
Random primes without primality testing

Pascal Giorgi

LIRMM, Univ. Montpellier, CNRS

Montpellier, France

pascal.giorgi@lirmm.fr

Bruno Grenet

LIRMM, Univ. Montpellier, CNRS

Montpellier, France

bruno.grenet@lirmm.fr

Armelle Perret du Cray

LIRMM, Univ. Montpellier, CNRS

Montpellier, France

armelle.perret-du-cray@lirmm.fr

Daniel S. Roche

United States Naval Academy

Annapolis, Maryland, U.S.A

roche@usna.edu

March 5, 2022

Abstract

Numerous algorithms call for computation over the integers modulo a ran-

domly-chosen large prime. In some cases, the quasi-cubic complexity of selecting

a random prime can dominate the total running time. We propose a new variant of

the classic D5 algorithm for “dynamic evaluation”, applied to a randomly-chosen

(composite) integer. Unlike the D5 principle which has been used in the past to

compute over a direct product of �elds, our method is simpler as it only requires

following a single path a�er any modulus splits. �e transformation we propose

can apply to any algorithm in the algebraic RAM model, even allowing randomiza-

tion. �e resulting transformed algorithm avoids any primality tests and will, with

constant positive probability, have the same result as the original computation

modulo a randomly-chosen prime. As an application, we demonstrate how to

compute the exact number of nonzero terms in an unknown integer polynomial

in quasi-linear time. We also show how the same algorithmic transformation

technique can be used for computing modulo random irreducible polynomials

over a �nite �eld.

1 Introduction
Consider the following situation which arises commonly in exact computational prob-

lems: We have a problem over the integers ℤ to solve, but perhaps due to intermediate

expression swell or the need for exact divisions, solving direcly in ℤ or ℚ is infeasible.

�ere may be fast algorithms for this problem over a �nite �eld, say modulo a prime

p, but then some (unknown) conditions on the prime p must be met in order for the

solution over Fp to coincide with the actual integer solution. Typically, p must not be

a divisor of some unknown (but bounded) large value.

1

�en a classical approach, called the big-prime technique, is to randomly choose a

large prime p, with su�cient bit-length to overcome any non-divisibility conditions

with high probability, solve the problem over Fp , and return the result; see [12, Chapter

5].

When the computation itself is expensive, we can ignore the cost of prime number

generation for practical purposes; the running time to compute p will be dwarfed

by the computations within Fp that follow. But as the computation becomes more

e�cient, and particularly for algorithms that have quasi-linear complexity, the cost of

prime number generation is more signi�cant, and may be a performance bo�leneck in

theory and/or in practice.

�e most e�cient Monte Carlo method to generate a random prime number is

to sample random integers of the required size and then test them for primality. To

�nd a b-bit prime, using fast arithmetic, each primality test costs Õ(b2) time, and

because the density of primes among all b-bit numbers is proportional to 1/b, the total

cost of prime generation in this way is Õ(b3). Faster practical techniques by [28, 19]

incorporate many clever ideas but do not improve on this cubic complexity bound; see

[36, Chapter 10].

In summary: the cubic cost of generating a large probable-prime may dominate

the total cost of the big-prime method when the needed primes are quite large and

the mod-p algorithm is quite fast. �e aim of this paper is to tackle this issue with a

general technique that uses random moduli, not necessarily prime, with various extra

checks along the way, to provably get the same result in many cases as would be

achieved by explicitly generating a random prime.

An analogous situation occurs for polynomials over �nite �elds: if the original

problem is in a �xed �nite �eld Fq , then in many cases one needs to compute over

an extension �eld Fqk for k su�ciently large. �is then poses the challenge of com-

puting a random irreducible degree-k polynomial in Fq[x], which again takes at least

quasi-cubic time using the best current methods. We will show that our same basic

algorithm transformation technique for integers applies in this case as well, with

similar probability bounds.

1.1 Algorithmic transformation technique
Our method builds on the long line of techniques known as dynamic evaluation, or

the D
5

principle [6]. �is is a very general technique which has since been employed

for a wide range of computational problems [9, 27, 10, 29, 5, 32, 7, 16, 33]. For our

purposes the idea is to start computing modulo a possibly-composite m, and “split”

the evaluation with an e�cient GCD computation whenever we need to test for zero

or perform a division.

Like the recent directed evaluation technique proposed by van der Hoeven and

Lecerf [16], we opt to �rst take the larger-size branch in any GCD spli�ing. But unlike

their method (and prior work) which is ultimately focused on recovering the correct

result over the original product of �elds, here the goal is only to have an answer which

is consistent with what it would have been in some randomly-chosen �nite �eld. For

that reason, we can ignore the smaller branch of any split, avoiding the reconstruction

process altogether.

2

In terms of running time, the key observation is that GCDs can be computed in

quasi-linear bit complexity using the half-GCD algorithm of [30, 4], and therefore this

transformation has the same so�-oh bit complexity as it would to compute over an

actual prime of the desired size. We save because there is no longer a need to actually

generate (and test for) the random prime.

Proving the probabilistic correctness of this approach is the main challenge and

contribution of our paper. First we need good estimates on the probability that a

random integer has a large prime factor. In our technique, having a single prime factor

p � m where p2 ≥ m is necessary and su�cient.

Second, and more challengingly, we need to allow for a general model of computa-

tion where the algorithm may sample uniformly from the random �eld it is computing

over, and probabilistic correctness over a randomly-chosen �eld Fp should carry over

to probabilistic correctness of our method with random not-necessarily-prime moduli.

To our knowledge, previous applications of the D
5

principle have considered only

computational models which are deterministic and do not allow random sampling of

�eld elements. van der Hoeven and Lecerf [16] suggest that this can be overcome by

providing the deterministic computation tree with a “pool” of pre-selected random

�eld elements, and the recent paper of Neiger, Salvy, Schost, and Villard [31] mentions

this limitation and also skirts around it by providing pre-selected “random” choices as

additional algorithm inputs.

But this pre-selection does not really make sense in our se�ing, where the initial

modulus m itself is randomly chosen as well, as we must do in order to avoid “unlucky”

choices of the underlying �nite �eld Fp . Which is to say, for any �xed, pre-selected

value of m and “random” elements modulo m, there is no way to argue that the result

will be correct with high probability; but it is also impossible to choose uniform-random

elements modulo m or p without knowing the modulus in advance. Instead, we take

care to actually allow randomization within the transformed algorithm, and prove that

probabilistic correctness modulo most su�ciently large primes p does indeed imply

probabilistic correctness modulo a large-enough random integer m (and equivalently

with random extension �elds over a �xed �nite �eld).

Our optimization to compute on only one branch in fact adds new wrinkles to

the challenge of proving correctness. As a small illustration, consider a very simple

algebraic algorithm which simply chooses a random �eld element and tests whether

it is zero. Over F2 there should clearly be a
1
2 probability of each outcome. But if we

instead compute with initial modulus m = 30 and use our “largest branch” spli�ing

technique, whenever 2 divides the �nal modulus, there is only a
1
3 chance of ge�ing

zero over F2. �e reason this can occur is that the branches, and hence the choice of

which modulus to use at the end, may themselves depend on previous random choices.

