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Abstract

We consider the private set union (PSU) problem, where two parties each hold a private set of
elements, and they want one of the parties (the receiver) to learn the union of the two sets and nothing
else. Our protocols are targeted for the unbalanced case where the receiver’s set size is larger than the
sender’s set size, with the goal of minimizing the costs for the sender both in terms of communication
volume and local computation time. This setting is motivated by applications where the receiver has
significantly more data (input set size) and computational resources than the sender which might be
realized on a small, low-power device. Asymptotically, we achieve communication cost linear in the
sender’s (smaller) set size, and computation costs for sender and receiver which are nearly-linear in their
respective set sizes. To our knowledge, ours is the first algorithm to achieve nearly-linear communication
and computation for PSU in this unbalanced setting. Our protocols utilize fully homomorphic encryption
(FHE) and, optionally, linearly homomorphic encryption (LHE) to perform the necessary computations
while preserving privacy. The underlying computations are based on univariate polynomial arithmetic
realized within homomorphic encryption, namely fast multiplication, modular reduction, and multi-point
evaluation. These asymptotically fast HE polynomial arithmetic algorithms may be of independent
interest.

1 Introduction

A Private Set Union (PSU) protocol is a cryptographic protocol involving two parties, in which a receiver,
denoted R, owns a set X, and a sender, denoted S, owns a set Y. The functionality desired from such a
protocols is denoted FPSU and is presented in Func. 1: the receiver R receives the union X∪Y. The protocol
is parameterized on (upper bounds on) the set sizes |X| and |Y |, which are therefore implicitly revealed to
both parties as well. However, the sender S learns nothing about the contents of X.

We are interested in the case of unbalanced inputs, where the sender and receiver set sizes may be (vastly)
different, and on minimizing the communication volume between the two parties. Note that it is impossible
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Functionality 1: FPSU , Private Set Union

R X→
X ∪Y← PSU Protocol

← Y S

to reduce the communication size below that of the sender’s set, since in the worst case this entire set must
be revealed to the receiver, and the sender must not know how many elements were actually revealed.

The more difficult situation for unbalanced sets is therefore when the sender’s set size is smaller than the
receiver’s, and we may hope to have sub-linear worst-case communication costs; this is the focus of our work.
More precisely, if we define m and n to be respectively the sizes of the sender’s and receiver’s sets, we will
assume n ≥ m in our setting, and our goal is to develop a PSU protocol with O(m) communication (which
we can achieve) and O(m) and O(n) computation resp. for the sender and receiver (which we can nearly
achieve).

The recent surge in research for efficient PSU protocols is motivated by numerous practical applications.
One example which is motivating for our unbalanced setting with larger receiver is secure aggregation as in
[Ramanathan et al.(2020)]: A single server maintains a growing list, and individual contributors periodically
interact with the server to add their elements into the list. If the collected list may be sensitive, such as
individuals who may have been exposed to some communicable disease, then the server may not want to
reveal the list to every contributor; similarly, the contributors may not wish to reveal their entries which are
already on the list to avoid potential inferences on relationships between the contributors themselves.

Table 1: Protocol Comparison Table: receiver R set size n, sender S set size m, with n ≥ m
Protocol Frikken Dav. & Cid. Zhang et al. Tu et al. Our UPSU

[Frikken(2007)] [Davidson and Cid(2017)] [Zhang et al.(2023)] [Tu et al.(2023)]

Arith. cost for R O
(
n1+ϵ

)
O (n) O (n) O (n) O

(
n1+ϵ

)
Arith. cost for S O (nm) O (m) O (m logn) O

(
m2

)
O

(
m1+ϵ

)
Comm. volume O (n) O (n) O (n) O (m logn) O(m)
Deterministic ✓ ✗ ✓ ✗ ✓

Previous work. Privacy-preserving set operations have traditionally started with private set intersection
(PSI), which has seen a number of recent efficient protocols and important applications such as private contact
discovery [Kiss et al.(2017), Groce et al.(2019), Resende and de Freitas Aranha(2021), Gordon et al.(2022),
Badrinarayanan et al.(2022), Morales et al.(2023)].

Private set union protocols have also garnered significant recent interest [Brickell and Shmatikov(2005),
Kissner and Song(2005), Frikken(2007), Davidson and Cid(2017), Kolesnikov et al.(2019), Garimella et al.(2021),
Jia et al.(2022), Zhang et al.(2023), Tu et al.(2023)]. We mention a few results most closely related to the
current work.

Frikken’s PSU algorithm [Frikken(2007)] represents a set as a polynomial, whose roots are the set elements.
Then, the elements of the sender that are not roots of the receiver’s polynomial, are exactly the elements
that must be exchanged. This protocol requires a polynomial evaluation on the receiver’s polynomial in all
the sender’s elements, and the receiver should learn nothing from a root but should retrieve the evaluated
elements from a non zero. The Paillier linearly homomorphic (LHE) scheme is used to keep the receiver’s
set private.

Instead of using polynomials and its zeroes, Davidson and Cid [Davidson and Cid(2017)] proposed a version
using Bloom filters and its zeroes, also LHE encrypted, in order to hide the receiver’s set. This improves
asymptotically on on Frikken’s protocol, but the usage of Bloom filters makes it non deterministic.
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In [Zhang et al.(2023)], Zhang et al. imagined a version divided in two sub-protocols. The first one, called
multi-query reverse private membership test, gives to the receiver a bit-vector where the zeroes represent the
elements of the sender that are not in the receiver’s set. The second sub-protocol is an oblivious transfer (OT)
where the bit-vector represent the choice-bits. All those protocols where not designed for an unbalanced
situation and their communication volume is always proportional to the size of the receiver’s set.

To our knowledge, the best private set union protocol specially designed for the unbalanced situation comes
from [Tu et al.(2023)] where Tu et al. proposed a protocol using many different techniques (set hashing, win-
dowing, baby-set-giant-step precomputation matrix, fully homomorphic encryption scheme (FHE), oblivious
transfer...) in order to reduce the communication volume to a logarithmic dependency in the size of the
receiver’s set. The usage of Cuckoo hashing makes this protocol non-deterministic as well.

Our contributions. We present two new (related) protocols for unbalanced PSU (thus UPSU), first a
generic one, and then an instantiation of it:

• Our generic UPSU protocol is in two parts and relies on efficient polynomial arithmetic algorithms,
such as polynomial remainder and polynomial multipoint evaluation, that applied over FHE and LHE
schemes. This protocol requires that the plaintext spaces of the FHE and LHE are compatible.

• We show that an instantiation of our protocol is possible with the BGV cryptosytem used separately
for both parts, as both FHE and LHE.

