
Computing the multilinear factors of
lacunary polynomials without heights

Arkadev Chattopadhyay∗ Bruno Grenet†

Pascal Koiran‡ Natacha Portier‡ Yann Strozecki§

Abstract

We present a deterministic polynomial-time algorithm which
computes the multilinear factors of multivariate lacunary polynomials
over number fields. It is based on a new Gap theorem which allows
to test whether P(X) = ∑

k
j=1 ajX

αj(vX + t)β j(uX + w)γj is identically
zero in polynomial time. Previous algorithms for this task were based
on Gap Theorems expressed in terms of the height of the coefficients.
Our Gap Theorem is based on the valuation of the polynomial and
is valid for any field of characteristic zero. As a consequence we
obtain a faster and more elementary algorithm. Furthermore, we can
partially extend the algorithm to other situations, such as absolute
and approximate factorizations.

We also give a version of our Gap Theorem valid for fields of large
characteristic, and deduce a randomized polynomial-time algorithm
to compute multilinear factors with at least three monomials of mul-
tivariate lacunary polynomials of finite fields of large characteristic.
We provide NP-hardness results to explain our inability to compute
binomial factors.

∗School of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai, India; arkadev.c@tifr.res.in.

†LIX – UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France; Supported by
the Lix-Qualcomm-Carnot fellowship; bruno.grenet@lix.polytechnique.fr.

‡LIP – UMR 5668 ÉNS Lyon - CNRS - UCBL - Inria, École Normale Supérieure de
Lyon, Université de Lyon, France; [pascal.koiran,natacha.portier]@ens-lyon.fr.

§PRiSM, Université de Versailles Saint-Quentin, France;
yann.strozecki@prism.uvsq.fr.

1

1 Introduction

The lacunary, or supersparse, representation of a polynomial

P(X1, . . . , Xn) =
k

∑
j=1

ajX
α1,j

1 · · · X
αn,j
n

is the list of the tuples (aj, α1,j, . . . , αn,j) for 1 ≤ j ≤ k. This representation
allows very high degree polynomials to be represented in a concise manner.
The factorization of lacunary polynomials has been investigated in a series
of papers. Cucker, Koiran and Smale first proved that integer roots
of univariate integer lacunary polynomials can be found in polynomial
time [10]. This result was generalized by Lenstra who proved that low-
degree factors of univariate lacunary polynomials over algebraic number
fields can also be found in polynomial time [27]. More recently, Kaltofen
and Koiran generalized Lenstra’s results to bivariate and then multivariate
lacunary polynomials [17, 18]. A common point to these algorithms is
that they all rely on a so-called Gap Theorem: If F is a factor of P(X) =

∑
k
j=1 ajX

αj , then there exists ℓ such that F is a factor of both ∑
ℓ
j=1 ajX

αj

and ∑
k
j=ℓ+1 ajX

αj . (Here, X is a vector of variables of length at least 1, and

the αj’s are vector of exponents.) Moreover, the different Gap Theorems in
these papers are all based on the notion of height of an algebraic number,
and some of them use quite sophisticated results of number theory.

In this paper, we are interested in more elementary proofs for these
results. We first focus on the case of linear factors of bivariate lacunary
polynomials as in Kaltofen and Koiran’s first paper [17]. Yet unlike
their result our algorithm works over number fields, and is extended to
multivariate polynomials, and to the computation of multilinear factors,
with multiplicities. This was investigated in Kaltofen and Koiran’s second
paper [18], in which they also dealt with low-degree factors. Extending
our results to the case of low-degree factors is a very natural perspective
of our work.

We prove a new Gap Theorem that does not depend on the height of
an algebraic number but only on the exponents. In particular, our Gap
Theorem is valid for any field of characteristic zero and we also extend it
to the case of multilinear factors of multivariate polynomials. As a result,
we get a new, more elementary algorithm for finding multilinear factors
of multivariate lacunary polynomials over an algebraic number field. In
particular, this new algorithm is easier to implement since there is no
need to explicitly compute some constants from number theory, and the

2

use of the Gap Theorem does not require to evaluate the heights of the
coefficients of the polynomial. We also compute the multiplicities of the
factors. With our method this comes for free, which makes our algorithm
faster than the previous ones.

