is a directed acyclic weighted graph with three distin-
guished vertices s, t+ and t−. Every weight is 0, 1 or a variable xi,j . The graph
satisfies

DETn =
∑

s−t+−path P in G′

w(P )−
∑

s−t−−path P in G′

w(P )

Moreover, this graph has 2n3+3 vertices, at most 4n4 edges and the following nice
structure: it is made of n + 1 layers, the first layer being s and the last one being
{t+, t−}. Every edge is from a layer i to a layer i + 1. As a consequence, every
s-t+-path has n+ 1 vertices, and so has every s-t−-path.

From the graph G′ we can easily obtain an algebraic branching program G
for computing DETn: add a vertex t, an edge (t+, t) of weight 1 and an edge
(t−, t) of weight −1. We could then proceed to built from this algebraic branching
program a skew-circuit of size O(n4) (see for example proof of Proposition 1 in [14])
and then a symmetric determinantal representation of dimensions O(n4) with the
method described in Theorem 4. But symmetrizing directly the algebraic branching
program G allows us to achieve a better bound as we are going to see.

Let V be the set of vertices of G \ {s, t} and E be the set of edges of G. The
symmetric weighted graph Gs is defined as follows by duplicating vertices in graph
G. The set of its vertices is {sout, tin} ∪ {uin, uout | u ∈ V }. The set of its edges
is {uoutvin | (u, v) ∈ E} ∪ {uinuout | u ∈ V }. Weights on edges are defined by
w(uoutvin) = w(u, v) and w(uinuout) = 1. The graph Gs has 4n3 + 6 vertices
arranged in 2n+ 2 layers and satisfies the following property:

(3) DETn =
∑

acceptable
sout-tin-path P in Gs

w(P )

Recall that a path P in a graph Gs is called acceptable if Gs \ P admits a cycle
cover.

To prove Property 3, let us have a look at some acceptable sout-tin-path Ps

in Gs and at some cycle cover C of Gs \ Ps. We prove that for every u ∈ V , the
vertices uin and uout are both in Ps or together in a length-2 cycle of C. The first
vertex of the path Ps is sout. The second vertex is some u1,in where u1 is a vertex
of the second layer of G. The third vertex is u1,out as u1,in is only linked to sout
and u1,out. Let us now consider another vertex vin where v belongs to the second
layer of G. It is only linked to sout and vout, and so it is not in Ps but belongs to
the weight 1 and length-2 cycle vinvout in C. The same reasoning applies to the
following layers. Thus we just proved that there is a weight-preserving bijection
between acceptable sout-tin-paths in Gs and s-t-paths in G. Moreover, for every
acceptable sout-tin-paths Ps in Gs, the graph Gs \ P has only one cycle cover,
which is of weight 1 and sign (−1)|Gs\Ps|/2 = (−1)2n

3−n+2 = (−1)n. Because of
the symmetry of the graph we also have:

(4) DETn =
∑

acceptable
tin-sout-path P in Gs

w(P )
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and thus

(5) DETn =
1

2

∑
acceptable

sout-tin-path P in Gs

w(P ) +
1

2

∑
acceptable

tin-sout-path P in Gs

w(P )

Remark that every cycle in Gs is even because of its layer structure. Let Ḡ be
the graph Gs augmented with a new vertex c and the edges tinc of weight 1/2 and
csout of weight (−1)n, and let M be its adjacency matrix. The end of the proof is
similar to the one of Theorem 2. The only odd cycles in Ḡ are the ones including c
and a sout-tin-path or a tin-sout-path P . As an odd graph can not be decomposed
in even cycles, every cycle decomposition of in Ḡ has one of these odd cycles. It was
proven above that the rest of the graph has only one possible cycle decomposition.
Thus by (5):

(6) DETn =
∑

cycle cover C in Ḡ

sgn(C) w(C)

According to Lemma 1 we have

(7) det(M) =
∑

cycle cover C in Ḡ

sgn(C) w(C)

and thus the result

(8) DETn = det(M)

�

3.3. Minimization. The aim of this section is to refine the bound we obtained
in Section 3.1, using the notion of green size that was defined in Section 2.1 (and
matches the notion of size used in [19]). As mentioned before, one can refine this
notion of green size. It relies on the idea already mentioned by Liu and Regan for
the formulas: One can add weights on the arrows of the circuit. If there is an arrow
from a gate α to a gate β with weight c, then β receives as argument the value
cfα where fα is the polynomial computed by α. Such a circuit is called a weighted
circuit. Of course, a classical circuit is a weighted one with all weights equal to 1.

To refine the notion of green size, the idea is to avoid counting the variable-free
sub-circuit. The next lemma shows that it is possible to do this in a very simple
way.