The security of our protocol is proved in the semi-honest setting, and our complexity analysis is in the
arithmetic setting (equivalently, assuming that all input elements are constant-sized).

Table 1 summarizes the cost analysis of the previously mentioned protocols in an unbalanced situation: the
receiver R owns a set of size n, the sender S owns a set of size m with n ≥ m. In the table, the ”Comm.
volume” row represents a bound on the quantity of elements exchanged, and the ”Arith. cost” rows represent
a bound on the number of basic arithmetic operations done by each party. A value colored in green is a value
satisfying our goals, which are an arithmetic cost for the sender and a communication volume independent
of the size of the receiver’s (larger) set and a deterministic algorithm. Orange and red values are used to
denote larger dependencies, that is, logarithmic, or more, respectively, in the size of the larger set.

Outline. In Section 2, we present the blocks needed to build our protocols, including our algorithms for
polynomial arithmetic over LHE and FHE. Section 3 defines the security expected from our protocols and
lists the security assumptions we are making. Our unbalanced PSU, using generic LHE and FHE schemes, in
presented, proven correct and secure under honest-but-curious adversary model and analyzed in term of its
asymptotics in Section 4. We show that we can instantiate this protocol, with the BGV cryptosystem both
as LHE and FHE, and we compare our simulated communication volume to [Tu et al.(2023)] in Section 5.

2 Building Blocks

In this section, we present our main building blocks based on polynomial arithmetic. We show that we can
perform efficient polynomial arithmetic homomorphically. We distinguish between tasks that require a fully
homomorphic encryption scheme and those who can be implemented within a linearly homomorphic encryp-
tion scheme. Since it has an important impact on the practical efficiency, we also study the multiplicative
depth of these algorithms.
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2.1 Cryptographic tools

We first introduce the main crytographic tools our protocol is based on, namely Linearly and Fully Homo-
morphic Encryption Schemes.

2.1.1 Homomorphic Encryption Scheme (LHE)

For our purposes1, a linearly homomorphic encryption (LHE) scheme consists of five algorithms

(L.Setup,L.E,L.D,+L,⋉L) :

• (pk, sk)← L.Setup(κ): Given a security parameter κ, outputs a pair of secret and public keys (pk, sk).
pk implicitly defines a ring M, which is the plaintext space, and a ciphertext space E;

• c← L.Epk(m): Given as inputs a plaintext m ∈ M and a public key pk, outputs a ciphertext c ∈ E;

• m← L.Dsk(c): Given as inputs a ciphertext c ∈ E and a public key sk, outputs a plaintext m ∈ M;

• c3 ← c1 +L c2: Given as inputs two ciphertexts c1, c2 ∈ E, outputs a ciphertext c3 ∈ E;

• c3 ← m1 ⋉L c2: Given as inputs a plaintext m1 ∈ M and a ciphertext c2 ∈ E, outputs a ciphertext
c3 ∈ E.

Definition 1. (L.Setup,L.E,L.D,+L,⋉L) is a semantically secure LHE if it satisfies the following prop-
erties:

i) Correctness. For any security parameter κ, if (pk, sk)← L.Setup(κ), for all m,m1,m2 ∈ M,

L.Dsk(L.Epk(m)) = m, (1)

L.Dsk(L.Epk(m1) +L L.Epk(m2)) = m1 +m2, (2)

L.Dsk(m1 ⋉L L.Epk(m2)) = m1m2. (3)

ii) Security. The scheme is semantically secure if it is not possible to derive from a ciphertext more than
negligible information on the plaintext.

2.1.2 Fully Homomorphic Encryption Scheme (FHE)

A fully homomorphic encryption (FHE) scheme consists of six algorithms

(F.Setup,F.E,F.D,+F ,⋉F ,×F ) (4)

where (F.Setup,F.E,F.D,+F ,⋉F ) is a LHE and the algorithm ×F is as follows:

• c3 ← c1 ×F c2: Given as inputs two ciphertexts c1, c2 ∈ E, outputs a ciphertext c3 ∈ E.

Definition 2. (F.Setup,F.E,F.D,+F ,⋉F ,×F ) is a semantically secure FHE if it satisfies the following
properties:

1More generally LHE may be defined over only a group and not a ring, but we need in particular plaintext-ciphertext
multiplications over a ring for our application here.
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i) Correctness. For any security parameter κ, (F.Setup,F.E,
F.D,+F ,⋉F ) satisfies the LHE correctness and if (pk, sk)← F.Setup(κ), for all m1,m2 ∈ M,

F.Dsk(F.Epk(m1)×F F.Epk(m2)) = m1m2. (5)

ii) Security. The scheme is semantically secure if it is not possible to derive from a ciphertext more than
negligible information on the plaintext.

Remark 3. We extend the encryption and decryption algorithms for a LHE or a FHE to allow vectors as
inputs: if v ∈ Mn, L.Epk(v) (resp. F.Epk(v)) outputs c ∈ En such that ci is the encryption for vi for
1 ≤ i ≤ n. Similarly, L.Dsk(c) (resp. F.Dsk(c)) outputs v. In the same way, we extend these algorithms
to polynomial inputs and outputs in M[X] or E[X] by stating that the encryption of a polynomial is the
encryption of its vector of coefficients.

This allows for instance to extend the algorithm +L (resp. +F ) to vectors or polynomials. Also, we can
extend ⋉L (resp. ⋉F ) to a matrix-vector product where the matrix is in clear and the vector encrypted: v11 · · · v1n

...
...

vm1 · · · vmn

⋉L

c1
...
cn

 =

 v11 ⋉L c1 +L · · ·+L v1n ⋉L cn
...

vm1 ⋉L c1 +L · · ·+L vmn ⋉L cn

 (6)

The resulting algorithm has multiplicative depth 1.

Notations Since we use both a LHE scheme and a FHE scheme, for clarity, we will denote with x̂ a variable
which is encrypted under a LHE scheme, and with x̃ a variable which is encrypted under a FHE scheme.

2.2 Linearly homomorphic polynomial arithmetic

In this section, we focus on polynomial operations than can be performed linearly homomorphically, when
one of the inputs is in clear.

As customary in polynomial arithmetic, the homomorphic algorithms we describe reduce to polynomial
multiplications. For efficiency considerations we first prove that faster-than-quadratic polynomial multipli-
cation algorithms can be performed in linearly homorphic settings. For P ∈ M[X] and C ∈ E[X], we let
P ⋉L C ∈ E[X] be the encrypted polynomial such that L.Dsk(P ⋉L C) = P × L.Dsk(C).

