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Abstract

The polynomial multiplication problem has attracted considerable attention since the early days of
computer algebra, and several algorithms have been designed to achieve the best possible time com-
plexity. More recently, efforts have been made to improve the space complexity, developing modified
versions of a few specific algorithms to use no extra space while keeping the same asymptotic running
time.

In this work, we broaden the scope in two regards. First, we ask whether an arbitrary multiplication
algorithm can be performed in-place generically. Second, we consider two important variants which
produce only part of the result (and hence have less space to work with), the so-called middle and
short products, and ask whether these operations can also be performed in-place.

To answer both questions in (mostly) the affirmative, we provide a series of reductions starting
with any linear-space multiplication algorithm. For full and short product algorithms these reductions
yield in-place versions with the same asymptotic time complexity as the out-of-place version. For the
middle product, the reduction incurs an extra logarithmic factor in the time complexity only when the
algorithm is quasi-linear.

Keywords— arithmetic, polynomial multiplication, in-place algorithm, self reduction

1 Introduction

1.1 Polynomial multiplication

Polynomial multiplication is a fundamental problem in mathematical algorithms. It forms the basis (and
key bottleneck) for other fundamental problems such as division with remainder, GCD computation,
evaluation/interpolation, resultants, factorization, and structured linear algebra (see, e.g., [10, §8–15]
and [3, §2–7,10,12]).

As such, significant effort has gone to improving the time to multiply two size-n polynomials, mainly
following ideas from integers multiplication most notably with Karatsuba’s algorithm [17], Toom-Cook
multiplication [9], and Schönhage-Strassen [22]. More recent results have improved the complexity
further with dedicated polynomial approaches over finite field [13, 15] or over any algebra [7], yielding
the best known quasi-linear time algorithms.
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1.2 Space complexity

After minimizing the runtime, an important question both in theory and in practice is how much extra
space these algorithms require. While the classical algorithm can be made to use only a constant number
of temporary values, all the faster algorithms mentioned above require O(n) space to multiply two size-n
polynomials. In fact, proven time-space trade-offs in the algebraic circuit and branching program models
indicate that space at least polynomial in n is required for any sub-quadratic multiplication algorithm
[21, 1].

But in a model where the output space admits both random writes and reads, these time-space lower
bounds can be broken. [20] developed a variant of Karatsuba’s algorithm using only O(log n) space.
Later, an FFT-based multiplication algorithm using O(n log n) time and constant space was developed
for the case that the coefficient ring contains a suitable root of unity [14]. Space-saving versions of
Karatsuba’s algorithm can also be found in [24, 6, 23, 8].

1.3 Short and middle products

Besides the usual full product computation, two variants have also been extensively studied: the short
product which truncates the output to the first n terms, and the middle product which truncates the
result on both ends. These variants are important especially for power series, and specific variants of
Karatsuba’s algorithm and others have been developed, usually gaining a constant factor compared to
a full product followed by a truncation [19, 12, 11]. For space efficiency, dedicated algorithms are even
mandatory as using full product increases the output size whence the space complexity.

In some specific model of straight line programs, [4] shows that transposing full product yields a
middle product with the same time and space complexities. Nevertheless, such a result does not directly
apply to the more general context of algorithms, since their model allows computations with fixed size
inputs only.

1.4 Our work

In this paper, we develop reductions which transform any multiplication algorithm which uses O(n)
extra space into full, short, and middle product algorithms which use only O(1) extra space. For this
we provide two kinds of reductions: time-space preserving reductions that link the different product
variants; and self-reductions for each variant that reduce space complexity to O(1). The time complexity
for full and short product is the same as that of the original, while that for middle product incurs
an additional log n factor. This improves the O(log n) space of the most space-constrained Karatsuba
algorithm [20], and implies for the first time: in-place versions of Toom-Cook multiplication; in-place
FFT-based multiplication even when the ring does not contain a root of unity; in-place subquadratic
short and middle product algorithms.

We begin by carefully stating our space complexity model and then defining the multiplications prob-
lems in Sections 2 and 3. Our time-space preserving reductions and some equivalences are presented
next in Section 4, followed by the critical self-reductions in Section 5 which prove our main results.

2 Complexity model

We use the model of an algebraic-RAM that is equipped with two kinds of registers: the standard registers
store integers as in the classical Word-RAM model, whereas the algebraic registers store elements from
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the base fieldK of coefficients. As in Word-RAM, we assume that the standard registers can store integers
of size O(log n) where n is the number of coefficients in the inputs.

Word-RAM machines are a classical model in computational complexity, in particular for fine-grained
complexity that classifies the difficulty of polynomial-time problems [25]. We use it in order to distinguish
between the space needed to store indices (that is thus hidden in the standard registers) from the space
needed to store elements from the base field.

Time complexity As mentioned, we use the number of arithmetic operations as the time complexity
measure since the cost of the operations on indices is negligible with respect to arithmetic operations.
Formally, we assume that any ring operation on the algebraic registers has cost 1.