Lemma 5. If C is a weighted circuit, then there exists an equivalent weighted
circuit C ′ with the same number of inputs labelled by a variable and at most the
same number of computation gates such that:

(1) An input gate is labelled either by a variable or the constant 1, and the
constant inputs have out-degree 1;

(2) An addition gate has at most one constant argument and this argument is
an input gate;

(3) A multiplication gate has both arguments non-constant.
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c1 c2
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γ
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Figure 15. Minimization for a multiplication gate.

c1 c2
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γ cc1c2

γ

1

Figure 16. Minimization for the output gate.

Proof. One can suppose that there exists some input gate labelled by a vari-
able, otherwise the polynomial computed by C would be constant. To obtain the
three points, each of the four following rules is recursively applied to C. Each rule
is applied as long as possible before we apply the next one. We never go back to a
previous rule.

(1) Every input gate labelled by a constant c is replaced by an input gate
labelled by 1, and the weight of an arrow going from it is multiplied by c.
If there are several arrows going from this input gate, it is duplicated so
that each copy has out-degree 1.

(2) Every computation gate α that has both arguments constant is replaced
by an input gate labelled by 1, and the weight of every arrow going from
it is multiplied by the value α computed. As in previous step, the new
input gates are duplicated to have out-degree 1.

(3) If a multiplication gate α with positive out-degree has one constant ar-
gument β labelled by 1 and with an arrow from β to α of weight c1, and
another argument γ, non-constant, with an arrow of weight c2, then α
and β are deleted, and every arrow going from α of weight c is replaced
by an arrow going from γ of weight cc1c2 (see Fig. 15).

(4) If the output gate α is a multiplication with one constant argument β
with an arrow of weight c1 going from β to α and the other argument γ,
non-constant, with an arrow from γ to α of weight c2, then α and β are
deleted, γ becomes the new output gate, and the weight of every arrow
coming to γ is multiplied by c1c2 (see Fig. 16).

The first two rules ensure that all the constant input gates are labelled by 1 and
have out-degree 1. After the second rule, each computation gate has at most one
constant argument, and that it is an input gate. Then rules 3 and 4 delete all
multiplication gates that have a constant argument. �
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Note that the above lemma is valid for any kind of arithmetic circuit, and that
the construction does not change the nature of the circuit. So this can be applied
to a formula to get a formula, or to a weakly-skew circuit to get a weakly-skew
circuit.

Definition 7. Let C be an arithmetic circuit. Then the circuit C ′ obtained in
Lemma 5 is the minimized circuit associated to C, and written min(C). The green
size of C is equal to the skinny size of min(C), that is the number of computation
gates in min(C).

Note that this definition does not exactly match Definition 6 in the case of
formulas, but is equivalent to the size mentioned right after the definition. In fact,
the way of defining the green size we use here yields a smaller size. Nevertheless,
it is easy to see that the results obtained in Section 2.2 remain true with this new
definition.

Theorem 6. Let f be a polynomial computable by a weighted weakly skew
circuit of green size e and with i inputs labelled by a variable. Then there exists a
symmetric matrix A of dimensions at most 2(e+ i) + 1 whose entries are inputs of
the circuit and elements of {0, 1,−1, 1/2} such that f = detA.

Proof. The first step is to use Lemma 5 to minimize the circuit. Thus in the
sequel the circuit is supposed to be a minimized weighted weakly-skew circuit. It
is sufficient to show how to manage the constants in the construction of Lemma 4.

The idea is to have the same construction as in Lemma 4 but with the last
property changed: for every reusable gate α, there exists a constant cα such that

(9) cα ·
∑

acceptable
s-tα-path P

(−1)
|P |−1

2 w(P ) = fα.

The changes in the construction only concern the induction steps for computation
gates (that is for multiplication and addition gates).

Suppose that α is an addition gate with one constant argument, say β, with
an arrow from β to α of weight c1. Suppose the second argument of α is a non-
constant gate γ with an arrow from γ to α of weight c2. By induction, there exists
a graph Gγ of size 2((e − 1) + i) + 1 that satisfies the conditions. In particular,
there exists a distinguished vertex s, and a vertex tγ with the required properties
(let cγ be the associated constant). Then G is obtained by adding two new vertices
vα and tα and the following edges: an edge tγvα of weight c2cγ , an edge vαtα of
weight −1, and an edge svα of weight c1 (see Fig. 17). One can check that G
satisfies the required properties. In particular, tα satisfies (9) with the constant 1,
and |G| = |Gγ |+ 2 = 2((e− 1) + i) + 1 + 2 = 2(e+ i) + 1.