In fact it is not hard to construct pathological algorithmic examples which are usually

correct modulo some certain-sized primes p, but usually incorrect modulo m when

m is a multiple of p. Overcoming such issues in a proven and generic way is a major

challenge of the present investigation.

3

1.2 Application to sparsity determination
As an important application of our technique to avoid primality testing in randomized

computation, and indeed our original motivation for this work, we develop a new

algorithm to compute the sparsity of an unknown black-box polynomial.

�is Monte Carlo randomized algorithm uses samples of a modular black box, via

which an unknown sparse integer polynomial f ∈ ℤ[x1, … , xn] can be evaluated for

any chosen modulus m ∈ ℕ and point (�1, … , �n) ∈ [0, m)n , as well as bounds H and

D on the height and max degree, respectively, to determine the number of nonzero

terms #f in the unknown polynomial, correct with high probability. �e bit complexity

(accounting for black box evaluations) is so�ly-linear in the size f ; see �eorem 5.2 for

a precise statement.

�is problem is closely related to the more general problem of sparse interpolation

[3, 23, 22, 11, 18, 20, 2, 15, 1, 17], where all coe�cients and exponents of f are to be

recovered. O�entimes such algorithms assume they are given an upper bound T ≥ #f
and have running time proportional to this T , so having a fast way to determine #f
exactly can be valuable in practice.

Our method mostly follows the early termination strategy by Kaltofen and Lee

[21], which was the �rst e�cient sparse interpolation algorithm not to require an a

priori upper bound T ≥ #f . We save on the running time by explicitly stopping the

algorithm early as soon as #f is learned, and avoiding costly later steps which require

special �eld structure.

Moreover, while the algorithm of [21] works over a more general domain, its bit

complexity over ℤ is exponentially large; thus, a “big prime” technique is commonly

employed; see [24, 20, 18]. But now that we have reduced the arithmetic complexity

to quasi-linear, the cubic bit-cost of large prime generation becomes signi�cant. �is

is where our new algorithm transformation technique comes into play: we use our

new methods to obtain the same results as if working modulo a random prime, while

actually computing modulo a random composite number with at most twice the bit

length.

1.3 Summary of contributions
�e main results of this paper are:

• A new variant of the D
5

principle which focuses on computing modulo random

primes rather than in a given product of �elds (Section 4.1);

• A careful analysis which shows that any algorithm which is probably correct for

most random, su�ciently-large primes, can be solved without the cost of prime

number generation using our new technique (Section 4.3);

• A new algorithm with nearly-optimal bit complexity to determine the number

of nonzero terms of an unknown sparse integer polynomial (Section 5); and

• An adaptation of the same techniques to computing modulo random irreducible

polynomials over �nite �elds without irreducibility testing (Section 6).

4

2 Prime density and counting bounds
In this section we review some mostly-known results on the number of primes in

intervals with certain properties, that will be needed for the probabilistic analysis of

our main results.

�roughout, we use the notation [a, b) to denote the set of integers n satisfying

a ≤ n < b, and we use the term b-bit integer to mean an integer in the range [2b−1, 2b).
Note that there are 2b−1 integers with bit-length b.

De�nition 2.1. For any positive integers m and b, we say m is b-fat if m has a prime

divisor p ≥ 2b .

�is follows the de�nition of M-fat in the classic paper of Karp and Rabin [25],

except that we focus only on power-of-two bounds.

We �rst prove that at least half of all 2b-bit integers have a prime factor with at

least b bits, largely following [25, Lemma 8], which in turn is based on bounds from

Rosser and Schoenfeld [34].

Lemma 2.2. For any b ≥ 1, the number of (2b)-bit integers which are b-fat is at least
22b−2.

Proof. �e claim is veri�ed numerically for 1 ≤ b ≤ 6.
If b ≥ 7, then Lemma 8 of [25] tells us that the number of b-fat integers in the

range [1, 22b] is at least 22b−1.
We need to show that at least half of the b-fat integers are in top half of this range.

For any prime p with p ≥ 2b , consider the multiples of p in the range [1, 22b]. By

de�nition, all such multiples are b-fat. Let k ∈ ℕ so that kp is the largest multiple

of p less than 22b−1. �us exactly k multiples of p have bit-length strictly less than

2b. And because 2kp < 22b , there are at least k multiples of p with exactly 2b bits.

Incorporating the fact that 22b is never a multiple of p, we see that at least half of the

multiples of p in the range [1, 22b] have bit-length exactly 2b.

Because any number less than 22b can only be divisible by at most one prime p ≥ 2b ,

the sets of multiples for 2b ≤ p < 22b in fact form a partition of the b-fat numbers with

at most 2b bits. �erefore, summing over all sets in this partition, we see that the total

number of b-fat integers with 2b bits is at least 22b−2.

Many algorithms which perform computations modulo a random prime in fact

need to avoid a certain number of unlucky or “bad” primes. Here we give an upper

bound on the chance that a b-fat number is divisible by a large bad prime. �e proof is

trivially just dividing the range by p.

Lemma 2.3. For any b ≥ 1 and prime p ≥ 2b , at most 2b−1 integers with bit-length 2b
are multiples of p.

3 Computational model
Our main result is a transformation which, roughly speaking, takes any algorithm in

the algebraic RAM model for any chosen prime p, and converts it into a randomized

5

algorithm in the (non-algebraic) RAM model that produces the same output most of

the time while avoiding prime number generation.

Here we must take care to de�ne the requirements on the initial algebraic algorithm.

Prior work such as [6, 5, 16] considered more general se�ings beyond computing in

random �nite �elds, but in fairly restricted models of deterministic algebraic compu-

tation such as straight-line programs or computational trees. Here we have a more

restricted algebraic se�ing but a more general computational one, allowing for loops,

memory, and pseudorandom integer or �eld element generation.

3.1 Modular PRNGs
We de�ne a modular pseudo-random number generator, or modular PRNG, as a pair of

deterministic algorithms:

• RandMod(s, m) → x takes a �xed-length state s and any positive integer m and

produces a pseudorandom value x uniformly distributed from the range [0, m).

• RandUpdate(s) → s′ takes the current state and produces a value (with the

same bit-length) for the next state.

(In practice there would also be an initialization procedure which takes a smaller

seed value to produce the initial state, but this detail is unimportant for our discussion.

�at is, we treat the seed as synonymous with the initial state s.)
Conceptually, both of these functions should be indistinguishable from random.

More precisely, de�ne r(s, i, m) as the i’th output modulo m from initial state s, that is,

RandMod(RandUpdate(⋯ (RandUpdate
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i times

(s))), m).