Space complexity We divide the registers into three categories: the input space is made of the (al-
gebraic) registers that store the inputs, the output space is made of the (algebraic) registers where the
output must be written, and the work space is made of (algebraic and non-algebraic) registers that are
used as extra space during the computation. The space complexity is then the maximum number of
work registers used simultaneously during the computation. An algorithm is said to be “in-place” if its
space complexity is O(1), and “out-of-place” otherwise.

One can then distinguish different models depending on the read/write permissions on the input
and output registers:

1. Input space is read-only, output space write-only;

2. Input space is read-only, output space is read/write;

3. Input and output spaces are both read/write.

The first model is the classical one from complexity theory [2]. Despite its theoretical interest, it does
not reflect low-level computation where output is typically in some DRAM or Flash memory on which
reading is no more costly than writing. Furthermore, polynomial multiplication here has a quadratic
lower bound for time × space [1], limiting the possibility for meaningful improvements.

The second model has been used in the context of in-place polynomial multiplication [20, 14]. This
is a very reasonable model since it matches the paradigm of parallel computing with shared memory.
This is the model in which we develop our algorithms.

The third model has been used in the context of straight line programs to provide a generic approach
for preserving memory in Tellegen’s transposition principle [4]. However, this memory model allows to
erase the input registers, which can be problematic especially for recursive algorithms that re-use their
operands. Hence, we will not use this too-permissive model.

Notation The output space in our algorithms is denoted by R and registers are indexed from 0 to n−1.
We write R[k..`[ to denote the registers of indices k to `− 1.

3 Polynomial multiplications

Define the size of a univariate polynomial as the number of coefficients in its (dense) representation; a
polynomial of size n has degree at most n−1. Importantly, we allow zero padding: a size-n polynomial
could have degree strictly less than n− 1; the size indicates only how it is represented.
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Let f =
∑n−1

i=0 fiX
i and g =

∑n−1
i=0 giX

i be two size-n polynomials. Their product h= f g is a polyno-
mial of size 2n− 1, what we call a balanced full product. More generally, if f has size m and g has size
n, their product has size m+ n− 1. We call this case the unbalanced full product of f and g.

We now define precisely the short product, middle product, and half-additive full product.

Definition 3.1. Let f and g be two size-n polynomials. Their low short product is the size-n polynomial
defined as

SPlo( f , g) = ( f · g)mod X n

and their high short product is the size-(n− 1) polynomial defined as

SPhi( f , g) = ( f · g)quo X n.

The low short product is actually the meaningful notion of product for truncated power series. Note
also that the definition of the high short product that we use implies that the result does not depend on
all the coefficients of f and g. The rationale for this choice is to have the identity f g = SPlo( f , g) +
X nSPhi( f , g).

Definition 3.2. Let f and g be two polynomials sizes n+m−1 and n, respectively. Their middle product
is the size-m polynomial made of the central coefficients of the product f g, that is

MP( f , g) =
�

( f · g)quo X n−1
�

mod X m.

If f =
∑

i<n+m−1 fiX
i and g =

∑

j<n g jX
j , then

MP( f , g) =
∑

n−1≤i+ j<n+m−1

fi g jX
i+ j−n+1.

The middle product, most commonly in the special case n = m, arises naturally in several algorithms
manipulating polynomials or power series which are based on Newton’s iteration, such as division or
square root [11].

The most efficient algorithms for middle product are obtained by Tellegen’s transposition principle
from full product algorithms [11, 4], saving constant factor in time complexity compared to the naive
approach. It is not yet known if this transposition or similar one can preserve space complexity. This
question has been established as an open problem in [16], and only answered partially in [4] in a
restricted model.

Definition 3.3. Let f and g be two size-n polynomials, and h be a size-(n − 1) polynomial. The (low-
order) half-additive full product of f and g given h is FP+lo( f , g, h) = h+ f g. Similarly, their high-order
half-additive full product is FP+hi( f , g, h) = X nh+ f g. An in-place half-additive full product algorithm is
an algorithm computing a half-additive full product with h initially stored in the output space.

This variant of the full product which has a partially-initialized output space will be useful to derive
other in-place algorithms.

3.1 Multiplications as linear maps

For ease of explanation, we will use the linear property of polynomial multiplications when an operand
is fixed. Let f =

∑n−1
i=0 fiX

i and g =
∑n−1

i=0 giX
i be two size-n polynomials. If f is fixed, the product
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h = f g can be described as a linear map from Kn to K2n−1. The matrix, denoted MFP( f ), for this map
is to a Toeplitz matrix built from the coefficients of f , and the product f g corresponds to the following
matrix-vector product:















f0
...

. . .
fn−1 f0

. . .
...

fn−1















︸ ︷︷ ︸

MFP( f )

×





g0
...

gn−1





︸ ︷︷ ︸

~g

=













h0

...

h2n−1













︸ ︷︷ ︸

~h

(1)

where MFP( f ) ∈K(2n−1)×n, ~g ∈Kn and ~h ∈K2n−1.
The low and high short products being defined as part of the result of the full product, their cor-

responding linear maps are from Kn to Kn and from Kn to Kn−1 respectively, given by submatrices of
MFP( f ) as follows:





f0
...