In the following, we denote byML(d) the arithmetic cost of a linearly homomorphic product between a clear
polynomial and an encrypted one, both of degrees at most d. As an example, the following lemma shows
that for any LHE, we can build a Toom-k algorithm for the homomorphic product P ⋉L C. Similar result
can be proved for FFT-based multiplication algorithms, provided the plaintext space contains suitable roots
of unity.

Lemma 4. If Toomk(d) denotes the arithmetic cost of a Toom-k algorithm on polynomials of degree d,

ML(d) = O(Toomk(d)). (7)

Proof. A Toom-k algorithm basically requires the product of a Vandermonde matrix by a vector for polyno-
mial interpolation and evaluation. To compute a linearly homomorphic product P ⋉Q̂ where Q̂ is encrypted,
we can build a Vandermonde matrix representing the powers of clear evaluation points, and we can consider
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both P and Q̂ as vectors. The evaluations of P et Q̂ are given by matrix-vector products (in clear and ho-
morphically using (6), resp.). We can perform a clear/encrypted pointwise multiplication on the evaluation
vectors with ⋉L as one vector is in clear. Finally, the interpolation is done by another matrix-vector product
between the inverse Vandermonde and the encrypted vector obtained.

Our algorithms use of the middle product of two polynomials, that we now define. For a polynomial P =∑d
i=0 piX

i ∈ M[X], let
←−
P :=

∑d
i=0 pd−iX

i = P ( 1
X )Xd be its reverse polynomial, and for a ≤ b ≤ d, let

[P ]ba :=
∑b

i=a piX
i−a. The middle product of two polynomials P =

∑d
i=0 piX

i and Q =
∑d′

i=0 qiX
i is defined

to be

[
←−
P Q]d

′

d =

d′−d∑
i=0

d∑
j=0

pjqj+iX
i. (8)

Definition 5. Let (L.Setup,L.E,L.D,+L,⋉L) be a LHE scheme. The linearly homomorphic middle
product is an algorithm L.Mid satisfying

• C2 ← L.Mid(P,C1): Given as inputs a clear polynomial P ∈ M[X] and an encrypted polynomial
C1 ∈ E[X], outputs an encrypted polynomial C2 ∈ E[X].

This algorithm satisfies the following correctness property.

Correctness. For a security parameter κ, for every P1, P2 ∈ M[X], with m and M the minimum and the
maximum degrees of those polynomials respectively, and for (pk, sk)← L.Setup(κ),

L.Dsk (L.Mid (P1,L.Epk (P2))) =
[←−
P1P2

]M
m

. (9)

To obtain an algorithm for L.Mid, we rely on Tellegen’s transposition principle [Bostan et al.(2003)]. For, we
view the multiplication between P ⋉L C as a linear map by fixing the clear polynomial P . The transposed
of this linear map is exactly the linearly homomorphic middle product, again with the clear polynomial
fixed. General results on transposition guarantee that an algorithm for computing P ⋉LC using t arithmetic
operations can be transposed to get an algorithm for L.Mid for polynomials of degree n and n + m, that
uses t+ n arithmetic operations where n = deg(P ) and m = deg(C). This implies the following lemma.

Lemma 6. Let P ∈ M[X] of degree n and C ∈ E[X] of degree n+m. Then L.Mid(P,C) can be computed
inML(max(n,m)) +O(m) operations, with constant multiplicative depth.

We now turn to one of our main building blocks: multipoint evaluation. Given a degree-d polynomial P and
k evaluation points m1, . . . , mk, it consists in evaluating P on each mi.

Definition 7. Let (L.Setup,L.E,L.D,+L,⋉L) be a LHE scheme. The linearly homomorphic multipoint
evaluation is an algorithm L.MultEv such that

• {c1, . . . , ck} ← L.MultEv(C, {m1, . . . ,mk}): Given as inputs an encrypted polynomial C ∈ E[X] and
a set of k plaintexts m1, . . . ,mk ∈ M, outputs a set of k ciphertexts c1, . . . , ck ∈ E.

The algorithm satisfies the following correctness property.

Correctness. For a security parameter κ, for every P ∈ M[X], every subset {m1, . . . ,mk} ⊂ M and
(pk, sk)← L.Setup(κ), if

{c1, . . . , ck} ← L.MultEv (L.Epk (P ) , {m1, . . . ,mk}) (10)
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then, for all i ∈ {1, . . . , k},
L.Dsk(ci) = P (mi). (11)

Algorithm L.MultEv can be implemented in O(dk) operations where d = deg(P ), evaluating P on each
point with Horner scheme. The multiplicative depth of this algorithm is 1. We now turn to an asymptotically
fast algorithm when k = d+ 1.

Proposition 8. Let C ∈ E[X] of degree d and m0, . . . ,md ∈ M be evaluation points. L.MultEv(C, {m0, . . . ,md})
can be computed inML(d) log d+O(d log d) operations, after 1

2M(d) log d+O(d log d) operations of precom-
putation on m0, . . . , md. The multiplicative depth of the computation is O(log d).

Proof. We adapt the algorithm presented in [Bostan et al.(2003)] to the LHE context. Let C =
∑d−1

i=0 ciX
i,

P = L.Dsk(C). and m0, . . . , md ∈ M. We assume that d is as power of two to ease the description of the
algorithm, but it is not mandatory in practice. The first step of the algorithm consists in computing the
following polynomials in clear, for k = 0, . . . , log d and i = 1 . . . , 2k:

P( i

2k
) :=

∏
j∈{ i−1

2k
d+1,..., i

2k
d}
(X −mj) (12)

These polynomials can be computed using a product tree in
1
2M(d) log d + O(d log d) arithmetic operations. Note that these polynomials can be precomputed if the
evaluation points are known in advance.

The algorithm requires then to compute the polynomials

B :=
←−−
P( 1

1 )
−1 mod Xd, and (13)

A :=
[←−
B ⋉L C

]2d−1

d−1
. (14)

Let A( 1
1 )

:=
←−
A . The last step of the algorithm consists in the computation for k = 1, . . . , log d and i = 1,

. . . , 2k of the encrypted polynomials

A( i

2k
) = L.Mid

(
P(

i−(−1)(i mod 2)

2k

), A( ⌈i/2⌉
2k−1 )

)
. (15)

According to the correctness of the algorithm presented in [Bostan et al.(2003)], A( i
d )

is an encryption of

P (mi) for 1 ≤ i ≤ d. The final computation of the polynomials A( i

2k
) requires ML(d) log d + O(d log d)

arithmetic operations, and this dominates the cost.