�en, even with an oracle to compute r(s, i′, m′) for any tuple (i’,m’) not both equal

to (i, m), it should be infeasible to distinguish r(s, i, m) from a truly random output

modulo m.

3.2 Algebraic RAM with integer I/O
Our model of computation is a classical random access machine (RAM), with an “inte-

ger side” and an “arithmetic side”. �e integer side is a normal RAM machine with

instructions involving integer inputs and outputs, and the arithmetic side involves

only the following computations with elements of an arbitrary �eld:

• Ring arithmetic: +, −, ×

• Multiplicative inverse (which in turn allows exact division)

• Pseudo-random generation of a �eld element

�e multiplicative inverse computation may fail, e.g., on division by zero, in which

case the algorithm returns the special symbol ⊥.

�ere are also two special instructions which take input from one side and output

to the other side:

6

• Conversion of an integer to a �eld element

• Zero-testing of any �eld element

Note that zero-testing and subtraction obviously allow equality comparisons be-

tween �eld elements, but not ordering them.

We restrict the inputs and outputs to be integers (or output of ⊥ on error). �is

is necessary for our use case where the inputs are actually integers which are then

reduced modulo p, but in any case is not a restriction due to the integer-to-�eld-element

conversion instruction.

For computations over prime �elds, we can formally de�ne an algorithm in our

algebraic RAM model as having:

• Parameters: prime p and initial Modular PRNG state s

• Input: x ∈ ℤn

• Output: y ∈ ℤ⋃{⊥}

• Program: A series of integer instructions as in a normal RAM model and arith-

metic instructions as de�ned above, along with labels, conditional branches, and

memory load/store operations

We write p,s(x) for the output y of algorithm  with �eld Fp and initial PRNG

state s.
Note that some abuses of the RAM model are possible, particularly for algebraic

algorithms, by using arbitrarily large integers. Rather than avoid such abuses by, e.g.,

using a word RAM model, we merely note that our transformations do not a�ect the

integer side operations at all, and thus would in principle work the same under any

such model restrictions. Indeed, our work applies over most algebraic computational

models we know of, such as straight-line programs, branching programs, multi-tape

Turing machines, or the closely-related BSS model.

4 Algorithm transformation for randomprime�elds
Recall the general idea of our approach, building on [6, 16]: Given an algorithm 
which works over any prime �eld, we transform it into a transformed version  that

instead samples a possibly-composite modulus m which probably contains a large

prime factor p ≥
√
m. Any time a comparison or multiplicative inverse occurs,  �rst

performs a GCD of the operand with the current modulus m. If a nontrivial factor k
of m is found, then the (unknown) large prime factor of m must divide max(k,m/k).
Update the modulus accordingly and continue.

We �rst fully present our algorithmic transformation, then examine some thorny

issues related to the use of pseudorandom numbers in the algorithms, and �nally prove

the correctness and performance bounds which are the main results of this paper.

7

4.1 Transformation procedure
We begin with the crucial subroutine Algorithm 1 (NewModulus), which shows

how to update the modulus while carefully ensuring no signi�cant blow-up in bit or

arithmetic complexity.

Algorithm 1: NewModulus(a,m)

Input: Integer a ∈ ℤ and modulus m ∈ ℕ
Output: New modulus m′ ∈ ℕ

g1 ← gcd(a,m)
if g21 > m then

return g1
else

b ← g⌊log2m⌋1 mod m
g2 ← gcd(b,m)
return m/g2

Lemma 4.1. Given any a,m ∈ ℤ, the integer m′ ∈ ℕ returned by NewModulus(a,m)

has the following properties:

• m′ � m
• a is either zero or invertible modulo m′

• If p is a prime with p2 > m and p � m, then p � m′
also

Proof. Let a,m ∈ ℤ be arbitrary and g1, b, g2 as in the algorithm.

For the �rst property, we see that the integer returned is either g1 or m/g2, both of

which are always divisors of m.

For the second property, consider two cases. First, if g21 > m and thus m′ = g1 is

returned, then g1 � a, so a is zero modulo m′
.

Otherwise, let q ≥ 2 be any common factor of a and m (if one exists). By the

de�nition of gcd, q � g1. Now let k ≥ 1 such that qk is the largest power of q that

divides m. Because q ≥ 2, k ≤ log2m, and therefore qk � g⌊log2m⌋1 . From the gcd

algorithm, this means that qk � g2, and thus q does not divide m/g2. Hence a and m/g2
do not share any common factor, i.e., gcd(a,m′) = 1 as required.

For the third property, assume m has a prime factor p with p2 > m. If p � g1,
then g21 > m and the new modulus m′ = g1 returned in the �rst case is be divisible

by p. Otherwise, if p does not divide g1, then p does not divide g2 either, and hence

p � m/g2.

Lemma 4.2. For any a ∈ ℤ and m ∈ ℕ, the worst-case bit complexity of Algorithm

NewModulus(a,m) is Õ(log a + logm).

Proof. �e bit complexity is dominated by the two GCD computations and the modular

exponentiation to compute b. Using the asymptotically fast Half-GCD algorithm

[35, 37], and binary powering for the modular exponentiation, all three steps have bit

cost within the stated bound.

8

We now proceed to incorporate the NewModulus subroutine into the algorithm

transformation procedure. Algorithm  will be in the model of an algebraic RAM

from Section 3.2. We also require a companion procedure  which takes any input

x ∈ ℤn
for  and deterministically produces a positive integer b, which should be a

minimal bit-length of primes to ensure that  produces correct results on input x with

high probability. (In most applications we can imagine,  is a simple function of the

input sizes and bit-lengths.)

Algorithm 2 details the construction of the transformed algorithm  based on 
and .

Algorithm 2: produced from  and 
Input: Input x ∈ ℤn

and PRNG initial state s
Output: y ∈ ℤ⋃{⊥}
b ← (x)
m ← pseudorandom (2b)-bit integer stored in memory

Proceed with identical instructions of , except:

• All conversions from integers to algebraic values are replaced by explicit

reduction modulo m.

• All additions, subtractions, and multiplications on the “algebraic side” are

replaced by integer arithmetic followed by explicit reduction modulo m.

• Any random �eld element generation instructions are replaced by sampling

a number in the range [0, m) using the modular PRNG.

• All zero tests and multiplicative inverses on the “algebraic side” for some

value a �rst call NewModulus(a, m), update the modulus accordingly, and

then perform either a divisible-by-m test or modular inverse computation,

respectively.

Observe that the transformed algorithm  no longer works in the algebraic RAM

model, but handles explicit integers only. More precisely, each algebraic operation in

 is replaced with a constant number of arithmetic or gcd computations on integers

with bit-length at most 2b.

4.2 Correlated PRNGs
A technical detail of our analysis requires a tight relationship between the random

choices made by  and  for the same input and seed value. Even using the same

PRNG for both algorithms, there is no reason to think that a random sample in 
modulo a prime p would have any relationship to a corresponding random sample in

 modulo a multiple m of p.