. . .
fn−1 . . . f0





︸ ︷︷ ︸

MSPlo( f )





0 fn−1 . . . f1
...

. . .
...

0 fn−1





︸ ︷︷ ︸

MSPhi( f )

(2)

Lastly, the middle product corresponds to a linear map from Kn to Km with larger operand fixed,
given by the m× n Toeplitz matrix









fn−1 fn−2 . . . f1 f0
fn fn−1 f2 f1
...

...
...

...
fn+m−2 fn+m−3 . . . fm−2 fm−1









︸ ︷︷ ︸

MMP( f )

. (3)

4 Time-space preserving reductions

In this section, we compare the relative difficulties of the full product, the half-additive full product,
the low and high short products, and the balanced middle product, in the framework of time and space
efficient algorithms. To this end, we define a notion of time and space preserving reduction between
problems.

We say that a problem A is TISP-reducible to a problem B if, given an algorithm for B that has time
complexity t(n) and space complexity s(n), one can deduce an algorithm for A that has time complexity
O(t(n)) and space complexity s(n)+O(1). We write A≤TISP B is A is TISP-reducible to B and A≡TISP B
if both A≤TISP B and B ≤TISP A. Note that the TISP-reduction is transitive. The reduction we use can
be defined using oracles and is an adaptation of the notion of fine-grained reduction [25, Definition 2.1]
adapted to time-space fine-grained complexity classes [18]. In this section, MP denotes the balanced
middle product.

Theorem 4.1. Half-additive full products and short products are equivalent under TISP-reductions, that
is

FP+hi ≡TISP FP+lo ≡TISP SPhi ≡TISP SPlo.
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Furthermore, if SP denotes either SPlo or SPhi,

FP≤TISP SP≤TISP MP.

Proof. The equivalences SPhi ≡TISP SPlo and FP+hi ≡TISP FP+lo are proved below in Lemmas 4.3 and
4.4. The equivalence SP ≡ FP+ (where SP denotes any of SPlo and SPhi, and FP+ any of FP+lo and
FP+hi) is proved in Section 4.2. The reduction FP ≤TISP SP simply amounts to the identity FP( f , g) =
SPlo( f , g) + X nSPhi( f , g). The reduction SP ≤TISP MP follows from the following equalities where 0n
denotes the zero polynomial stored in size n:

SPlo( f , g) =MP(0n−1 + X n−1 f , g), and

SPhi( f , g) =MP(( f quo X ) + X n−10n−2, g quo X ).

Hence, one can compute the full product, the low and high short products of f and g simply by calling
a middle product algorithm on f padded with zeroes and g. In our model of read-only inputs, an actual
padding is not required. It is sufficient to use some kind of fake padding where the data structure storing
f is responsible for returning 0 when needed.

The relative order of difficulty FP≤TISP SP≤TISP MP makes intuitive sense based on the size of the
output compared to the size of the inputs since the output can be used as work space: The full product
maps 2n coefficients to 2n− 1 coefficients, the short products map 2n coefficients to n coefficients and
the middle product maps 3n coefficients to n coefficients. In Section 5, we shall give a partial converse
to SP ≤TISP MP: There exists a reduction from SP to MP which preserves space and either maintains
the asymptotic complexity or increases it by a logarithmic factor.

4.1 Equivalences based on reverse polynomials

Definition 4.2. The size-n reversal of a polynomial f is defined as revn( f ) = X n−1 f (1/X ).

We note that any algorithm whose input is a size-n polynomial f can be turned into a new algorithm
that computes the same function with input revn( f ), simply by replacing a query to any coefficient with
index i with one of index n − i, not affecting the number of ring operations. Let us now prove that
SPhi ≡TISP SPlo.

Lemma 4.3. Let f and g be two size-n polynomials. Then we get

SPhi( f , g) = revn−1 (SPlo(revn−1( f quo X ), revn−1(g quo X ))) .

Proof. Let f̃ = revn−1( f quo X ) and g̃ = revn−1(g quo X ). Then

SPlo( f̃ , g̃) =
∑

0≤i, j<n−1
i+ j<n−1

fn−1−i gn−1− jX
i+ j ,

whence
revn−1

�

SPlo( f̃ , g̃)
�

=
∑

0≤i, j<n−1
i+ j<n−1

fn−1−i gn−1− jX
n−2−(i+ j).
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One can change the indices of summation using k = n− 1− i and ` = n− 1− j. Then n− 2− (i + j) =
k + `− n and the indices i and j such that 0 ≤ i + j < n− 1 are mapped to indices k and ` such that
2n− 1> k+ `≥ n. In other words,

revn−1

�

SPlo( f̃ , g̃)
�

=
∑

0<k,`≤n−1
n≤k+`<2n−1

fk g`X
k+`−n = SPhi( f , g).

Similarly, we can prove that FP+hi ≡TISP FP+lo.

Lemma 4.4. Let f and g be two size-n polynomials and h be a size-(n− 1) polynomial. Then

FP+hi( f , g, h) = rev2n−1

�

FP+lo(revn( f ), revn(g), revn−1(h))
�

.