2.3 Fully homomorphic polynomial arithmetic

Another building block of our protocol is the computation of a polynomial remainder. This is a harder task
in the context of homomorphic encryption. In our case, we divide a clear polynomial by an encrypted one.
This computation cannot be performed in a LHE scheme since the divisor and the quotient, both encrypted,
need to be multiplied together. Moreover, the need to invert the leading coefficient of the divisor could be a
problem. We focus here on the case where the divisor is monic.

The standard algorithm for this task is the quadratic long division algorithm. This algorithm has a linear
multiplicative depth. Below we show how to adapt the fast euclidean division algorithm, based on Newton
iteration, to the FHE settings. The algorithm is quasi-linear and has only a logarithmic multiplicative depth.
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To describe it, we need to a polynomial multiplication algorithm in the FHE. We denote by MF (d) the
arithmetic cost of a homomorphic product C1×F C2 between two encrypted polynomials of degrees at most
d in FHE. The same argument as in the LHE case shows that we can adapt faster-than-quadratic algorithms
for polynomial multiplication to the FHE settings, with constant multiplicative depth.

Definition 9. Let (F.Setup,F.E,F.D,+F ,⋉F ,×F ) be a FHE scheme. The homomorphic polynomial
remainder is an algorithm F.Rem as follows:

• C3 ← F.Rem(C1, C2): Given as inputs two encrypted polynomials C1, C2 ∈ E[X], outputs an en-
crypted polynomial C3 ∈ E[X].

This algorithm satisfies the following correctness property.

Correctness. For a security parameter κ, for (pk, sk) ← F.Setup(κ), and for clear polynomials P1,
P2 ∈ M[X] such that P2 is monic,

F.Dsk (F.Rem (F.Epk (P1) ,F.Epk (P2))) = P1 mod P2. (16)

Proposition 10. Let C1, C2 ∈ E[X] of respective degrees n and m < n, where C2 is the encryption of
a monic polynomial, F.Rem(C1, C2) can be computed in at most 9

2MF (n − m) + O(n − m) arithmetic
operations, with a multiplicative depth O(log(n−m)).

Proof. We recall the Netwon-iteration-based algorithm for polynomial euclidean division. We present the
fast version based on middle products. The remainder R in the division of A by B, of respective degrees

n and m < n, is the unique polynomial satisfying A = BQ + R with deg(R) < m. This implies
←−
A =

←−
Q
←−
B +Xn−m+1←−R , whence ←−

Q =
←−
A
←−
B−1 mod Xn−m+1. (17)

The goal is to homomorphically compute the inverse of
←−
B modulo Xn−m+1, using Newton iteration. Let

CA and CB be the encryptions of A and B, and 1̃ be an encryption of 1 with the same public key. The
algorithm requires first to compute the t+ 1 := ⌈log(n−m+ 1)⌉ first polynomials of the sequence (U):

(U) =

 U0 = 1̃

Uk+1 = Uk ×F

(
1̃−F

[←−
CB ×F Uk

]2k+1−1

2k
X2k

)
mod X2k+1

Now, instead of computing the last step of the sequence that would give us homomorphically the inverse

polynomial of
←−
B mod Xn−m+1, we directly compute the quotient, homomorphically. Let Ut be the (t+1)st

polynomial of this sequence. We compute

S =
←−
CA ×F Ut mod Xn−m+1, and (18)

T =
[←−
CBUt

]2k+1−1

2k
×F [S]

n−m−2k

0 mod Xn−m+1−2k . (19)

Then
←−
CQ := S +F TX2k is an encryption of

←−
Q , the reverse quotient. Finally, we compute

CR = CA −F CQ ×F CB mod Xm (20)

to get an encryption of the remainder R. Using the fact thatMF (2d) ≤ 2MF (d), we can bound the number
of arithmetic operations done with that algorithm with 9

2MF (n−m)+O(n−m). The multiplicative depth
is O(t).
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3 Security Model and Assumptions

3.1 Security Model

We are following the definition of security for a two-party protocol presented in [Lindell(2017)]. Let Π be a
two-party protocol computing a polynomial-time functionality f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where
f = (f1, f2). For x and y, inputs of each party, the ideal output-pair is f(x, y) = (f1(x, y), f2(x, y)) where
party i outputs fi(x, y). The view of the i-th party with inputs (x, y) is the tuple

viewΠ
i (x, y) := (w,Ci,Mi) (21)

where w is the i-th party’s input, Ci regroups all the information generated or computed by the i-th party
during the protocol and Mi is the content of the messages received by this party during the protocol. The
output of the i-th party with inputs (x, y) is denoted outputΠi (x, y) and can be computed from viewΠ

i (x, y).
The joint output is denoted

outputΠ(x, y) = (outputΠ1 (x, y),output
Π
2 (x, y)) (22)

Definition 11. Let f = (f1, f2) be a functionality. We say that π securely computes f in the presence of
honest-but-curious adversaries if there exists a probabilistic polynomial-time algorithms S1 and S2 such that
for any finite set of inputs I, J ⊂ {0, 1}∗:

{S1(x, f1(x, y)), f(x, y)}I,J
c≡ {viewΠ

1 (x, y),output
Π(x, y)}I,J

{S2(y, f2(x, y)), f(x, y)}I,J
c≡ {viewΠ

2 (x, y),output
Π(x, y)}I,J

where
c≡ denotes the computational indistinguishability.

3.2 Unbalanced Private Set Union Scheme

An unbalanced private set union scheme (UPSU) consists of five algorithms: Setup,Y.Enc,X.ExtractEnc,
Comput, Union between a sender S that owns a set Y ⊂ M and a receiver R that owns a set X ⊂ M.
• {keysR, keysS} ←Setup (κ): On input of a security parameter κ, outputs receiver’s keys keysR and
sender’s keys keysS .
• EY ←Y.Enc (Y, keysS): Given sender’s set Y and keys keysS , outputs EY, an encoding of the set Y.
• EX ←X.ExtractEnc (X, keysR, EY): As input, takes receiver’s set X, keys keysR and EY, an encoding
of the set Y. Outputs EX, a (partial) encoding of the set X.
• D ←Comput (EY, EX, keysS): On input of EY and EX, the encoding of each set, and sender’s keys
keysS , outputs a data set D.
• Z ←Union (X,Y,D, keysR): On input of the receiver’s set X, the sender’s set Y, a data set D and
receiver’s keys keysR, outputs a set Z.