Suppose that α is an addition gate, receiving arrows from non-constant gates β
and γ. There exist constants cβ and cγ such that (9) holds for β and γ. Suppose that
the arrows from β and γ to α have respective weights c1 and c2. The construction
for the induction step in the same as in the proof of Lemma 4, on Fig. 13, with the
following changes: the edges tβvα and tγvα are respectively weighted cβc1 and cγc2.
Note that this does not change the weight of the perfect matching as those edges
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Gγ

s

c1

tγ
c2cγ

vα −1
tα

cγ
γ

c2c1

1

Figure 17. Graph obtained for the sum of a constant and a sub-circuit.

never belong to those matchings. As in that case, fα = c1fβ + c2fγ , we obtain∑
acceptable
s-tα-path P

(−1)
|P |−1

2 w(P )

=
∑

acceptable
s-tβ-path Pβ

(−1)
|Pβ |+2−1

2 (−c1cβ · w(Pβ)) +
∑

acceptable
s-tγ -path Pγ

(−1)
|Pγ |+2−1

2 (−c2cγ · w(Pγ))

=c1 ·
(
cβ ·

∑
Pβ

(−1)
|Pβ |−1

2 w(Pβ)

)
+ c2 ·

(
cγ ·

∑
Pγ

(−1)
|Pγ |−1

2 w(Pγ)

)

=c1fβ + c2fγ = fα.

Note that the constant cα associated to tα is equal to 1 in that case. If β = γ, with
the same notations as above, it is sufficient to replace the weight-2 edge tβvα by an
edge of weight 2c1cβ .

In the case of a multiplication gate, the construction (shown in Fig. 14) has
no available edge to put the constants. But here, if the arrows from β and γ
to α are still labelled by c1 and c2 respectively, then fα = c1c2fβfγ . Thus, the
same construction is kept, and the constant cα associated to α is defined to be
cα = c1c2cβcγ (where cβ and cγ are respectively associated to β and γ).

It remains to adapt the proof of Theorem 4 to this case. This is easily done by
multiplying the weight of the edge between s and t by the constant associated to
the output gate. �

4. Comparison with Quarez’s results

In this section, a comparison between our results and those in [24] is made.
While Quarez builds matrices of fixed dimensions (depending only on the degree of
the polynomial and its number of variables), we build matrices whose dimensions
are polynomial in the size of the input formula or weakly-skew circuit. Conse-
quently, if a polynomial can be represented as a formula or a weakly-skew circuit of
small size (say polynomial in the number of variables and in the degree), then our
constructions yield much smaller matrices than Quarez’s. This is for example the
case for the determinant polynomial (that is the determinant of a matrix of inde-
terminates) which is known to have a polynomial size weakly-skew circuit, or of the
polynomial defined as the sum of all possible monomials of degree at most d (for
this, see below). On the other hand, some polynomials are not known to have such
polynomial size formulas or weakly-skew circuits. A famous example among those
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is the permanent. We shall see that our constructions also yield better bounds in
that interesting case. In the most general case though, our constructions may yield
bigger matrices. The next theorem quantifies this.

Theorem 7. Let p be a degree-d polynomial in n variables over a field k of
characteristic different from 2. Then p admits a formula of skinny size

F (n, d) ≤
(
n+ d+ 1

n+ 1

)
−
(
n+ d− 1

n+ 1

)
− 2.

This yields a symmetric determinantal representation of dimensions

S(n, d) ≤ 4

(
n+ d− 1

n

)
− 2.

Proof. Let Pn,d a degree-d polynomial in n variables {x1, . . . , xn}. We shall
build a weighted formula in the sense of Section 3.3, that is a formula with inputs
in {1, x1, . . . , xn} and with weights on the wires. We will first give an algorithm to
build such a formula, and then derive an upper bound on the size of the formula
so constructed.

In order to clarify the construction, let us homogenize the polynomial Pn,d with
a new variable x0. There exists two homogeneous polynomials Pn,d−1 and Pn−1,d

such that Pn,d−1 is a polynomial of degree at most (d− 1) in (n+ 1) variables and
Pn−1,d is a polynomial of degree at most d in variables x0, . . . , xn−1 which satisfy

(10) Pn,d = xn · Pn,d−1 + Pn−1,d.

Along with the equations Pk,1 = a0x0+a1x1+ · · ·+akxk and P0,δ = p0x
δ
0, this gives

a formula for the polynomial Pn,d. Clearly, some Pk,δ may be the zero polynomial.
The rest of the proof is devoted to compute a bound on the size of the formula

obtained by Equation (10). Let F (n, d) denote the bound on the size of the formula
computing Pn,d: F (n, d) ≤ F (n − 1, d) + F (n, d − 1) + 2. For the base cases,
F (k, 1) ≤ k for all k, F (0, δ) ≤ δ− 1. Let G(N, d) = F (N − d− 1, d)+2 (for N > d
and d ≥ 1). Then G(N, d) satisfies Pascal’s formula

(11) G(N, d) ≤ G(N − 1, d) +G(N − 1, d− 1)

and G(δ + 1, δ) ≤ δ + 1, G(k + 2, 1) ≤ k + 2. Thus G(N, d) is bounded from above
by the binomial coefficient

(
N
d

)
, so we obtain

(12) F (n, d) ≤
(
n+ d+ 1

d

)
− 2.