Proof. Let f ∗ = revn( f ), g∗ = revn(g) and h∗ = revn−1(h). First note that rev2n−1(h∗) = X nh by
definition. Since rev2n−1( f ∗g∗) = revn( f ∗) revn(g∗) we get rev2n−1( f ∗g∗ + h∗) = revn( f ∗) revn(g∗) +
rev2n−1(h∗) = f g + X nh= FP+hi( f , g, h).

4.2 Equivalence between short products and half-additive full products

Reduction from SP to FP+ Let f and g be two size-n polynomials and h be a size-(n−1) polynomial.
The half-additive full product FP+lo( f , g, h) equals h + f g. Note that f g = SPlo( f , g) + X nSPhi( f , g).
This already proves that the non-additive full product can be computed using algorithms for low and
high short products. For the half-additive full products, it is sufficient to store an intermediate result in
the free registers of the output space.

Assuming R[0..n−1[ holds the value of h, the following instructions reduce the computation of the
half-additive full product FP+lo( f , g, h) to two short products plus (n− 1) additions.

1: R[n−1..2n−1[← SPlo( f , g)
2: R[0..n−1[← R[0..n−1[ + R[n−1..2n−2[
3: Rn−1← R2n−1
4: R[n..2n−1[← SPhi( f , g)

Reduction from FP+ to SP Let f and g be two size-n polynomials. Splitting f and g by half such that
f = f0 + X dn/2e f1 and g = g0 + X dn/2eg1, we have

SPlo( f , g) = f0 g0 + X dn/2e( f0 g1 + f1 g0)mod X n.

What is needed is the full product of f0 and g0, and the low short products of f0 and g1, and f1 and
g0. Actually, since f0 is larger than g1 when n is odd (and g0 larger than f1), one only needs the short
products SPlo( f −0 , g1) and SP( f1, g−0 ) where f −0 = f mod X bn/2c and g−0 = g mod X bn/2c.

To avoid any recursive call that would imply storing a call stack, we can actually use full products
instead of short products: We first compute f −0 g1 + f1 g−0 using a full product and a half-additive full
product. Then we can forget about the higher order terms, and add f0 g0 to this sum using a second
half-additive full product. The following instructions summarize this approach:

1: R[0..2bn/2c−1[← FP( f −0 , g1) . half-additivity not needed
2: R[0..2bn/2c−1[← FP+lo( f1, g−0 , f −0 g1 mod X bn/2c−1)
3: R[dn/2e..n[← R[0..bn/2c[ . keep lower part of f −0 g1 + f1 g−0
4: R[0..2dn/2e−1[← FP+hi( f0, g0, ( f −0 g1 + f1 g−0 )mod X dn/2e−1)
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The correctness is clear. The complexity of the algorithm is the cost of three full products in size
approximately n/2: One non-additive full product in size bn/2c and two half-additive full products in
size bn/2c and dn/2e, respectively.

As direct consequence of Lemmas 4.3 and 4.4, one obtains the same reductions to SPhi and from
FP+lo or FP+hi.

4.3 From half-additive full product to unbalanced full product

The unbalanced full product can be computed using any algorithm for the (balanced) full product. Nev-
ertheless, the space complexity increases since intermediate results must be stored. Given an algorithm
for the balanced full product of space complexity s(n), one obtains an algorithm with space complex-
ity s(n) + (n − 1) for the unbalanced full product. In this section, we prove that if the original full
product algorithm is half-additive, the resulting unbalanced full product algorithm has the same space
complexity.

Let f be a size-m polynomial and g be a size-n polynomial with m > n. Write f =
∑dm/ne−1

k=0 X kn fk,
where each sub-polynomial f0, . . . , fdm/ne−1 has size at most n. The computation of f · g reduces to the
computations of each fk · g. The following instructions prove that using half-additivity, the intermediate
results fk · g can be computed directly in the output space.

1: R[(dm/ne−1)n..m+n[← FP( fdm/ne−1, g)
2: for k from dm/ne − 2 down to 0 do
3: R[kn..(k+2)n−1[← FP+hi( fk, g, fk+1 g mod X n)

Note that at step 1, the size of fdm/ne−1 can be strictly smaller than n. To ensure a balanced product,
fake padding can be done on this input and the output can be placed anywhere in the free output space.
Thus, the time complexity is at most dm/neM(n) where M(n) is the complexity of the half-additive full
product.

5 In-place algorithms from out-of-place algorithms

In this section, we show how to obtain in-place algorithms from out-of-place algorithms. The theorem
below summarizes the main results described in this section.

Theorem 5.1.

(i) Given a full product algorithm with time complexityM(n) and space complexity≤ cn, one can build an
in-place algorithm for the half-additive full product with time complexity ≤ (2c+7)M(n)+o(M(n)).

(ii) Given a (low or high) short product algorithm with time complexity M(n) and space complexity≤ cn,
one can build an in-place algorithm for the same problem with time complexity ≤ (2c + 5)M(n) +
o(M(n)).

(iii) Given a middle product algorithm with time complexity M(n) and space complexity ≤ cn, one can
build an in-place algorithm for the same problem with time complexity ≤M(n) log c+1

c+2
(n)+O(M(n))

if M(n) is quasi-linear, and O(M(n)) otherwise.