Definition 12. (Setup, Y.Enc, X.ExtractEnc, Comput, Union) is a secure unbalanced private set
union scheme under honest-but-curious adversary model if it satisfies the following three properties:

i) Correctness. For a security parameter κ and any sets X,Y ⊂ M, for

{keysR, keysS} ← Setup(κ)

EY ← Y.Enc(Y, keysS)

EX ← X.ExtractEnc(X, keysR, EY)
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then the scheme is correct if:

Union(X,Y,Comput(EY, EX, keysS), keysR) = X ∪Y (23)

ii) Privacy. The scheme assures privacy of each participant’s set if it is secured following Theorem 11
where the definition is instantiated with the PPT functionality

f : P(M)× P(M) −→ (P(M)× N)× P(M) (24)

and for inputs X,Y ⊂ M, the ideal output-pair is

f(X,Y) = ((X ∪Y, |Y|) , ∅) (25)

iii) Unbalanced efficiency. For a security parameter κ and sets X ⊂ M for the receiver and Y ⊂ M for
the sender, if |Y| = o(|X|), then the total communication volume of the scheme, as well as the sender’s
arithmetic cost, are o(|X|).

3.3 Assumptions

According to [Brakerski et al.(2014)], the BGV scheme semantic security relies on the general learning with
error (GLWE) assumption, which regroups the learning with error (LWE) assumption from [Regev(2009)]
and the ring-LHE (RLWE) assumption from [Lyubashevsky et al.(2013)].

Definition 13. (GLWE) For κ a security parameter, n = n(κ) an integer dimension, ϕd(X) the dth cyclo-

tomic polynomial, with d = d(κ), and p = p(κ) a prime integer. Let R = Z[X]
(ϕd(X)) , Rp = R

(p) and χ = χ(κ) a

distribution over R. The GLWEn,ϕd,q,χ problem is to distinguish the distribution of (ai, bi) taken uniformly
at random in Rn

p ×Rp from the distribution of (ai, bi) ∈ Rn
p ×Rp, where ai and s are taken uniformly at

random in Rn
p , ei is taken following the distribution χ and bi = ⟨ai, s⟩+ ei. The GLWEn,ϕd,q,χ assumption

is that the GLWEn,ϕd,q,χ problem is infeasible.

4 Homomorphic UPSU protocol

The idea of our protocol is to represent each set, the receiver’s and the sender’s, with polynomials as in
[Frikken(2007)]. We use the euclidean remainder to reduce the receiver’s polynomial to the size of the
sender’s polynomial, and we use efficient multipoint evaluation to alleviate the computational cost of the
sender. We perform all those operations under homomorphic schemes to keep the sets private, and with
some masking and blending, we obtain our UPSU protocol.

Remark 14. In the following protocol, we are making the assumption that a LHE and a FHE can share the
same plaintext space. We will see in Section 5 that it is obviously true if we are using a FHE scheme for the
entire protocol.

Formally, our protocol is built with the algorithms Setup, Y.Enc, X.ExtractEnc, Comput and Union
respectively presented in Algs. 1 to 5. A more visual version is presented in Protocol 1.

Proposition 15. The protocol built with the algorithms Setup, Y.Enc, X.ExtractEnc, Comput and
Union, respectively presented in Algs. 1 to 5, is correct.

Proof. Correctness. We assume the correctness of the encryption schemes. Let κ be a security parameter,
let X be the receiver’s set and Y be the sender’s set. Let keysR and keysS be the outputs of Setup (κ). We
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Algorithm 1 Setup(κ)

Input: A security parameter κ.
Output: A pair of LHE keys (pkR, skR) and a FHE public key pkS .
Output: A pair of FHE keys (pkS , skS) and a LHE public key pkR.
Remark: pkR and pkS implicitly define the same plaintext space M but potentially different ciphertext
spaces, resp. EL and EF .

1: R: compute (pkR, skR)← L.Setup(κ) and send pkR to S;
2: S: compute (pkS , skS)← F.Setup(κ) and send pkS to R;
3: R: return keysR ← {(pkR, skR), pkS};
4: S: return keysS ← {(pkS , skS), pkR};

Algorithm 2 Y.Enc(Y, keysS)

Input: A set of plaintext Y ⊂ M and keysS = {(pkS , skS), pkR}.
Output: An encrypted polynomial P̃S ∈ EF [T ].

1: S: compute PS ←
∏

y∈Y

(T − y);

2: S: compute P̃S ← F.EpkS (PS) and send P̃S to R;
3: R: return P̃S ;

are using the notations of the algorithms. Let (ĉi, ĉi
′) be an element of Ê ← Comput(Y, {R̃, Ĥ}, keysS)

and let (ci, c
′
i) be its decrypted tuple with the key skR. The elements {c′i × c−1

i } is added to X if and only
if ĉi is not an encryption of zero. ĉi is an encryption of ri(ai − bi) where ri is a non-zero random plaintext,
bi is the polynomial R evaluated in yi and ai is the polynomial H evaluated in yi. However, the polynomial
R is the sum of H and the euclidean remainder, that we denote S, between PR and PS (that is monic).
So ai − bi = R(yi) −H(yi) = S(yi). It means that ĉi is an encryption of zero if and only if yi is a root of
the remainder S and yi ∈ Y is a root of the remainder S if and only if yi ∈ X. It is easy to see that, if
ci ̸= 0, c′i × c−1

i = yi. To conclude, the elements added to X are exactly the elements y ∈ Y that are not in
X ∩Y.

Proposition 16. The protocol built with the algorithms Setup, Y.Enc, X.ExtractEnc, Comput and
Union, respectively presented in Algs. 1 to 5, is secure under the honest-but-curious adversary model.

Proof. The complete simulation proof is presented in Appendix A.1.

Remark 17. In the following, the communication volume counts the number of ciphertext exchanged, and
the arithmetic cost denotes the number of basic arithmetic operations needed in the algorithms. Even if basic
homomorphic operations (additions, multiplications, encryption and decryption) are more expensive than
clear operations, their computational cost is assumed constant. However, we will still distinguish the cost
of polynomials products in clear, in LHE and in FHE as the algorithm used may not be the same (we keep
using the notations M, ML and MF ). We will hide the security parameter in that analysis, considering
that it is a constant, but all the costs depend on it.

Proposition 18. For the receiver owning a set X of n elements, and the sender owning a set Y of
m elements, with the assumption that n > m, the protocol built with the algorithms Setup, Y.Enc,
X.ExtractEnc, Comput and Union, respectively presented in Algs. 1 to 5, computes the set union with
the asymptotic complexity bounds presented in Table 2.

Proof. The Setup algorithm is independent of the size on the sets, and only two keys are exchanged.
Y.Enc consists in the computation of PS for S, which costs, with a recursive algorithm, 1

2M(m) logm basic
operations; encrypting the polynomial requires m encryptions, so O(m) computations, and sending this

11



Algorithm 3 X.ExtractEnc(X, keysR, P̃S)

Input: A set of plaintext X ⊂ M, keysR = {(pkR, skR), pkS} and a ciphertext polynomial P̃S .