We achieve this by de�ning a pair of modular PRNGs — one for  and one for

 — both based on the same underlying high-quality PRNG, and having the desired

correlation property. �e constructions are based on three key insights. First, in

9

de�ning the transformed algorithm  above, we are careful to sample the initial

modulus m inside the algorithm, rather than taking it as input. Second, the PRNG for

the algebraic algorithm  also samples a random modulus m even though this is not

directly used in the computations, in order to match random outputs between  and

. �ird, our correlated PRNG construction doubles the state size so that this modulus

m is chosen completely independently from the future sampled random values; this

allows us later to translate probabilistic correctness modulo p in  to probabilistic

correctness modulo m in .

Before describing the PRNGs in detail, it is important to stress that this is purely

a proof technique. While these PRNG constructions are e�cient and realizable, their

need is motivated only by the probabilistic analysis that follows; in reality, we could

just use any normal high-quality PRNG and achieve the same results except for some

pathological algorithms would not arise in practice.

For what follows, we assume the existence of a high-quality modular PRNG G as

de�ned in Section 3.1.

We begin by describing the PRNG for the transformed algorithm  of Algorithm 2,

which we call G′.
We will use two simultaneous instances of the underlying modular PRNG G, and

therefore double the state size so that the seed for G′ can be wri�en s = (s0, s1). �e

�rst instance with initial state s0 is used only to generate the initial modulus m on the

�rst step.

A�erwards, a random sample modulo some integer t ∈ ℕ is generated as follows.

If t � m, then G′ �rst generates a random integer modulo m using G with the second

part of the current state s1, and then reduces the result again modulo t before returning

it. Because t � m, this is indistinguishable from (though less e�cient than) randomly

choosing an integer modulo t directly.

Otherwise, if t is not a divisor of the original modulus m, then G′ simply calls G
directly with the current state s1 and the requested modulus.

�e PRNG G′ for the algebraic algorithm  is almost identical to G′, except that

the value of m is only used inside the PRNG. Indeed, for a random seed and run of the

algorithm modulo some prime p, it is unlikely that p � m, and then this construction

doesn’t change the results at all compared to using G with the second part of the state

s1 alone.

�e need for this strange PRNG construction is the correlation that exists between

 and  whenever the seed s = (s0, s1) is the same for both, as captured in the

following lemma:

Lemma 4.3. Let s = (s0, s1) be a PRNG state for G′ or G′,m be the initial 2b-bit random
value chosen using s0, and p,m′ ∈ ℕ such that p � m′

and m′ � m. Writing r as the
pseudorandom result from G′ with current state s modulo p, and r as the result from G′
with the same state s and larger modulus m′

, then we have r ≡ r mod p.

�e proof follows directly from the PRNG de�nitions above and the divisibility

conditions given.

Besides this correlation property, we also need to know that using this constructed

PRNG in the algebraic algorithm  does not a�ect the probabilistic correctness. Note

that the assumption on the underlying PRNG G is an idealistic one, as any PRNG with

10

�xed seed length cannot actually produce uniformly random values in an arbitrary

range.

Lemma 4.4. If the underlying PRNG G produces uniformly random values for any

sequence of moduli, then for any �xed value of s0, the constructed modular PRNG G′ also
produces uniformly random values for any sequence of moduli.

Proof. Let s0 be a �xed �rst half of the seed. �e value of s0 purely determines what m
is chosen, so let m ∈ ℕ be that arbitrary value.

Now consider any modulus t given to G′. If t does not divide m, then G′ returns a

value from the underlying PRNG G, which by assumption is uniformly random.

Otherwise, if t � m, then G is �rst sampled for some random value r in [0, m). By

assumption r takes on any value in this range with probability
1
m . �en because t is a

divisor of m, reducing r mod t produces each value in [0, t) with probability
1
t .

From this, we can draw a crucial conclusion on the probabilistic correctness of 
when only s1 is varied.

Corollary 4.5. For some prime p and input x, suppose  produces a given output y
with probability 1 − � when provided an ideal perfectly-random number generator. �en

if the underlying PRNG G is uniformly random and for any �xed value of s0,  returns

y with the same probability 1 − �, where the probability is over all choices of s1 only.

4.3 Analysis
We now proceed to the main result of our paper: for any algebraic algorithm  that

produces correct results with high probability for primes of bit-length at least that

given by , Algorithm 2 produces a randomized algorithm  which, with constant

probability, produces the same correct results with the same number of steps. �at

is, we can achieve (probabilistically) the same results as computing modulo random

primes, without actually needing to ever conduct a primality test.

To prove this probabilistic near-equivalence, �rst de�ne a run of an algorithm as

the sequence of internal memory states for given inputs and seed value (and in the

case of an algebraic algorithm, choice of �eld).

We �rst show that any run of the transformed algorithm  is equivalent to a run

of the original  with the same input and seed for some choice of p. Here and for the

remainder of this section, we assume that  and  use the constructed PRNGs G′ and

G′ as de�ned in Section 4.2.

Lemma 4.6. For any input x and seed s, consider the resulting run of . If m′
is the

�nal stored value of m in this run, then for any prime factor p of m′
, an identical run of

 is produced over Fp with the same input x and seed s, where all algebraic values from
the run of  are reduced modulo p.

Proof. Consider the memory states at some point in the program where they are

equivalent between the two runs. We show that, no ma�er the next instruction in ,

the memory states a�er that instruction (and the corresponding instruction(s) in 
according to Algorithm 2) are the still equivalent.

11

Any arithmetic-side operations are unchanged in Algorithm 2.

Because reduction modulo p is a homomorphism, any algebraic additions, subtrac-

tions, or multiplications also maintain equivalence.

Let m be the original modulus chosen at the beginning of . From the �rst point

of Lemma 4.1, we know that m′ � m, and therefore p � m also. �e same is true for

any intermediate value of m in the run.

�is means that any conversion operation in , reducing an integer modulo p,

will be mod-p equivalent to the corresponding operation in , reducing modulo the

current value of m.

Considering zero-test instructions, let a (resp. a) be the value of some algebraic

value in the run of  (resp. ). If a = 0 in Fp , then p � a. �en, because p divides

every modulus value m in the run, a is not invertible modulo m. �en according to

the second point in Lemma 4.1, a is zero mod m, and the zero test will have the same

result.

By the same reasoning, any multiplicative inverse instruction will also be equivalent

between the runs of  and , or in the case the denominator is zero, both runs will

result in ⊥.

Finally, by using the correlated PRNGs de�ned in Section 4.2, we can apply

Lemma 4.3 to conclude that any random �eld element generation instruction also

results in equivalent outputs at the same step of both runs.

�is covers all possible types of instructions and completes the proof.

If the original algorithm  is deterministic, this equivalence of runs is enough to

prove correctness of . Indeed, this has been the assumption in most prior works

on the D
5

principle, which also o�en employ simpler models of computation such as

straight-line programs or deterministic computation trees.