Actually, our reductions work for any space bound s(n) ≤ O(n). Smaller space bounds yield better
time bounds though we do not have a general expression in terms of s(n). Yet sublinear space bounds
still imply an increase of the time complexity by a multiplicative constant for full and short products.
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U1

. . .
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Figure 1: Tilings of the matrices MFP( f ) (left), MSPlo( f ) (center) and MMP( f ) (right).

Formally, we give self-reductions for the three problems. That is, we use an out-of-place algorithm for
the problem as building block of our in-place version. The general idea is similar in the three cases. In a
first step, we use the out-of-place algorithm to compute some part of the output, using the unused output
space as temporary work space. Then a recursive call finishes the work. The (constant) amount of space
needed in our in-place algorithms correspond the space needed to process the base cases. As depicted
in section 3.1, we aim to apply some specific matrix to a vector. Our general construction consists in
first applying the top or bottom rows of the matrix to the vector using the out-of-place algorithm, and
applying the remaining rows using a recursive call (cf. Fig. 1). Similar techniques have been already
used for in-place fast matrix multiplication [5].

In the cases of full and short products, the diamond and triangular shapes of the corresponding
matrices imply that the recursive call is made on two smaller inputs: For instance, to apply the first rows
of a lower triangular matrix to a vector, one only needs to apply it to the first entries of the vector. For
the middle product, the square shape imply that one input remains of the same size in the recursive call.
This difference explains the difference in the time complexities in Theorem 5.1.

Our complexity analyses are based on the following Proposition which is proved in Section 5.4.

Proposition 5.2. Let T,M : N→ R+ such that M is super-linear.

(i) If for all n, T (n) ≤
∑

k akM(bλkn+µkc) + bn + c + T (bαn+ βc) where ak,λk,µk, b, c,α,β ∈ R∗+
with α < 1 and λkn+µk < n for all k. Then

T (n)≤
∑

k

�

akλk

1−α

�

M(n) +
bn

1−α
+ o(M(n)).

(ii) If for all m ≤ n, T (m) ≤ (λm/n+ µ/(m− 1
1−α ) + 1)M(n) + T (bαm+ 1c) where λ,µ,α ∈ R∗+ such

that α < 1. Then for m= n,

T (n)≤M(n) log1/α(n) +
λ+µα
1−α

M(n) + o(M(n)).

(iii) If for all m ≤ n, T (m) ≤ λ( n
(1−α)m−1) + 1)((1− α)m)γ + T (bαm+ 1c) where α,γ,λ ∈ R∗+ such that

α < 1 and γ > 1. Then for m= n, T (n)≤ O(nγ).
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5.1 In-place full product algorithm

Our aim is to build an in-place (low-order) half-additive full product algorithm iFP+hi based on an out-
of-place full product algorithm oFP that has space complexity cn. That is, we are given two size-n
polynomials f and g in the input space and a size-(n−1) polynomial h in the (n−1) low-order registers
of the output space R and we aim to compute f g + h in R. The algorithm is based on a tiling of the
matrix MFP( f ) given in Eq. (1), see Fig. 1 (left).

For some k < n to be fixed later, let f = f̂ X k + f0 and g = ĝX k + g0 where deg f0, deg g0 < k. Then
we have

h+ f g = h+ f0 g + f̂ g0X k + f̂ ĝX 2k. (4)

Recall that the output R has size 2n−1 with its n−1 lowest registers containing h. Then Eq. (4) can be
evaluated as follows:

1: R[0..n+k−1[← h+ f0 g
2: R[k..n+k−1[← R[k..n+k−1[ + f̂ g0

3: R[2k..2n[← R[2k..2n[ + f̂ ĝ
The first two steps correspond exactly to two additive unbalanced full products, that is unbalanced full
products that must be added to some already filled output space. One can describe an algorithm oFP+u
for this task, based on a (standard) full product algorithm oFP: If f has size k and g has size n, n > k,
we write g =

∑dn/ke−1
i=0 giX

ki with deg(gi) < k. Then f g =
∑

i f gi: The algorithm computes the dn/ke
products f gi in 2k − 1 extra registers and adds them to the output. If oFP has time complexity M(n)
and space complexity cn, the time complexity of oFP+u is dn/ke (M(k)+2k−1) and its space complexity
(c + 2)k− 1.

The last step computes h+ f g and corresponds to a half-additive full product on inputs of size n−k,
since only the n− k − 1 first registers of R[2k..2n[ are filled: Indeed, deg(h+ f0 g + f̂ g0X k) < n+ k − 1.
This last step is thus a recursive call.

In order to make this algorithm run in place, k must be chosen so that the extra memory needed in
the two calls to oFP+u fits exactly in the unused part of R. This is the case when

(c + 2)k− 1≤ 2n− 1− (n+ k− 1)

which gives k ≤ n+1
c+3 . The resulting algorithm is depicted below.