Output: Two encrypted polynomials R̃ ∈ EF [T ] and Ĥ ∈ EL[T ]

1: R: compute PR ←
∏

x∈X

(T − x);

2: R: compute P̃R ← F.EpkS (PR);

3: R: randomly select H
$←− M[T ] such that deg(H) = deg(P̃S)− 1;

4: R: compute H̃ ← F.EpkS (H);

5: R: compute Ĥ ← L.EpkR(H);

6: R: compute R̃← F.Rem(P̃R, P̃S) +F H̃;

7: R: send {R̃, Ĥ} to S;
8: S: return {R̃, Ĥ};

Algorithm 4 Comput(Y, {R̃, Ĥ}, keysS)
Input: A set of m plaintexts Y ⊂ M, two ciphertext polynomials {R̃, Ĥ} ∈ EF [T ]× EL[T ], and
keysS = {(pkS , skS), pkR}.
Output: A set of ciphertext pairs Ê ⊂ EL × EL.

1: S: compute R← F.DskS (H̃) ∈ M[T ];
2: S: compute {ai}i∈{1,...,m} ←MultEv(R,Y) ⊂ M;

3: S: compute {b̂i}i∈{1,...,m} ← L.MultEv(Ĥ,Y) ⊂ EL;
4: for all i ∈ {1, . . . ,m} do
5: S: randomly select ri

$←− M \ {0};
6: S: compute âi ← L.EpkR(ai) ∈ EL;

7: S: compute ĉi ← ri ⋉L (âi −L b̂i) ∈ EL, ĉi
′ ← yi ⋉L ĉi ∈ EL;

8: end for
9: S: randomly select π

$←− Sm;
10: S: compute Ê ← {(ĉπ(i), ĉπ(i)

′
)}i∈{1,...,m} ⊂ EL × EL;

11: S: send Ê to R;
12: R: return Ê;

polynomial to R is equivalent to send m ciphertexts. In X.ExtractEnc, R computes PR in 1
2M(n) log n,

and encrypts it in n computations; then, the homomorphic remainder needs 9
2MF (n − m) + O(n − m)

arithmetic operation as said in Theorem 10; the polynomial encryptions of H and addition with H are in
O(m) and the polynomials sent have both degrees m−1, so the communication volume is in O(m). Comput
requires m encryptions and decryptions, m homomorphic additions and clear/ciphered products, which are
all in O(m); S has to perform a multipoint evaluation both in plaintext and in ciphertext on polynomials
of degrees m− 1 in its m elements; the precomputation told in Theorem 8 is already done when computing
PS so it adds ML(m) logm +M(m) logm + O(m logm) to the cost; then m pairs of ciphertexts are sent,
so a communication volume in O(m). Finally, Union requires at most 2m decryptions and m products and
inversions, so O(m) computations.

Overall, we have shown in Theorem 19 that the protocol summarized in Protocol 1 is a secure unbalanced
private set union scheme

Theorem 19. The protocol built with the algorithms Setup, Y.Enc, X.ExtractEnc, Comput and Union,
respectively presented in Algs. 1 to 5, is a secure unbalanced private set union scheme (UPSU) under the
honest-but-curious adversary model.
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Algorithm 5 Union(X, Ê, keysR)

Input: A set of plaintexts X ⊂ M, a set of ciphertext pairs Ê ⊂ EL × EL and keysR = {(pkR, skR), pkS}.
Output: The union set X.

1: for (ĉi, ĉi
′) ∈ Ê do

2: R: compute ci ← L.DskR(ĉi) ∈ M;
3: if ci ̸= 0 then
4: R: compute c′i ← L.DskR(ĉi

′) ∈ M;
5: R: compute X← X ∪ {c′i × c−1

i };
6: end if
7: end for
8: R: return X;

Table 2: Cost analysis of Protocol 1
Algorithm Ar. Cost for R Ar. Cost for S Comm. Vol.

Setup O(1) O(1) O(1)

Y.Enc O(1) 1
2
M(m) logm O(m)

X.ExtractEnc

9
2
MF (n−m)+

1
2
M(n) logn +

O(n−m)

O(1) O(m)

Comput O(1)
ML(m) logm+
M(m) logm +
O(m logm)

O(m)

Union O(m) O(1) O(1)

5 Instantiation of LHE and FHE with BGV

The direct way to instantiate our UPSU Protocol 1 is to use a fully homomorphic encryption scheme for
the entire protocol. It avoids any possible conflict of compatibility between the plaintext spaces of LHE
and FHE. One of the most efficient FHE encryption scheme available nowadays is the BGV cryptosys-
tem presented in [Brakerski et al.(2014)], whose security is based on the GLWE assumption. Thanks
to Shoup and Halevi, we can use an implementation of the bootstrappable scheme in the C++ open
source library HElib2 [Halevi and Shoup(2014), Halevi and Shoup(2021)]. Another implementation of the
BGV scheme is available in the open-source library Microsoft SEAL3. There is also an active research
to increase the efficiency of the RLWE based schemes, in particular to speedup the bootstrapping proce-
dure [Geelen and Vercauteren(2023), Guimarães et al.(2023)]. For now, the computation of homomorphic
multiplication and the bootstraping procedure are usually quite slow for bootstrappable contexts with decent
security. As the research is active on the subject, we expect to have a better efficiency in the future years.
In the following, we will briefly present the BGV cryptosystem and compare our estimated client (sender)
time and communication volume for Protocol 1 to the values presented in [Tu et al.(2023), Table 3].

5.1 BGV cryptosystem

We here give an overview of the BGV cryptosystem, and we refer the reader to [Brakerski et al.(2014)] for

more details. First, the plaintext space is a ring Rpr = Z[X]
(pr,ϕd(X)) where p is a prime number, and ϕd(X)

is the dth cyclotomic polynomial. In this paper, we will always consider r = 1. The ciphertext space is R2
q

where Rq = Z[X]
(q,ϕd(X)) and q is an odd modulus that might change during computation. The secret key is

2https://github.com/homenc/HElib
3https://github.com/microsoft/SEAL
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Protocol 1: Communication optimal UPSU Protocol

R S
X = {x1, ..., xn} ⊂ M Y = {y1, ..., ym} ⊂ M

Setup {(pkR, skR)← L.Setup(κ), pkS} {(pkS , skS)← F.Setup(κ), pkR} Setup
PR ←

∏
xi∈X

(T − xi) PS ←
∏

yi∈Y
(T − yi)