This gives a first bound on F (n, d), somewhat bigger than the one announced. This
comes from the fact that the base case bound F (0, δ) ≤ δ − 1 is too large: As the
new variable x0 is for homogenization, the actual formula is obtained by replacing
it by 1 and therefore the formula for P0,δ = p0x

δ
0 is made of a single input labelled

by 1 with the constant p0 on the wire going from it. So F (0, δ) = 0.
This remark yields the same equation as Equation (11) for G but with a new

base case G(δ + 1, δ) = 2. A general form for such recurrences is

G(N, d) =
d∑

j=0

aj

(
N

d− j

)

for some aj . Nevertheless, the values we get for the aj if we apply this equation to
the base cases are not really explicit. Therefore, we shall proceed in a different way:
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the new bound for G(N, d) is computed as the difference between the bigger bound(
N
d

)
and the number of P0,δ that were counted. In the recurrence (10), consider the

recursion tree: Suppose that the vertex corresponding to Pn,d−1 is the left child
of the vertex corresponding to Pn,d, and Pn−1,d its right child. The root of the
recursion tree corresponds to the output of the formula, and its leaves to some Pk,1

or some P0,δ. The quantity to count is the number of leaves corresponding to some
P0,δ. A path from the root Pn,d to P0,δ has to decrease the first argument from n
to 0 and the second from d to δ. In the recursion tree, this corresponds to a path
going n times to the right and (d − δ) times to the left. Moreover, such a path
finishes by a move from P1,δ to its right child P0,δ, as P0,δ+1 has no child. Let us
define the set of strings Wi,j as

Wi,j = {w ∈ {L,R}∗ : |w|R = i and |w|L = j} .

The cardinality of Wi,j is
(
i+j
i

)
as an element of this set is determined by the i

places for the letters R in a length-(i + j) word. As the path from Pn,d to P0,δ

finishes by a right move, the number of P0,δ occurring in the recursion tree is equal
to the cardinality of Wn−1,d−δ, that is

(
n+d−δ−1

n−1

)
. And for each P0,δ, the original

bound counted (δ − 1) operations instead of zero. Thus, to get a tighter bound we
have to subtract

d∑
δ=1

(δ − 1)

(
n+ d− δ − 1

n− 1

)
=

d−1∑
j=0

(d− j − 1)

(
n+ j − 1

j

)
.

Let Monjn (resp. Mon≤j
n ) be the set of all monomials in n variables of degree j

(resp. at most j). Then Monjn has cardinality
(
n+j−1

j

)
, and (d − j − 1)

(
n+j−1

j

)
is

the cardinality of the set {xp Monjn : 0 ≤ p ≤ d− j − 2} where x is a fresh variable.
Thus, the sum over j of those quantities is the cardinality of Mon≤d−2

n+1 , that is(
n+d−1
n+1

)
. This gives the first part of the theorem:

F (n, d) ≤
(
n+ d+ 1

n+ 1

)
−
(
n+ d− 1

n+ 1

)
− 2.

In the rest of the proof, we shall give a bound on the dimensions of the matrix
obtained by our construction of Section 2.

In [24], the symmetric matrix that is built contains linear functions as entries
(and not only variables and constants). Therefore, we now give a bound in that
case to permit a tighter comparison between both methods. In other words, we
suppose that the inputs of the formula are not only constants and variables, but
also linear functions. This amounts to defining the size of the arithmetic formula
a0x0 + a1x1 + · · ·+ akxk as 0 instead of k. As in the previous paragraph, a direct
computation where the bounds on the base cases are changed can be done but
yields non explicit formulas. Therefore, we use the same technique as before: The
size of the formula when inputs can be linear functions is the difference between
the size of the classical formula and the number of linear functions that appear.
Those linear functions are the Pk,1 and appear as leaves in the recursion tree. A
leaf labelled by Pk,1 is reachable by a path going (n − k) times to the right and
(d − 1) times to the left. As above, the path finishes by a move from Pk,2 to its
left child Pk,1. Therefore the number of leaves labelled by Pk,1 is the cardinality of
Wn−k,d−2, that is

(
n+d−k−2

n−k

)
. All those leaves count for k additions, thus the total
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number of saved additions is
n∑

k=1

k

(
n+ d− k − 2

n− k

)
=

n−1∑
j=0

(n− j)

(
j + d− 2

j

)
.

The computation is now the same as above and this sum equals
(
n+d−1

d

)
. Using

now Theorem 3, we get a symmetric matrix of dimensions

S(n, d) ≤ 2

[(
n+ d+ 1

n+ 1

)
−
(
n+ d− 1

n+ 1

)
−
(
n+ d− 1

n− 1

)
− 1

]
.

To complete the proof, it is sufficient to use Pascal’s formula twice:(
n+ d+ 1

n+ 1

)
=

(
n+ d

n+ 1

)
+

(
n+ d

n

)

=

[(
n+ d− 1

n+ 1

)
+

(
n+ d− 1

n

)]
+

[(
n+ d− 1

n

)
+

(
n+ d− 1

n− 1

)]

= 2

(
n+ d− 1

n

)
+

(
n+ d− 1

n+ 1

)
+

(
n+ d− 1

n− 1

)
.