Algorithm 1 iFP+hi_from_oFP

Input: f and g of size n in the input space, h of size n− 1 in the output space R
Output: R contains f g + h
Required: Full product algorithm oFP of space complexity ≤ cn

1: if n< c + 2 then
2: R← R+ f g . using a naive algorithm
3: else
4: k← b(n+ 1)/(c + 3)c
5: R[0..n+k−1[← oFP+u ( f0, g, h) . work space: R[n+k−1..2n[
6: R[k..n+k−1[← oFP+u ( f , g0, h+ f0 g) . same work space
7: R[2k..2n[← iFP+hi_from_oFP( f quo X k, g quo X k)
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Complexity analysis The algorithm uses two calls to oFP+u with inputs of sizes (k, n) and (n − k, k)
respectively. The total complexity amounts to dn/keM(k)+(dn/ke−1)M(k)+(2 dn/ke−1)(2k−1) plus
a recursive call in size n− k. Let T (n) be the complexity of iFP+hi, we thus have

T (n) = T (n− k) + (2dn/ke − 1) [M(k) + (2k− 1)] .

Note that k depends upon n, this implies that the analysis must be done without k. Since k = b(n +
1)/(c + 3)c, dn/ke ≤ c + 4 for n≥ (c + 2)(c + 4). Therefore,

T (n)≤ T
��

c+2
c+3 (n+ 1)

��

+ (2c + 7)
�

M
��

n+1
c+3

��

+ 2 n
c+3 −

c+1
c+3

�

.

Proposition 5.2(i) yields T (n)≤ (2c + 7)M(n) + o(M(n)).

5.2 In-place short product algorithm

Our goal is to describe an in-place (low) short product algorithm based on an out-of-place one. It
corresponds to tiling MSPlo( f ) given in Eq. (2), see Fig. 1 (center). Let f =

∑n−1
i=0 fiX

i and g =
∑n−1

i=0 giX
i ,

and let h=
∑n−1

i=0 hiX
i = SPlo( f , g). The idea is to fix some k < n and to have two phases. The first phase

corresponds to the bottom k rows of MSPlo( f ) and computes hn−k to hn−1 using the out-of-place algorithm
on smaller polynomials. The second phase corresponds to the top (n− k) rows and is a recursive call to
compute h0 to hn−k−1: Indeed, h mod X n−k = SPlo( f mod X n−k, g mod X n−k).

For the second phase, we remark that the bottom k rows can be tiled by dn/ke lower triangular
matrices (denoted L0, . . . , Ldn/ke−1 from the right to the left), and dn/ke − 1 upper triangular matrices
(denoted U0, . . . , Udn/ke−2). One can identify the matrices Li and Ui as matrices of some low and high
short products. More precisely, the coefficients that appear in the lower triangular matrix Li are the
coefficients of degree ki to k(i+1)−1 of f . Thus, Li =MSPlo( fki,k(i+1)) where fki,k(i+1) =

∑k(i+1)−1
j=ki f jX

j−ki .
Similarly, Ui =MSPhi( fki+1,k(i+1)−1). The matrices Ldn/ke−1 and Udn/ke−2 must be padded if k does not divide
n. Altogether, this proves that this part of the computation reduces to dn/ke low short products and
dn/ke − 1 high short products, in size k.

In order for this algorithm to actually be in place, k must be small enough. If the out-of-place short
product algorithm uses ck extra space, since we also need k free registers to store the intermediate
results, k must satisfy n− k ≥ (c + 1)k, that is k ≤ n/(c + 2).

Complexity analysis The algorithm performs dn/ke low short products and dn/ke−1 high short prod-
ucts plus one recursive call in size n− k. Let M(k) be the complexity of a low short product algorithm.
Then the high short product can be computed in time M(k − 1). Let T (n) be the complexity of the re-
cursive algorithm. Then T (n) = dn/keM(k)+(dn/ke−1)M(k−1)+(2 dn/ke−1)k+T (n−k) (the linear
time is for the additions). Since k = bn/(c + 2)c, dn/ke ≤ c+3 for n≥ (c+3)(c+2) and n−k ≤ c+1

c+2 n+1.
Thus,

T (n)≤ (c + 3)M
��

n
c+2

��

+ (c + 2)M
��

n
c+2 − 1

��

+ 2n+ T
��

c+1
c+2 n+ 1

��

.

Proposition 5.2(i) implies T (n)≤ (2c + 5)M(n) + o(M(n)).

5.3 In-place middle product algorithm

To build an in-place (unbalanced) middle product algorithm, we assume that we have an algorithm for
the (balanced) middle product that uses cn extra space for inputs of size 2n− 1 and n respectively.
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Algorithm 2 iSPlo_from_oSP
Input: f and g of size n
Output: R contains SPlo( f , g)
Required: Two short product algorithms oSPlo and oSPhi of space complexity ≤ cn

1: if n< c + 2 then
2: R← SPlo( f , g) . using a naive algorithm
3: else
4: k← bn/(c + 2)c
5: for i = 0 to dn/ke − 1 do . work space: R[k..n−k[
6: R[0..k[← oSPlo( fki,k(i+1), gn−k(i+1),n−ki))
7: R[n−k..n[← R[n−k..n[ + R[0..k[

8: for i = 0 to dn/ke − 2 do . same work space
9: R[0..k[← oSPhi(X fki+1,k(i+1)−1, gn−k(i+2),n−k(i+1))

10: R[n−k..n[← R[n−k..n[ + R[0..k[

11: R[0..n−k[← iSPlo_from_oSP( f mod X n−k, g mod X n−k)

The in-place algorithm is based on a tiling of MMP( f ) given in Eq. (3), see Fig. 1 (right) : The top
k rows correspond to the matrix MMP( f mod X k) and the bottom m− k rows to the matrix MMP( f quo X k).
The algorithm computes MMP( f mod X k)~g using the out-of-place algorithm and then MMP( f quo X k)~g using
a recursive call.