By contrast, we want to allow  to be randomized. First, we a�rm that any

deterministic property of the output is preserved a�er our transformation to  in the

following lemma, which follows directly from Lemma 4.6.

Lemma 4.7. Suppose x ∈ ℤn
is an input for, and Y ⊆ ℤ⋃{⊥} is a family of outputs,

such that for any prime p and random seed s, the output of  on input x is always a

member of Y . �en the output of on input x is always a member of Y as well.

�e more di�cult case is when  may return incorrect values. �ere are two types

of causes for an incorrect result: when the prime p is one of a small set of “unlucky”

values, or when randomly-sampled �eld elements in the algorithm are unlucky and

produce and incorrect result. Although many actual algorithms only have one of these

two types of failure, we account for both types in order to have the most general result.

For convenience of exposition, we will capture these failure modes in the following

de�nition:

De�nition 4.8. Let x ∈ ℤn
be any input for , k ∈ ℕ and � ∈ ℝ with 0 ≤ � < 1. We

say that  is (k, �)-correct for input x if, for all but at most k primes p with p ≥ 2(x),
running  on x produces a correct output with probability at least 1 − �.

�e following theorem, which is the main result of our paper, combines the preva-

lence of b-fat integers with the run-equivalence of  to prove probabilistic correctness.

12

�eorem 4.9. Let x ∈ ℤn
, k ∈ ℕ, and � ∈ ℝ with 0 ≤ � < 1

2 , and write b = (x). If 
is (k, �)-correct for input x, then the probability that produces the correct output for

input x is at least

1
2
−

k
2b−2

−
�
2
.

Proof. Let m be the initial prime modulus chosen uniformly in the range [22b−1, 22b)
by . Two things can make m an unlucky choice: if it has no large prime divisor (i.e.,

if it is not b-fat), or if its largest prime divisor is one of the k unlucky primes that cause

 to fail.

Lemma 2.2 tells us that the probability of the former is at most
1
2 . And, disjointly,

the probability that m does have a large prime factor but it is one of the k unlucky

choices for  is at most k/2b−1.
�erefore, over all choices of the �rst part of the PRNG initial state s0, at least

1/2 − k/2b−2 of them lead to an m with a prime factor p ≥ 2b which is not one of the k
“unlucky” primes for  on this input.

For such “lucky” choices of s0 and thereby m, because p2 > m, from Lemma 4.1 we

know that p will always divide the updated modulus m a�er any call to NewModulus,

and in particular, p will divide the �nal modulusm′
. We can therefore apply Lemma 4.6

with the same p for all possible runs of  with the same s0.
Finally, considering the remaining part of the PRNG initial state s1, Corollary 4.5

tells us that in these cases  produces the correct result with probability at least 1 − �,

conditional on the previously-derived chance that m is “lucky”.

When combined with an e�cient veri�cation algorithm, �eorem 4.9 immediately

yields a Las Vegas randomized algorithm.

But without an e�cient veri�er, the result seems to be not very useful: it proves

that  is a Monte Carlo randomized algorithm with success probability strictly less

than one-half.

Still, we can combine �eorem 4.9 with the preceding Lemma 4.7 in the case of

algorithms  which have one-sided error, meaning that, for any prime p and initial

PRNG state s, the output y from  is never larger (or, equivalently, never smaller)

than the correct answer.

Corollary 4.10. Let � > 0 such that, for any input x, algorithm is (k, �)-correct where
1 − � − k/2(x)−1 < �. If furthermore has only one-sided error, then the correct output

can be determined with high probability a�er O(1�) runs of.

Proof. Because of one-sided error, you can repeatedly run  and take the maximum

(resp. minimum) result if the output of  never larger (resp. smaller) than the correct

output.

5 Computing the sparsity of integer polynomials
Sparse polynomial interpolation is an important and well-studied problem in com-

puter algebra: Given an unknown polynomial f ∈ R[x1, … , xn] through a blackbox

13

or a Straight Line Program (SLP), one wants to recover the non-zero coe�cients of

f and their corresponding exponents. Of course, the main goal is to have an algo-

rithm with a complexity that is quasi-linear in the bit-length of the output, that is

Õ(nt(log d + log ℎ)), where t = #f is the number of non-zero terms, d the maximal

degree and ℎ the height, i.e., largest absolute value of any coe�cient.

�e fastest algorithm for this task are of two kinds, depending of the model in

which the polynomial is given. For Straight Line Programs, following the deterministic

polynomial time algorithm of Garg and Schost [11], many improvements have been

made through randomization to reach a quasi-linear complexity in every parameter

of f , i.e., t , log d and log ℎ [17]. For a polynomial given instead by a black box for its

evaluation, following the seminal papers of Ben-Or and Tiwari [3] and Kaltofen and

Yagati [23], we have now reached a quasi-linear complexity in the sparsity of f , see

Arnold’s PhD thesis [1]. Note that an algorithm with quasi-linear complexity in all

the parameters of f in this model is still not available.

One of the main ingredients of these algorithms is that they require bounds for every

parameter (t, d, ℎ) of f . A few works considered to replace these bounds with explicit

randomized algorithms. As outlined in [22, 1], one can calculate such a degree bound

in polynomial time but this might dominate the cost of the interpolation. �e situation

is clearly di�erent for the sparsity parameter as interpolation with early termination

exists [21]. �is is only the case with Prony-style interpolation, popularized by Ben-Or

and Tiwari [3] for polynomials given as a blackbox.

In this work we will consider the model of Modular Blackbox (MBB) that allows

to control the size of the evaluation of the polynomial. In particular, this is of great

interest to e�ciently deal with sparse polynomials over the integers as one evaluation

might be exponentially large than the polynomial itself.

Kronecker substitution [26] is a fairly classical tool to reduce multivariate problems

to univariate ones. It is easy to see that this transformation does not change the size

of the polynomial and its sparsity. �erefore, we will only focus on the univariate case

here for simplicity of presentation.

5.1 Sparsity over a su�ciently large �eld
First we develop a Monte Carlo algorithm to compute #f over a su�ciently-large �nite

�eld Fq . For this, we can use Ben-Or and Tiwari [3] and the extension of Kaltofen and

Lee [21] that study the probability that some early zeros appear during the course of

the Berlekamp-Massey algorithm.

Taking a random � ∈ Fq and ai = f (� i) ∈ Fq , it is shown that for s = 1, … , t
all Hankel matrices Hs = [ai+j]s−1i,j=0 are non-singular with a probability greater than

1 − Dt(t−1)(t+1)
3q ; see [21, 14, 1]. �e so-called early termination strategy for sparse

interpolation is then to run the Berlekamp-Massey algorithm on the in�nite sequence

(a0, a1, a2, …) and to stop the algorithm whenever a zero discrepancy occurs. It is

showed in [21] that the zero discrepancy corresponds exactly to hi�ing a singular

Hankel matrix Hs . Since the sequence (a1, a2, …) corresponds to the evaluation of a t-
sparse polynomial at a geometric sequence, the minimal generator Λ of the recurrence

sequence (a0, a1, a2, …) has degree exactly #f [3].