�
Note that the bound F (n, d) we obtain with this construction is only better

by a linear factor in n than the obvious formula consisting of a sum of all the
monomials. Indeed, for any j ≤ d, there are at most

(
n+j−1

j

)
monomials of degree

j which use (j − 1) multiplications, and there are at most (
(
n+d
d

)
− 1) additions.

Therefore the size of the formula we get in this way is
d∑

j=1

(j − 1)

(
n+ j − 1

j

)
+

(
n+ d

d

)
− 1 = n

(
n+ d

n+ 1

)
=

n(n+ d)

n+ 1

(
n+ d− 1

n

)
.

The first equality comes from similar techniques as in the previous proof and the
second one is a straightforward computation. This yields a matrix of dimensions
n(n+d)
2(n+1)S(n, d) approximately.

Nevertheless, this is a bound in the worst case, that is for a polynomial Mn,d in
which all the monomials of degree at most d appear. But in this special case one can
change this construction if the aim is to have the polynomial Mn,d itself. Indeed,
the recurrence given by Equation (10) can be altered in the following manner:

Mn,d = xnMn,d−1 +Mn−1,d

= xnMn,d−1 + xn−1Mn−1,d−1 +Mn−2,d

= xnMn,d−1 + · · ·+ x0M0,d−1.

This gives an inductive construction of a skew circuit to compute Mn,d. At step
1, Mn,1 is built, and it is clear that every Mn−k,1 is represented by a gate in the
circuit. At step δ ≤ d, suppose that we have a circuit such that every Mn−k,δ−1

is represented by a gate. Then one can build a circuit with (n + 1) new variable
inputs, (n+1) multiplication gates and n addition gates such that every Mn−k,δ is
represented by a gate. At each step, the circuit size increases by (2n+1) and (n+1)
inputs are added. As the size of the circuit for degree 1 is n with (n + 1) inputs,
the circuit for Mn,d has size (2nd− n+ d− 1) and has (n+ 1)d inputs. This yields
a matrix of polynomial dimensions (in n and d), much smaller than with Quarez’s
construction.
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Let us now compare the bounds of Theorem 7 in the worst case with Quarez’s.
To this end let us consider a polynomial with n variables and of degree 2d. Then
Quarez builds a symmetric matrix of dimensions 2

(
n+d
n

)
whereas our construction

yields a matrix of dimensions 4
(
n+2d−1

n

)
− 2. A bound on the quotient of those

quantities can be given using the inequalities (see e.g. [17])(
n+ d

n

)
≤

(
e(n+ d)

n

)n

and
(
n+ 2d− 1

n

)
≥

(
n+ 2d− 1

n

)n

.

So, the quotient is bounded by(
e(n+ d)

n

)n

·
(

n

n+ 2d− 1

)n

= en ·
(

n+ d

n+ 2d− 1

)n

≤ en.

This means that Quarez’s construction is exponentially better in the general case
even though our construction yields much smaller matrices when the polynomial
has a polynomial size formula or weakly-skew circuit.

We now compare Quarez’s results and ours for the special case of the perma-
nent. This is an important example of a polynomial for which no polynomial size
circuit is known (even non weakly-skew). Nevertheless, there exist formulas for
computing it of much smaller size than the bounds for the general case [25, 7]. For
instance, Ryser’s formula to compute the permanent of a matrix M is

per(A) =
∑

S⊆{1,...,n}
(−1)|S|

n∏
i=1

∑
j /∈S

Mij .

As the sums of variables are not counted, this gives a size-O(n2n) formula, and
hence yields a symmetric matrix of dimensions O(n2n) to represent the permanent.
Let us consider the permanent of a (2n × 2n) matrix. This is a polynomial of
degree 2n with 4n2 variables. Therefore, Quarez’s construction yields a matrix of
dimensions 2

(
4n2+n

n

)
. This quantity can be bounded as above and therefore we get

the following bound (up to a constant factor) for the quotient:(
4n2+n

n

)
n22n

≥
(
(4n2 + n)/n

)n
n4n

≥ 4nnn

n4n
= nn−1.

A more careful computation via Stirling’s formula shows that this quotient is equal
to O(nn−1/2(4e)n) when n tends to infinity.

5. Characteristic 2

In characteristic 2, the constructions of Sections 2 and 3 are not valid anymore
because of the coefficients 1/2 they use. Nevertheless, for a polynomial computable
by a weakly-skew circuit, it is possible to represent its square as the determinant
of a symmetric matrix. On the other hand, representing the polynomial itself
seems to be a challenging problem. For instance, it is not possible to represent the
polynomial xy+z this way [9], but we don’t have for the moment a characterisation
of representable polynomials. Related to these problems, the VNP-completeness
of the partial permanent is also studied. Actually, we give an almost complete
answer to an open question of Bürgisser [4] (Problem 3.1) showing that if the
partial permanent is complete in finite fields of characteristic 2, then the (boolean)
polynomial hierarchy collapses. For any field of characteristic 2 (finite or infinite),
we show that the VNP-completeness of this family would imply that every VNP
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family of polynomials has its square in VPws (i.e. has polynomial size weakly-skew
circuits). This also seems unlikely to happen unless VPws = VNP. We refer to
[4, 22] for the formal definitions of the complexity classes VNP and VPws.