To make this algorithm work in place, the value of k has to be adjusted so that the work space is
large enough. The result of a middle product in size k has degree < k and needs ck extra work space
by hypothesis. Therefore, if m− k ≥ (c + 1)k, that is k ≤ m/(c + 2), the computation can be performed
in place.

Algorithm 3 iMP_from_oMP
Input: f and g of size n+m− 1 and n respectively
Output: R contains MP( f , g)
Required: Middle product algorithm oMP of space complexity ≤ cn

1: if m< c + 2 then
2: R← oMP( f , g) . using a naive algorithm
3: else
4: k← bm/(c + 2)c
5: R[0..k[← oMP( f mod X n+k, g) . work space: R[k..m[

6: R[k..m[← iMP_from_oMP( f quo X k, g) . recursive call

Complexity analysis Let M(k) be the cost of an out-of-place balanced middle product algorithm. The
cost of an unbalanced middle product is thus dn/keM(k) for k < n. The in-place algorithm computes
first a middle product using an out-of-place algorithm and then makes a recursive call on the remaining
part. Note that n does not change during the algorithm and can be viewed as a large constant, while
m is the parameter that varies. Then the cost of the algorithm verifies T (m) ≤ dn/keM(k) + T (m− k).
Since k = bm/(c + 2)c, dn/ke< n(c+2)/(m− c−2)+1 and m− k ≤ (c+1)m/(c+2)+1. Furthermore,
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M(k)≤ m/n(c + 2)M(n), thus dn/keM(k)≤ (m/(m− c − 2) +m/n(c + 2))M(n). That is,

T (m)≤
�

m
n(c + 2)

+
c + 2

m− c − 2
+ 1

�

M(n) + T
��

c+1
c+2 m+ 1

��

.

Proposition 5.2(ii) implies T (n)≤M(n) log c+2
c+1
(n)+O(M(n)) for m= n, and T (n)≤ O(M(n)) if M(n) is

not quasi-linear.
If M(n)≤ λnγ for some γ > 1, M(k)≤

�

m
c+2

�γ
and the recurrence becomes

T (m)≤
�

n(c + 2)
m− c − 2

+ 1
�

λ
� m

c + 2

�γ

+ T (
�

c+1
c+2 m+ 1

�

).

Proposition 5.2(iii) implies T (n)≤ O(nγ) for m= n.

Reduction from short products to middle product The middle product of f and g can be computed
as the sum of the low short product of f quo X n with g and the high short product of f mod X n with
g. Yet this reduction does not preserve the space complexity since one needs to store the results of the
two short products in two zones of size n before summing them. Actually, the reduction given above
from oMP to iMP can easily be adapted to a reduction from SP to MP that is space-preserving. Yet, the
complexity also worsens with a logarithmic factor. Thus, we cannot conclude that MP≤TISP SP.

5.4 Proof of Proposition 5.2

Lemma 5.3. Let T (n) be a function satisfying T (n) ≤ f (n) + T (bαn+ βc) for some α < 1, β and non-
decreasing f . Then

T (n)≤ T (bnKc) +
K−1
∑

i=0

f (ni)

where ni = αin+ β 1−αi+1

1−α and K ≤ log1/α(n).

Proof. By definition of ni , n = n0 and T (bnic) ≤ f (ni) + T (bni+1c). Then by recurrence, T (n) ≤
T (bni+1c) +

∑i
j=0 f (ni).

Lemma 5.4. Let ni = αin+ β 1−αi+1

1−α . Then

K−1
∑

i=0

ni ≤
n+ βK
1−α

.

Proof. Since 0 < α < 1,
∑K−1

i=0 α
i <

∑∞
i=0α

i = 1/(1− α). Also,
∑K−1

i=0 (1− α
i+1)/(1− α) ≤

∑K−1
i=0 1/(1−

α) = K/(1−α).

Lemma 5.5. Let ni = αin+ β 1−αi+1

1−α . Then

K−1
∑

i=0

1
ni − β/(1−α)

=
α(α−K − 1)
(1−α)n−αβ

.
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Proof. Since ni = αi(n− βα/(1−α)) + β/(1−α), ni − β/(1−α) is a multiple of αi . Thus,

K−1
∑

i=0

1
ni − β/(1−α)

=
1

n− βα/(1−α)

K−1
∑

i=0

α−i .