14

Fact 5.1. Given a blackbox for f ∈ Fq[X] with q ≥ 16D4 where D > deg f , there exists a
Monte Carlo algorithm that computes an integer t such that t ≤ #f . With probability at

least 1 − 1
48 , we have t = #f exactly. �e computation requires 2t probes to the modular

blackbox and Õ(t) arithmetic operations in Fq .

We note that there is nothing special about the constant 16; this just arises from

what we need later, and it is convenient to have a very low probability of error.

If f were given by a straight-line program instead of a blackbox, the same algorithm

may be employed with bit complexity Õ(L#f log q), where L is the length of the SLP.

Correctness comes from the previous discussion on the probability that the Hankel

matrices Hs are non-singular up to s = t ; see [21, �eorem 9] for a complete proof.

For the complexity, we can use the fast iterative order basis algorithm of [13] since

the Berlekamp-Massey algorithm is related to Padé approximant involving the series

∑i>0 aix i [8]. �e algorithm iPM-basis from [13] provides a fast iterative variant for

Padé approximation that can incorporate the early termination strategy (looking for a

zero constant term in the residual, denoted Fv).

One may remark that the algorithm of Fact 5.1 is a one-sided randomized algorithm;

the returned value t never exceeds the true sparsity #f .

5.2 Sparsity over the integers
Now suppose f ∈ ℤ[x] is an integer polynomial given via a modular blackbox, along

with bounds D,H such that deg f < D and each coe�cient of f is bounded by H in

absolute value. We want to use the techniques of Section 4 to adapt the algorithm of

Fact 5.1 to �nd the sparsity of f .

�e �rst question is how to incorporate the modular blackbox into the algebraic

RAM model of Section 3.2. We will say that the algebraic RAM is endowed with

an additional instruction to probe the MBB: given any algebraic value � , the MBB

instruction returns a new algebraic value for f (�). In the original algorithm , each

MBB evaluation will be modulo p, and in the transformed algorithm , evaluations

will be modulo the current value of m.

Observe that this functionality is exactly what is already speci�ed in the de�nition

of a modular black box. Importantly, we do not require the MBB to be given in

any particular computational model (such as algebraic RAM), and the instruction

transformations described in Algorithm 2 will not apply inside the blackbox itself.

�e next question is how large the prime p should be to ensure correctness with

high probability. Fact 5.1 gives a lower bound for p so that the mod-p algorithm

succeeds, but we also need to ensure that the sparsity of f modulo p is the same as the

actual value of #f over the integers. �is will be true as long as none of the coe�cients

of f vanish modulo p. �en we simply observe that, with bounds D,H on the degree

and height of f respectively, the number of “bad primes” which cause the sparsity to

drop modulo p is at most D log2 H .

Set b = ⌈4 + 4 log2 D + log2 log2 H⌉. �en any p ≥ 2b satis�es the condition of

Fact 5.1, so we can say the algorithm is (D log2 H,
1
48)-correct by De�nition 4.8. �e

following theorem, our main result for this section, follows immediately a�er observing

that D log2 H/2b−2 <
1
4 .

15

�eorem 5.2. Given a MBB for f ∈ ℤ[x] and bounds D,H with deg f < D and each

coe�cient of f is at most H in absolute value, there exists a Monte Carlo randomized

algorithm that computes an integer t such that t ≤ #f . With probability at least 0.239, we
have t = #f exactly. �e computation requires 2t probes to the MBB and Õ(t) arithmetic

operations, all with moduli that have bit-length O(logD + loglogH).

Because the error is again one-sided, Corollary 4.10 applies and can be used to

make the success probability arbitrarily high.

If the MBB for f is in fact a straight-line program of length L, the total bit complexity

becomes Õ(Lt(logD + loglogH)). While this is technically sub-linear in the bit-length

of f itself, we note that this is somewhat “hiding” some computation in the evaluation

model itself, since to actually produce a polynomial with degree D and height H with

bounded constants, the length L of the SLP would need to be at least Ω(logD + logH).

6 Random irreducible polynomialswithout irreduci-
bility testing

In this section, we adapt our approach to computing in a �eld extension of a �xed

�nite �eld Fq . �is need arises frequently in se�ings where the base �eld Fq is too

small, and one needs to �nd more than q distinct elements in it. In that case, the

standard approach is to compute a random irreducible polynomial ' of degree s and

to work within Fqs = Fq[x]/⟨'⟩. If the algorithm that is run in Fqs is fairly fast, the

cost of producing an irreducible polynomial of degree s, Õ(s3 log q), may become

predominant.

We show how to adapt our techniques to compute modulo an arbitrary random

polynomial. Many aspects are very similar to the integer case, so we highlight only

the main di�erences. We begin with the polynomial counterpart of the notion of b-fat

integers given in Section 2.

De�nition 6.1. For any positive integer d and �nite �eld Fq , a polynomial f ∈ Fq[x] is
said to be d-fat if it has an irreducible factor of degree > d .

Lemma 6.2. For any d , the number of degree-2d monic polynomials over Fq that are
d-fat is at least 14q

2d
.

Proof. A monic degree-2d polynomial can have at most one monic irreducible factor

of degree > d . A given monic irreducible polynomial g of degree � > d divides exactly

q2d−� monic polynomials of degree 2d . Moreover, the number of irreducible monic

polynomials of degree � over Fq is at least q� /2� for any � [36, Lemma 19.12].

�erefore, there are at least q2d /2� monic degree-2d polynomials of Fq[x] that

have an irreducible factor of degree � , for � > d . Summing from � = d + 1 to 2d , there

are at least
1
2q

2d (H2d − Hd) where Hn = ∑n
i=1 1/i denotes the ith harmonic number.

Since 1/2(n + 1) < Hn − ln(n) −
 < 1/2n [38], H2d − Hd ≥ ln(2) + 1/2(2d + 1) − 1/2d ≥ 1
2

for d ≥ 2, and H2 − H1 = 1
2 . �e result follows.

16

Note that the bound of that lemma is smaller than in the integer version, since we

only proved that at least one fourth of the degree-2d polynomials over Fq are d-fat.

Actually, the number of monic irreducible polynomials of degree � approaches q� /�
for large values of q or � [36]. With the same proof, this shows that the fraction of

degree-2d polynomials that are d-fat approaches ln(2) ≥ 0.693 for large values of d or

q.

We now turn to the algorithm transformation. We work in the same algebraic

RAM model. We adapt the de�nition of an algorithm of Section 3. �e parameter p is

replaced by a parameter ' which is an irreducible degree-s polynomial over Fq . �is

requires to �x a correspondence between integers and polynomials over Fq . �is is

easily done by using the q-adic expansion of integers.