Let G be an edge-weighted graph with vertices {v1, . . . , vn}. Recall that the
adjacency matrix A of G is the (n×n) symmetric matrix defined by Aij = Aji = wij

where wij is the weight of the edge vivj . Suppose now that G is bipartite with two
independent sets of vertices Vr and Vc of cardinality m and n respectively. Let
Vr = {r1, . . . , rm} and Vc = {c1, . . . , cn}. The biadjacency matrix of G (also known
as the bipartite adjacency matrix ) is the (m × n) matrix B such that Bij is the
weight of the edge between ri and cj . This means that the rows of B are indexed
by Vr and its columns by Vc. For a bipartite graph G of adjacency and biadjacency
matrices A and B respectively,

A =

[
0 B
Bt 0

]
.

Throughout this section, we shall use the usual definition of the weight of a
partial matching: it is the product of the weights of the edges it uses.

5.1. Symmetric determinantal representation of the square of a pol-
ynomial.

Lemma 6. Let G be an edge-weighted graph and A its adjacency matrix. In
characteristic 2, the determinant of A is the sum of the weights of the cycle covers
with cycles of length at most 2.

Proof. Let us consider G as a symmetric digraph (that is an edge uv is seen
as both arcs (u, v) and (v, u)). In Lemma 1, the signs of the cycle covers are
considered. In characteristic 2, this is irrelevant. Therefore, the determinant of A
is the sum of the weights of the cycle covers of G.

Let C be a cycle cover of G containing a (directed) cycle of length at least 3
denoted by (v1, v2, . . . , vk, v1). One can change the direction of this cycle (as G is
symmetric) and obtain a new cycle cover C ′ containing the same cycles as C, but
(vk, vk−1, . . . , v1, vk) instead of (v1, v2, . . . , vk, v1). Clearly, the weights of C and C ′

are the same as the graph is symmetric. Therefore, when the determinant of A is
computed in characteristic 2, the contributions of those two cycle covers to the sum
cancel out. This shows that the determinant of a matrix in characteristic two is
obtained as the sum of the weights of cycle covers with cycles of length 1 (loops)
or 2. �

Proposition 1. Let p be a polynomial over a field of characteristic 2, repre-
sented by a weakly-skew circuit of fat size m. Then there exists a symmetric matrix
A of dimensions (2m+ 2) such that p2 = det(A).

Proof. Let C be a weakly-skew circuit representing a polynomial p over a
field of characteristic 2. Let M be the matrix obtained by Malod and Portier’s
construction [22] such that perM = p. Let G be the digraph represented by M ,
and let G′ be the bipartite graph obtained from G by the two following operations:
Each vertex v of G is turned into two vertices vs and vt in G′, and each arc (u, v)
is turned into the edge {us, vt}. A loop on a vertex u is simply represented as the
edge {us, ut}. Let A be the symmetric adjacency matrix of G′ (when the vertices
are ordered vs0, v

s
1, . . . , v

s
m, vt0, . . . , v

t
m).
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It is well-known that cycle covers of G and perfect matchings of G′ are in one-
to-one correspondence. If there is a cycle cover of G, then each vertex v belongs to
a cycle, and thus has both a predecessor v and a successor w. This means that ut

and us are matched to vs and wt respectively (if u is covered by a loop, then us

and ut are matched). Conversely, suppose that G′ has a perfect matching. Let us

be any vertex. Then it is matched to some vt. In the same way, vs is matched to
some wt. As the set of vertices is finite, as some point we go back to ut. Thus it
defines a cycle in G, and by doing the same process with other vertices not in this
cycle this eventually defines a cycle cover in G.

This one-to-one correspondence shows that the determinant of M equals the
sum of the weights of the perfect matchings in G′. If a perfect matching in G′ is
considered as a cycle cover with length-2 cycles, the weight of the cycle cover is the
square of the weight of the perfect matching. Indeed, in the cycle cover, all the arcs
of the length-2 cycles have to be considered, that is each edge contributes twice to
the product. Lemma 6 and the fact that there is no loop in G′ show that

det(A) =
∑
μ

w(μ)2 =
(∑

μ

w(μ)
)2

,

where μ ranges over all perfect matchings of G′ and w(μ) is the weight of the perfect
matching μ. The second equality holds as the field has characteristic 2.

Finally, it is shown in [22] that p = det(M), and we showed that det(M) =∑
μ w(μ) and det(A) =

(∑
μ w(μ)

)2. Therefore, det(A) = det(M)2 = p2. �

This proposition raises the following question: Let f be a family of polynomials
such that f2 ∈ VPws. Does f belong to VPws? This question is discussed with more
details in the next section.