P̃R ← F.EpkS (PR)
P̃S←−−−−−−−−−−−−−−−−−− P̃S ← F.EpkS (PS) Y.Enc

H
$←− M[T ]m−1

Ĥ ← L.EpkR (H)

H̃ ← F.EpkS (H)

X.ExtractEnc R̃← F.Rem(P̃R, P̃S) +F H̃
R̃, Ĥ−−−−−−−−−−−−−−−−−−→ R← F.DskS (R̃)

{ai}i∈[m] ←MultEv(R,Y)

{b̂i}i∈[m] ← L.MultEv(Ĥ,Y)
∀i ∈ {1, ...,m} :

ri
$←− M \ {0}

âi ← L.EpkR (ai)

êi ← ri ⋉L (âi −L b̂i)
êi

′ ← yi ⋉L êi

π
$←− Sm

∀(êi, ê′i) ∈ Ê
Ê←−−−−−−−−−−−−−−−−−− Ê ← {(êπ(i), êπ(i)

′
)} Comput

ei ← L.DskR (êi)
If ei ̸= 0 :

e′i ← L.DskR (ê′i)

Union X← X ∪ {e′i × e−1
i }

Return X

a vector (1, s) ∈ R2
q where s has a small coefficients (usually in {−1, 0, 1}). The public key is basically a

two entries matrix A where the first entry is a multiple of the secret key masked with an error term and the
second is the opposite of the ”multiple” term. An encryption of a plaintext m ∈ Rp is then a pair (c0, c1)
such that c0 + c1s = m+ pe mod q, where e is a ”small” error term. The decryption of a ciphertext (c0, c1)
is done with the inner product and the modulus reduction [⟨(1, s), (c0, c1)⟩]p.

Having two ciphertexts (c0, c1) and (c′0, c
′
1) such that c0+c1s = m+pe mod q and c′0+c′1s = m′+pe′ mod q,

we can see that the ciphertext (c′′0 , c
′′
1) := (c0+ c′0, c1+ c′1) satisfies c

′′
0 + c′′1s = m+m′+pe′′ mod q so can be

decrypted to m+m′ if the noise e′′ has a small enough norm. For the same two ciphertexts, if we consider the
vector (c′′0 , c

′′
1 , c

′′
2) = (c0c

′
0, c0c

′
1+c1c

′
0, c1c

′
1) = (c0, c1)⊗(c′0, c′1), we see that c′′0+c′′1s+c′′2s

2 = mm′+pe′′ mod q,
with e′′ = mpe′ +m′pe+ ee′p2. With the help of a procedure called the key switching procedure, one is able
to turn the ciphertext (c′′0 , c

′′
1 , c

′′
2), that can be seen as an encryption under the key (1, s, s2), to a ciphertext

(c0, c1) such that c0 + sc1 = mm′ + pe′′ mod q. One more time, if the norm of the noise e′′ is small enough,
this ciphertext can be decrypted to the product mm′. We saw that we can perform homomorphic operations
with that scheme as long as the noise is controlled, but those operations, in particular the multiplication,
add some noise, so this scheme requires a noise management. The first procedure to manage the noise
is the modulus switching, which will reduce the modulus q of the ciphertext space and the noise norm
proportionally. This first procedure makes this scheme a leveled homomorphic encryption scheme, because
after some several such switches, the modulus cannot be reduced anymore. The second procedure, called
bootstraping, allows a ”reset” of the noise. But this comes with an increase of the ciphertext modulus via
an homomorphic decryption. This procedure is more costly, but allows the scheme to be fully homomorphic.

5.2 Experiments

All our experiments were run a single core of an i7-6700 CPU 3.40GHz.
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The main focus of this paper is a protocol with optimal asymptotic communication volume. In this protocol,
the sender computational cost is also independent from the size of the receiver’s large set. In this section we
provide preliminary estimates on the different practical costs

To test the receiver side, we need bootstrappable fully homomorphic modular operations and, up to our
knowledge, the HElib library is among the only few that provide this. Unfortunately, for instance, in a
bootstrappable context with equivalent security κ = 100, cyclotomic polynomial ϕd(X) for d = 46235
and plaintext modulus p = 17, a single ciphertext multiplication requires about 0.45 seconds and a single
bootstrap, about 8 minutes. Therefore, in order to run the receiver side of our protocol it seems that for
now multi-core servers are recommended. Further work is needed to reduce this in practice. It also might
be possible to use batching for the polynomial division.

On the communication and sender sides, however, the situation is more favorable. A trade-off has to be
made between fast routines for multi-point evaluation (that have a ciphertext-cleartext multiplicative depth
that can be O(log(m)) and naive routines (quadratic time, but of multiplicative depth 1). We here report
preliminary results with a naive multi-point evaluation. In order to be able to compare our communication
volume with state of the art implementations, we switch to the SEAL library for these tests.

With a computational security κ = 123.1, and a sender owning a set Y of m = |Y | = 210 items of 128 bits,
SEAL generates a context with a 20-bits prime, p = 1032193, and can encrypt the m items in two ciphertext
matrices, each one containing 4096 slots. For these parameters, SEAL reports that the serialization of one
matrix will require 526 449 bits, and as our Protocol 1 requires to exchange 5 times m ciphertexts (P̃S , R̃,

Ĥ and Ê, the latter containing 2m ciphertexts), the total communication volume is contained in 10 such
ciphertext matrices. This represents 0.628MB overall. Figure 1 compares this with [Tu et al.(2023), Table 3]
where the memory footprint depends also on n = |X|.

Figure 1: Estimated Memory footprint for m = |Y | = 210
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Protocol 1 with SEAL

Finally, we provide in Table 3 the associated timings for the sender, with m = |Y | = 210, for any n = |X|. In
this table, Decryp. is for the decryption of the masked remainder, Clear Eval is for the clear multi-point
evaluation of this masked remainder, Hom. Eval is for the multi-point evaluation of the ciphered mask,
Filter is for the remaining arithmetic operations of the sender, while Total is the total sender time.
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Table 3: Protocol 1 with SEAL, sender time (seconds)

m = |Y | Decryp. Clear Eval. Hom. Eval. Filter. Total

2 0.002 <0.001 0.006 0.012 0.021
4 0.002 <0.001 0.013 0.024 0.039
8 0.002 <0.001 0.025 0.048 0.076

16 0.002 <0.001 0.049 0.096 0.147
32 0.002 <0.001 0.097 0.191 0.290
64 0.002 <0.001 0.193 0.379 0.574

128 0.002 <0.001 0.977 0.756 1.735
256 0.002 0.001 0.756 1.505 2.263
512 0.002 0.003 1.498 2.997 4.499