Then,
∑

i α
−i = (1−α−K)/(1−1/α) = α(α−K−1)/(1−α), and

∑

i 1/(ni−β/(1−α)) = α(α−K−1)/((1−
α)n−αβ).

Lemma 5.6. If M(n)/n is non-decreasing, and ni = αin+ β(1−αi+1)/(1−α) for some α < 1, then

K−1
∑

i=0

M(bλni +µc) =
λ

1−α
M(n) + o(M(n))

for K ≤ log1/α(n) and any λ and µ such that λni +µ≤ n for all ni .

Proof. Since M(n)/n is non-decreasing, we get M(bλni +µc) ≤
λni+µ

n M(n). Thus,
∑

i M(bλni +µc) ≤
M(n)/n

∑

i(λni + µ). By Lemma 5.4,
∑

i M(bλni +µc) ≤ λM(n)/(1 − α) + λβKM(n)/n(1 − α) +
µKM(n)/n. Since K = O(log n), KM(n)/n= o(M(n)).

Proof of Proposition 5.2. Proof of (i): By hypothesis, we have T (n) ≤
∑

k akM(bλkn+µkc) + bn + c +
T (bαn+ βc) with α < 1 and λkn+µk < n for all k. By Lemma 5.3, T (n) ≤ T (bnKc) +

∑

i f (ni) with ni
defined as in the lemma and f (n) =

∑

k akM(bλkn+µkc) + bn+ c. Then

K−1
∑

i=0

f (ni) =
∑

k

ak

K−1
∑

i=0

M(bλkni +µkc) + b
K−1
∑

i=0

ni + Kc

≤
∑

k

ak

�

λk

1−α
M(n) + o(M(n))

�

+ b
n+ βK
1−α

+ Kc

=
∑

k

akλk

1−α
M(n) +

bn
1−α

+ o(M(n))

since K = o(M(n)) and the sum over k is of fixed size.

Proof of (ii): Since T (m) ≤ (λm/n+ µ/(m− 1
1−α ) + 1)M(n) + T (bαm+ 1c) with α < 1 and m ≤ n,

Lemma 5.3 implies

T (m)≤ T (bmKc) +M(n)
∑

i

�

λmi

n
+

µ

mi − 1/(1−α)
+ 1

�

where mi = αim+(1−αi+1)/(1−α). By Lemma 5.4,
∑

i mi ≤
m+K
1−α and by Lemma 5.5,

∑

i 1/(mi−
1

1−α )≤
α−K+1/((1−α)m−α). Altogether,

T (m)≤ T (bmKc) + KM(n) +
λ(m+ K)
n(1−α)

M(n) +
µα

1−α
·

(1/α)K

m−α/(1−α)
M(n).

If we plug K = log1/α(m) and fix m= n, we get

T (n)≤ T (bnKc) +M(n) log1/α n+
λ+µα
1−α

M(n) + o(M(n)).
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Proof of (iii): Let T (m)≤ λ(n/((1−α)m− 1)) + 1)((1−α)m)γ + T (bαm+ 1c). We claim that there
exist constants µ and ν such that T (m) ≤ µmγ−1n+ νmγ + o(mγ−1n+mγ) and prove it by induction.
Using the recurrence relation and the induction hypothesis,

T (m)≤ λn((1−α)m)γ−1 +λ((1−α)m)γ +µ(αm)γ−1n+ ν(αm)γ + o(mγ−1n+mγ)

The result follows as soon as λ(1−α)γ−1 +µαγ−1 ≤ µ and λ(1−α)γ + ναγ ≤ ν. We can thus fix

µ=
λ(1−α)γ−1

1−αγ−1
and ν=

λ(1−α)γ

1−αγ
.

Finally, taking m= n, we conclude that T (n)≤ (µ+ ν)nγ +O(nγ−1).

6 Perspectives

We have presented algorithms for polynomial products which are efficient in terms of both time and
space. Our results show that any algorithm for the full and short products can be turned into another
algorithm with the same asymptotic time complexity while using only O(1) extra space. We obtain
similar results for the middle product but only proved it for algorithms that do not have a quasi-linear
time complexity. In the latter case, an increase of the time complexity by a logarithmic factor occurs. We
provided analysis of our reductions that make their constants explicit. In particular, their values ensure
that our reductions are practicable.

In a future work, we plan to address some remaining issues. By examining the constants in the
already known algorithms, we can choose the algorithms to use as starting points of our reductions to
optimize the complexity. For instance three variants of Karatsuba’s algorithm with different time and
space complexities are known [20, 24, 17]. Furthermore, it seems possible to improve on the complexity
of low-space versions of Karatsuba’s and Toom-Cook’s algorithm, yielding faster in-place algorithms
through our reductions. Another promising approach is to slightly relax the model of computation and
work in model in which one can write on the input space as long as the original inputs are restored by
the end of the computation. Preliminary results for Karatsuba’s algorithm suggest that this could also
yield a lower constant in the time complexity.

Finally, we have started to explore the design of in-place algorithms for a broader range of problems
of polynomials, such as division or evaluation/interpolation. The use of in-place middle and short
products becomes crucial since one needs to avoid any increase in the size of the intermediate results.
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