5.2. Is the partial permanent complete in characteristic 2?

Definition 8. Let X = (Xij) be an (n × n) matrix. The partial permanent
of X, as defined by Bürgisser [4], is

per∗(X) =
∑
π

∏
i∈def(π)

Xiπ(i),

where the sum ranges over the injective partial maps from [n] = {1, . . . , n} to [n]
and def(π) is the domain of the partial map π (recall that a partial map is a map
from a subset of [n] to [n]).

The family (PER∗
n) is the family of polynomials such that PER∗

n is the partial
permanent of the (n× n) matrix whose coefficients are the indeterminates Xij .

Lemma 7. Let G be the complete bipartite graph with two independent sets of
vertices Vr and Vc such that the edge between ri and cj is labelled by Bij (the matrix
B is the biadjacency matrix of G). Then the partial permanent of B is equal to the
sum of the weights of the partial matchings of G.

A partial matching in a graph G is a set of pairs of vertices connected by
an edge such that no vertex appears in more than a pair. Equivalently, a partial
matching can be seen as a set of disjoint edges. The weight of a partial matching
is the product of the weights of its edges.
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The proof of the lemma is quite straightforward as a partial injective map π
from [n] to [n] exactly defines a partial matching in G such that for i ∈ def(π), ri
is matched with cπ(i).

Lemma 8. Let G be the complete bipartite graph with two independent sets
of vertices Vr and Vc such that the edge between ri and cj is labelled by Bij (the
matrix B is the biadjacency matrix of G). Let A be its adjacency matrix. Then in
characteristic 2,

det(A+ I2n) = (per∗(B))2,

where I2n is the identity matrix of dimensions 2n.

Proof. By Lemma 6, to compute a determinant in characteristic 2, one can
focus only on cycles of length at most 2. A cycle cover with such cycles actually is
a partial matching when the graph is symmetric (length-2 cycles define the pairs of
vertices, and length-1 cycles are isolated vertices). Considering G as a symmetric
digraph, the weight of a cycle cover is equal to the product of the weights of its
loops and the square of the weights of the edges it uses (a length-2 cycle corresponds
to an edge).

Consider the graph G′ obtained from G by adding weight-1 loops on all its
vertices. In other words, G′ is the graph whose adjacency matrix is A + I2n. By
the previous remark, and by the fact that the loops have weight 1, the determinant
of A+ I2n is

det(A+ I2n) =
∑
μ

w(μ)2 =
(∑

μ

w(μ)
)2

where μ ranges over the partial matchings of G′ and w(μ) is the weight of the
partial matching μ. The second equality is true as the characteristic of the field is
2.

Recall now that G is bipartite. Of course, the partial matchings of G and G′

are the same. So
per∗(B) =

∑
μ

w(μ),

where μ ranges over the partial matchings of G. This proves the lemma. �
An alternative proof of this lemma was suggested by an anonymous referee. In

any field, we have the polynomial identity per(A+ tI2n) =
∑2n

k=0 ckt
2n−k, where ck

is the sum of the permanents of all central minors of A of size k. In particular, we
have det(A+ I2n) =

∑2n
k=0 ck in characteristic 2. A nonzero permanent of a central

minor of A is of the form

per

[
0 M

MT 0

]
= per(M)2,

where M is a square submatrix of B. Hence det(A+I2n) =
∑

M⊆B per(M)2, where
M ranges over all square submatrices of B. Since we are in characteristic 2, this
last sum is equal to (

∑
M⊆B per(M))2. But we have per∗(B) =

∑
M⊆B per(M) by

definition of the partial permanent, and the conclusion of the lemma follows.
Lemma 8 shows in particular that to compute the parity of the number of

partial matchings in a bipartite graph, it is sufficient to compute a determinant
(this is the case where G is not edge-weighted). Therefore, this problem is solvable
in polynomial time. This was already mentioned by Valiant [29] but without any
proof or reference.
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Theorem 8. In characteristic 2, the family ((PER∗)2n) is in VPws.

Proof. The previous lemma shows that the polynomial (PER∗)2n is a p-
projection of DET2n in characteristic 2. Thus, ((PER∗)2n) is in VPws. �

Suppose that (PER∗
n) is VNP-complete. Then every VNP family (fn) is a p-

projection of (PER∗
n), and thus (f2

n) is a p-projection of ((PER∗)2n). Let VNP2 =
{(f2

n) : (fn) ∈ VNP} be the class of squares of VNP families. This implies the
following corollary of the theorem:

Corollary 1. In any field of characteristic 2, if (PER∗
n) is VNP-complete,

then VNP2 ⊆ VPws.