�e NewModulus algorithm works similarly mutatis mutandis. As input, the

algorithm takes a polynomial over Fq (or equivalently an integer that represents this

polynomial) and a modulus m ∈ Fq[x], and returns a new modulus m′ ∈ Fq[x]. �e

test “g21 > m” is replaced by a test “2 deg(g1) > deg(m)”, and “g⌊log2m⌋
1 mod m” is

replaced by “gdegm1 mod m”. �e proof of Lemma 4.1 is easily adapted. �e worst-case

bit complexity of the adapted algorithm is Õ((deg a + degm) log q).
Finally, the algorithm transformation itself is easily adapted. �e bound (x)

returns the minimal degree s of an extension for the algorithm to produce correct

results with high probability. �e transformed algorithm computes 2s pseudorandom

integers modulo q using the modular PRNG, and interprets them as a monic degree-2s
polynomial m over Fq . Also, conversions from integers to algebraic values are done

by interpreting the integer as a polynomial over Fq and reducing it modulo m.

�e rest of the arguments are similar as in the integer case. Using the bound

of Lemma 6.2 on the density of d-fat polynomials, we obtain a similar theorem as

�eorem 4.9: If  is (k, �)-correct of input x and (x) returns s, the transformed

algorithm  produces the correct output for input x with probability at least

1
4
−

k
qs+1

−
�
4
.

Again, this error probability means the technique is only useful for one-sided Monte

Carlo algorithms, or combined with an e�cient veri�cation algorithm.

References
[1] Andrew Arnold. Sparse Polynomial Interpolation and Testing. PhD thesis, Univer-

sity of Waterloo, 2016. URL http://hdl.handle.net/10012/10307.

Referenced on pages 4 and 14.

[2] Andrew Arnold, Mark Giesbrecht, and Daniel S. Roche. Faster sparse multivariate

polynomial interpolation of straight-line programs. Journal of Symbolic Com-

putation, 2015. ISSN 0747-7171. doi: 10.1016/j.jsc.2015.11.005. Referenced on

page 4.

[3] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multi-

variate polynomial interpolation. In Proceedings of the Twentieth Annual ACM

17

http://hdl.handle.net/10012/10307
http://dx.doi.org/10.1016/j.jsc.2015.11.005

Symposium on �eory of Computing, STOC ’88, page 301–309, New York, NY,

USA, 1988. Association for Computing Machinery. doi: 10.1145/62212.62241.

Referenced on pages 4 and 14.

[4] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun. Fast solution of toeplitz

systems of equations and computation of padé approximants. J. Algorithms, 1(3):

259–295, 1980. doi: 10.1016/0196-6774(80)90013-9. Referenced on page 3.

[5] Xavier Dahan, Marc Moreno Maza, Éric Schost, and Yuzhen Xie. On the complex-

ity of the d5 principle. In Transgressive Computing 2006: A conference in honor of

Jean Della Dora, pages 149–168, 2006. Referenced on pages 2 and 6.

[6] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. About a new method

for computing in algebraic number �elds. In Bob F. Caviness, editor, EUROCAL ’85:

European Conference on Computer Algebra Linz, Austria, April 1–3 1985 Proceedings

Vol. 2: Research Contributions, pages 289–290, Berlin, Heidelberg, 1985. Springer

Berlin Heidelberg. ISBN 978-3-540-39685-7. doi: 10.1007/3-540-15984-3 279.

Referenced on pages 2, 6 and 7.

[7] Gemma Maria Diaz-Toca and Henri Lombardi. Dynamic galois theory. Journal

of Symbolic Computation, 45(12):1316–1329, 2010. doi: 10.1016/j.jsc.2010.06.012.

MEGA’2009. Referenced on page 2.

[8] Jean Louis Dornste�er. On the equivalence between Berlekamp’s and Euclid’s

algorithms. IEEE Transactions on Information �eory, 33(3):428–431, 1987. doi:

10.1109/TIT.1987.1057299. Referenced on page 15.

[9] Dominique Duval. Rational Puiseux expansions. Compositio Mathematica, 70(2):

119–154, 1989. Referenced on page 2.

[10] Dominique Duval and Jean-Claude Reynaud. Sketches and computation–ii:

dynamic evaluation and applications. Mathematical Structures in Computer Science,

4(2):239–271, 1994. Referenced on page 2.

[11] Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-

line programs. �eoretical Computer Science, 410(27-29):2659–2662, 2009. ISSN

0304-3975. doi: 10.1016/j.tcs.2009.03.030. Referenced on pages 4 and 14.

[12] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (third

edition). Cambridge University Press, 2013. ISBN 9781107039032. Referenced on

page 2.

[13] Pascal Giorgi and Romain Lebreton. Online order basis and its impact on block

Wiedemann algorithm. In Proceedings of the 2014 international symposium on

symbolic and algebraic computation, ISSAC’14, pages 202–209. ACM, 2014. doi:

10.1145/2608628.2608647. Referenced on page 15.

[14] Elena Grigorescu, Kyomin Jung, and Roni� Rubinfeld. A local decision test for

sparse polynomials. Information Processing Le�ers, 110(20):898–901, 2010. ISSN

0020-0190. doi: h�ps://doi.org/10.1016/j.ipl.2010.07.012. Referenced on page 14.

18

http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.1016/0196-6774(80)90013-9
http://dx.doi.org/10.1007/3-540-15984-3_279
http://dx.doi.org/10.1016/j.jsc.2010.06.012
http://dx.doi.org/10.1109/TIT.1987.1057299
http://dx.doi.org/10.1016/j.tcs.2009.03.030
http://dx.doi.org/10.1145/2608628.2608647
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2010.07.012

[15] Joris van der Hoeven and Grégoire Lecerf. Sparse polynomial interpolation in

practice. ACM Commun. Comput. Algebra, 48(3/4):187–191, February 2015. doi:

10.1145/2733693.2733721. Referenced on page 4.

[16] Joris van der Hoeven and Grégoire Lecerf. Directed evaluation. Journal of

Complexity, 60, 2020. doi: 10.1016/j.jco.2020.101498. Referenced on pages 2, 3, 6

and 7.

[17] Qiao-Long Huang. Sparse Polynomial Interpolation over Fields with Large or

Zero Characteristic. In Proceedings of the 2019 on International Symposium on

Symbolic and Algebraic Computation - ISSAC ’19, pages 219–226, Beijing, China,

2019. ACM Press. doi: 10.1145/3326229.3326250. Referenced on pages 4 and 14.

[18] Seyed Mohammad Mahdi Javadi and Michael Monagan. Parallel sparse poly-

nomial interpolation over �nite �elds. In Proceedings of the 4th International

Workshop on Parallel and Symbolic Computation, PASCO ’10, page 160–168,

New York, NY, USA, 2010. Association for Computing Machinery. doi:

10.1145/1837210.1837233. Referenced on page 4.