1024 0.002 0.012 2.980 5.988 8.982
2048 0.002 0.047 5.954 11.964 17.966
4096 0.002 0.186 11.964 23.938 36.090

In this benchmark we are using a naive algorithm for the multi-point evaluations. These two steps require
a quadratic number of operations, while the other two are linear. The cleartext multi-point evaluation is
performed fully in clear and is thus much faster than the rest. With the large dimensions, the quadratic be-
havior starts to show. Then, each homomorphic polynomial evaluation is batched with 4096 slots. Therefore
the quadratic behavior does not show in this column: at each evaluation point a single batch is sufficient.
Thus, overall, the homomorphic operations are largly dominating. Further, if the sender’s set remains in the
range of Table 3, its computational effort remains under a minute while exhibiting a linear behavior.
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A Security Proofs

A.1 Security Proof for Protocol 1

We assume that both the FHE and LHE schemes used are semantically secure. In the following, we denote
the receiver R as the party 1 and the sender S as the party 2 and Protocol 1 will be called Π. This protocol
has 3 rounds: R receives 2 messages M1 and M3 while S receives only M2. The semantic functionality
is f : P(M) × P(M) → (P(M) × N) × P(M) where P denotes the power set. The ideal output-pair is
f(X,Y) = (f1(X,Y), f2(X,Y)) = ((X ∪ Y, |Y|), ∅). The following views are reduced to the minimal set
that could trivially imply the real view; for example, if the real view have a clear polynomial R, a key pk
and a ciphertext F.Epk(R), we omit F.Epk(R) in the view, because if we can simulate both R and pk, it is
trivial to simulate F.Epk(R). The views and the outputs of each parties are:

• viewΠ
1 (X,Y) = (X, C1,M1,M3) where:

C1 =

{
S̃,H, pkR, skR, pkS ,{(

rπ(i)S(yπ(i)), yπ(i)rπ(i)S(yπ(i))
)}

1≤i≤|Y|

}
Where S̃ ← F.Rem(P̃R, P̃S) and S is its decryption with the key skS . The content of the messages
are:

M1 =
{
P̃S

}
M3 =

{{(
L.EpkR

(
rπ(i)S(yπ(i))

)
,L.EpkR

(
yπ(i)rπ(i)S(yπ(i))

))}
1≤i≤|Y|

}
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• viewΠ
2 (X,Y) = (Y, C2,M2) where:

C2 =
{
pkS , skS , pkR, R, {ri}1≤i≤|Y|, π

}
M2 =

{
R̃, Ĥ

}
• outputΠ1 (X,Y) =

(
X ∪

{
yπ(i)|S(yπ(i)) ̸= 0

}
, |Y|

)
• outputΠ2 (X,Y) = ∅

On the side of S, a probabilistic polynomial-time algorithm S2, taking as input the set Y, should simulate
viewΠ

2 (X,Y) with the following tuple.

S2(Y, ∅) = (Y,
{
pk, sk, pk′, R1, {r′i}1≤i≤|Y|, π

′} ,
{F.Epk(R1),L.Epk′(R2)})

Where (sk, pk) ← F.Setup(κ), pk′ ∈ L.Setup(κ), R1 and R2 are random polynomials in M[T ] of degrees
|Y| − 1, {r′i}1≤i≤|Y| is a set of random values in M \ {0} and finally π′ randomly selected in S|Y|.
As in the protocol S is of degree at most |Y| − 1 and H is taken uniformly at random of degree |Y| − 1, one
cannot distinguish R = S +H from R1, for R1 taken uniformly at random of size |Y| − 1. This implies also

that F.Epk(R1) is a good simulation of R̃. The set of r′i obviously simulates well the set of ri as those are

both taken as random non-zero plaintexts. As the encryption schemes are assumed semantically secure, Ĥ
is indistinguishable from L.Epk′(R2) , if R2 is taken randomly of same degree than H. Finally, we obtain
for every subsets X,Y ⊂ M:

{S2(Y, ∅), ((X ∪Y, |Y|), ∅)} c≡ {viewΠ
2 (X,Y),outputΠ(X,Y)}

On the side of R, a probabilistic polynomial-time algorithm S1 taking as input the set X and (X ∪Y, |Y|)
should simulate viewΠ

1 (X,Y) this way:

S1(X, (X ∪Y, |Y|)) =
(
X,{
R3, R2, pk, sk, pk

′, {(r(1)i , r
(1)
i r

(2)
i )}1≤i≤|Y|

}
,

{F.Epk′(R1)} ,{
{(L.Epk(r

(1)
i ),L.Epk(r

(1)
i r

(2)
i ))}1≤i≤|Y|

})
Let δ ← |Y| − (|X ∪ Y| − |X|): this is the size of the intersection X ∩ Y. Let {m1, ...,mδ} be δ distinct

random values taken in X. Then, let R1 ∈ M[T ] be the product
δ∏

i=1

(T−mi)
∏

m∈X∪Y\X
(T−m), R2 be a random

polynomial in M[T ] of degree |Y| − 1, and R3 ← F.Rempk′(P̃R,F.Epk′(R1)), for (., pk′) ← F.Setup(κ).

(sk, pk) ← El.Setup(κ). Also let |X ∪Y| − |X| of the r
(1)
i be random plaintexts in M \ {0} and set the δ

others to zero with the indices of the zeroes uniformly distributed. If index i is such that r
(1)
i = 0, then

r
(2)
i is taken to be equal to zero too, and for the indices i such that r

(1)
i ̸= 0, then r

(2)
i is randomly taken in

X ∪Y \X, with each element in X ∪Y \X selected once and only once. From the semantic security of the

encryption schemes and the indistinguishability of keys, F.Epk′(R1) is indistinguishable from P̃S . Therefore,

this implies that R3 is indistinguishable from S̃. Now, H is randomly selected in M[T ] of degree |Y| − 1 in

the protocol, it is thus well simulated by R2. The set {(r(1)i , r
(1)
i r

(2)
i )}1≤i≤|Y| contains δ zeroes, and |Y| − δ

random pairs, such that the division of the second element of the tuple by the first one gives an element
added to X by the protocol: this is thus indistinguishable from

{(
rπ(i)S(yπ(i)), yπ(i)rπ(i)S(yπ(i))

)}
1≤i≤|Y|.

Overall we have that an encryption of the first set of pairs under a LHE scheme is a good simulation of the
encryption of the second set of pairs under a LHE.
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To conclude, we obtain for every subsets X,Y ⊂M:

{S1(X, (X ∪Y, |Y|)), ((X ∪Y, |Y|), ∅)} c≡ {viewΠ
1 (X,Y),outputΠ(X,Y)}
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