This situation is unlikely to happen. In particular, it would be interesting to
investigate whether this inclusion implies that VPws = VNP in characteristic 2. Let
us now give another consequence of (PER∗

n) being VNP-complete. This only holds
for finite fields of characteristic 2 but may give a stronger evidence that (PER∗

n) is
unlikely to be VNP-complete.

Theorem 9. If the partial permanent family is VNP-complete in a finite field of
characteristic 2, then ⊕P/poly = NC2/poly, and the polynomial hierarchy collapses
to the second level.

The proof of this theorem uses the boolean parts of Valiant’s complexity classes
defined in [4]. In the context of finite fields of characteristic 2, the boolean part of
a family (fn) of polynomials with coefficients in the ground field F2 is the function
bpf : {0, 1}∗ → {0, 1} such that for x ∈ {0, 1}n, bpf (x) = fn(x) (mod 2). The
boolean part BP(C) of a Valiant’s class C is the set of boolean parts of all f ∈ C.

Proof. Let (fn) be a VNP family and (ϕn) its boolean part. As ϕn(x) ∈
{0, 1} for all x ∈ {0, 1}n, (ϕn) is the boolean part of (f2

n) too. This shows that
BP(VNP) ⊆ BP(VNP2). By Corollary 1, VNP2 ⊆ VPws ⊆ VP. Thus, BP(VNP) ⊆
BP(VNP2) ⊆ BP(VP) and as VP ⊆ VNP

BP(VP) = BP(VNP).

Bürgisser [4] shows that in a finite field of characteristic 2, ⊕P/poly = BP(VNP),
and BP(VP) ⊆ NC2/poly. Hence, ⊕P/poly ⊆ NC2/poly. Moreover, NC2/poly ⊆
P/poly ⊆ ⊕P/poly hence we conclude that

⊕P/poly = NC2/poly.

The collapse of the polynomial hierarchy follows from a non uniform version
of the Valiant-Vazirani Theorem [30]: Theorem 4.10 in [4] states that NP/poly ⊆
⊕P/poly. Therefore,

NC2/poly ⊆ NP/poly ⊆ ⊕P/poly = NC2/poly.

In particular, P/poly = NP/poly and Karp and Lipton [16] showed that this implies
the collapse of the polynomial hierarchy to the second level. �

Since the submission of this paper, Bürgisser’s open problem has been com-
pletely settled. Guillaume Malod [21] has proved, using clow sequences à la Maha-
jan and Vinay [20], that PER∗ ∈ VPws. Stefan Mengel subsequently noticed that
the result can be derived from a result of Valiant on Pfaffian Sums [28], see also
[10].
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Figure 18. Graphs obtained from the weakly-skew circuit and
the formula given in Fig. 1(b) and (c).

6. Conclusion

Figure 18 shows the graphs obtained from the weakly-skew circuit and the
formula of Fig. 1(b) and (c) for a field of characteristic different from 2, and Table 2
recalls all the constructions used in this paper.

Table 1 compares the results obtained, in this paper and in previous ones. The
bounds are given for a formula of green size e and for a weakly-skew circuit of green
size e with i input gates labelled by a variable.

Non-symmetric Symmetric
matrix matrix

Formula e+ 1 2e+ 1a

Weakly-skew circuit (e+ i) + 1 2(e+ i) + 1

aThe bound is achieved if and only if the entries can be complex numbers. Else, the bound is
2e+ 2.

Table 1. Bounds for determinantal representations of formulas
and weakly-skew circuits. The bounds for symmetric representa-
tions are new, and the bound for a non-symmetric representation
of a weakly-skew circuit is a slight improvement of known bounds.

The (e + 1) bound for the representation of a formula by a (non-symmetric)
matrix determinant was given in [19] by a method purely based on matrices. We
show in Section 2.1 that this bound can also be obtained directly from Valiant’s
original proof when we remove the little flaw it contains. The (e + i + 1) bound
for the representation of a polynomial computed by a weakly-skew circuit can be
obtained from the (m+ 1) bound (where m is the fat size of the circuit) obtained
in [22] if we use our minimization lemma (Lemma 5) as well as a similar trick as
in the proof of Theorem 6. Both bounds for the symmetric cases are given in this
paper.
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Table 2. Summary of the constructions
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A formula is a special case of weakly-skew circuit. If our construction for
weakly-skew circuits is applied to a formula, this yields a matrix that can be as
large as twice the size of the matrix obtained with the specific constructions for the
formulas. In the converse way, one could turn a weakly-skew circuit into a formula
and then apply the construction for the formula. Yet, turning a weakly-skew circuit
into a formula of polynomial size is not known to be possible. In fact, this would
give a polynomial size formula for the determinant, and hence a parallel time upper
bound of O(logn). So far, the best upper bound is Csansky’s famous O(log2 n)
upper bound [6].

All of these results are valid for any field of characteristic different from 2. We
showed that there are some important differences for the complexity of polynomials
over fields of characteristic 2. The question of characterizing which polynomials
can be represented as determinants of symmetric matrices is quite intriguing and
remains open.
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