[19] Marc Joye, Pascal Paillier, and Serge Vaudenay. E�cient generation of prime

numbers. In Çetin K. Koç and Christof Paar, editors, Cryptographic Hardware

and Embedded Systems — CHES 2000, pages 340–354, Berlin, Heidelberg, 2000.

Springer Berlin Heidelberg. Referenced on page 2.

[20] Erich Kaltofen. Fi�een years a�er DSC and WLSS2: What parallel compu-

tations I do today [invited lecture at PASCO 2010]. In Proceedings of the

4th International Workshop on Parallel and Symbolic Computation, PASCO ’10,

pages 10–17, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0067-4. doi:

10.1145/1837210.1837213. Referenced on page 4.

[21] Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpolation

algorithms. Journal of Symbolic Computation, 36(3-4):365–400, 2003. ISSN 0747-

7171. doi: 10.1016/S0747-7171(03)00088-9. ISSAC 2002. Referenced on pages 4,

14 and 15.

[22] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By

Black Boxes for �eir Evaluations: Greatest Common Divisors, Factorization,

Separation of Numerators and Denominators. Journal of Symbolic Computation,

9(3):301–320, 1990. doi: 10.1016/S0747-7171(08)80015-6. Referenced on pages 4

and 14.

[23] Erich Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial

interpolation algorithms. In P. Gianni, editor, Proc. ISSAC, pages 467–474, 1988.

doi: 10.1007/3-540-51084-2 44. Referenced on pages 4 and 14.

[24] Erich Kaltofen, Yagati N. Lakshman, and John-Michael Wiley. Modular rational

sparse multivariate polynomial interpolation. In Proceedings of the international

symposium on Symbolic and algebraic computation, ISSAC ’90, pages 135–139,

Tokyo, Japan, 1990. ACM Press. doi: 10.1145/96877.96912. Referenced on page 4.

19

http://dx.doi.org/10.1145/2733693.2733721
http://dx.doi.org/10.1016/j.jco.2020.101498
http://dx.doi.org/10.1145/3326229.3326250
http://dx.doi.org/10.1145/1837210.1837233
http://dx.doi.org/10.1145/1837210.1837213
http://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1007/3-540-51084-2_44
http://dx.doi.org/10.1145/96877.96912

[25] Richard M. Karp and Michael O. Rabin. E�cient randomized pa�ern-matching

algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987. doi:

10.1147/rd.312.0249. Referenced on page 5.

[26] Leopold Kronecker. Grundzüge einer arithmetischen theorie der algebraischen

grössen. Journal für die reine und angewandte Mathematik, 92:1–122, 1882. Refer-

enced on page 14.

[27] Daniel Lazard. A new method for solving algebraic systems of positive dimen-

sion. Discrete Applied Mathematics, 33(1):147–160, 1991. doi: 10.1016/0166-

218X(91)90113-B. Referenced on page 2.

[28] Ueli M. Maurer. Fast generation of prime numbers and secure public-key

cryptographic parameters. Journal of Cryptology, 8(3):123–155, 1995. doi:

10.1007/BF00202269. Referenced on page 2.

[29] Marc Moreno Maza and Renaud Rioboo. Polynomial gcd computations over

towers of algebraic extensions. In Applied Algebra, Algebraic Algorithms and

Error-Correcting Codes, pages 365–382, Berlin, Heidelberg, 1995. Springer Berlin

Heidelberg. doi: 10.1007/3-540-60114-7 28. Referenced on page 2.

[30] Robert T. Moenck. Fast computation of gcds. In Proceedings of the 5th Annual

ACM Symposium on �eory of Computing, April 30 - May 2, 1973, Austin, Texas,

USA, pages 142–151. ACM, 1973. doi: 10.1145/800125.804045. Referenced on

page 3.

[31] Vincent Neiger, Bruno Salvy, Éric Schost, and Gilles Villard. Faster modular

composition. CoRR, abs/2110.08354, 2021. URLhttps://arxiv.org/abs/
2110.08354. Referenced on page 3.

[32] Masayuki Noro. Modular dynamic evaluation. In Proceedings of the 2006 Inter-

national Symposium on Symbolic and Algebraic Computation, ISSAC ’06, page

262–268, New York, NY, USA, 2006. Association for Computing Machinery. doi:

10.1145/1145768.1145812. Referenced on page 2.

[33] Adrien Poteaux and Martin Weimann. Computing puiseux series: a fast divide

and conquer algorithm. Annales Henri Lebesgue, 2021. Referenced on page 2.

[34] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some

functions of prime numbers. Ill. J. Math., 6:64–94, 1962. URL http://
projecteuclid.org/euclid.ijm/1255631807. Referenced on

page 5.

[35] Arnold Schönhage. Schnelle berechnung von ke�enbruchentwicklungen. Acta

Informatica, 1(2):139–144, Jun 1971. doi: 10.1007/BF00289520. Referenced on

page 8.

[36] Victor Shoup. A Computational Introduction to Number �eory and Algebra.

Cambridge University Press, 2008. ISBN 978-0-521-51644-0. Referenced on

pages 2, 16 and 17.

20

http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1016/0166-218X(91)90113-B
http://dx.doi.org/10.1016/0166-218X(91)90113-B
http://dx.doi.org/10.1007/BF00202269
http://dx.doi.org/10.1007/3-540-60114-7_28
http://dx.doi.org/10.1145/800125.804045
https://arxiv.org/abs/2110.08354
https://arxiv.org/abs/2110.08354
http://dx.doi.org/10.1145/1145768.1145812
http://projecteuclid.org/euclid.ijm/1255631807
http://projecteuclid.org/euclid.ijm/1255631807
http://dx.doi.org/10.1007/BF00289520

[37] Damien Stehlé and Paul Zimmermann. A binary recursive gcd algorithm. In

Duncan Buell, editor, Algorithmic Number �eory: 6th International Symposium,

ANTS-VI, Burlington, VT, USA, June 13-18, 2004, Proceedings, pages 411–425, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-24847-7 31.

Referenced on page 8.

[38] Robert M. Young. 75.9 Euler’s Constant. �e Mathematical Gaze�e, 75(472):

187–190, 1991. doi: 10.2307/3620251. Referenced on page 16.

21

http://dx.doi.org/10.1007/978-3-540-24847-7_31
http://dx.doi.org/10.2307/3620251

	1 Introduction
	1.1 Algorithmic transformation technique
	1.2 Application to sparsity determination
	1.3 Summary of contributions

	2 Prime density and counting bounds
	3 Computational model
	3.1 Modular PRNGs
	3.2 Algebraic RAM with integer I/O

	4 Algorithm transformation for random prime fields
	4.1 Transformation procedure
	4.2 Correlated PRNGs
	4.3 Analysis

	5 Computing the sparsity of integer polynomials
	5.1 Sparsity over a sufficiently large field
	5.2 Sparsity over the integers

	6 Random irreducible polynomials without irreducibility testing
	References