Our algorithm can also be used for absolute factorization, that is the
factorization of a polynomial in an algebraic closure of the field generated
by its coefficients. More precisely, it can be used to compute in polynomial
time the multilinear factors with at least three monomials of a lacunary
multivariate polynomial. Note that univariate factorization reduces to the
computation of binomial factors. And since the absolute factorization of a
univariate polynomial of degree d is a product of d linear factors, these
factors cannot even be listed in polynomial time. We shall also discuss the
application of our algorithms to other fields of characteristic zero.

We use the same methods to prove a Gap Theorem for polynomials
over some fields of positive characteristic, yielding an algorithm to find
multilinear factors of multivariate lacunary polynomials with at least three
monomials. We show that detecting the existence of binomial factors,
that is factors with exactly two monomials, is NP-hard. This follows
from the fact that finding univariate linear factors over finite fields is
NP-hard [25, 4, 20]. In algebraic number fields we can find all multilinear
factors in polynomial time, even the binomial ones. For this we rely as
Kaltofen and Koiran on Lenstra’s univariate algorithm [27].

Our Gap Theorems are based on the valuation of a univariate polyno-
mial, that is the maximum integer v such that Xv divides the polynomial.
We give an upper bound on the valuation of a nonzero polynomial

P(X) =
k

∑
j=1

ajX
αj(vX + t)β j(uX + w)γj .

This bound can be viewed as an extension of a result due to Hajós [16, 29].
We also note that Kayal and Saha recently used the valuation of square
roots of polynomials to make some progress on the “Sum of Square Roots”
problem [24].

Lacunary polynomials have been studied with respect to other compu-
tational tasks. For instance, Plaisted showed the NP-hardness of computing
the greatest common divisor (GCD) of two univariate integer lacunary
polynomials [31]. His results were extended to prove that testing the
irreducibility of a lacunary polynomial is NP-hard for polynomials with
coefficient in Z or in a finite field [33, 23, 17]. On the other hand, some
efficient algorithms for lacunary polynomials have been recently given, for
instance for the detection of perfect powers [13, 14] or interpolation [21].

3

Another approach for computing with lacunary polynomials is to give
algorithms with a polynomial complexity in the logarithm of the degree
(that is in the size of the exponents) but not in the number of terms or
the size of the coefficients. This approach has been used to circumvent
Plaisted’s NP-hardness result on the GCD [11, 1].

Note that for all the problems we address, there exist algorithms with
a polynomial complexity in the degree of the polynomials. They are used
as subroutines of our algorithms. We refer the reader to [32] for details
and references on these algorithms.

A preliminary version of this paper was published in the conference
ISSAC 2013 [6] that contains the bivariate case of our results. The present
paper gives more details on the algorithms especially for the computation
of the multiplicities of the factors, and the generalization to multivariate
polynomials is new. In positive characteristic, it includes a more general
NP-hardness result. We also give a new Polynomial Identity Testing
algorithm for sums of products of dense polynomials.

Organization of the paper

Section 2 is devoted to our main technical results. In Section 2.1, we give a

bound on the valuation of a nonzero polynomial P = ∑j ajX
αj(uX + v)β j

over a field of characteristic 0. This result is extended in Section 2.2
to polynomials of the form ∑j aj ∏i f

αij

i where the fi’s are low-degree
polynomials. In Section 2.3, we discuss the tightness of these results.

In Section 3, we use these valuation bounds to get new Gap Theo-
rems, respectively adapted to linear and multilinear factors. We also give
in Section 3.2 a first application of these Gap Theorems: We give poly-
nomial identity testing algorithms for the above mentioned families of
polynomials.

Section 4 presents our main application: the factorization of lacunary
polynomials. We begin with the computation of linear factors of bivariate
polynomials over a number field in Section 4.1, and then extend it to
multilinear factors in Section 4.2. Then, we generalize these algorithms
to multivariate polynomials in Section 4.3. We briefly discuss absolute
factorization and factorization in other fields of characteristic zero in
Section 4.4.

Finally, the case of positive characteristic is investigated in Section 5.
We show how to partially extend the results of Section 2 to positive
characteristic, and we give similar algorithms as in Section 4. We note that
these algorithms are less general, but we also give NP-hardness results

4

explaining this lack of generality.
To understand the basics of our method, one can focus on the compu-

tation of linear factors of bivariate polynomials over a number field. To
this end, one only has to read Section 2.1, Theorem 3.1 and its proof in
Section 3, and Section 4.1.

Acknowledgments

We wish to thank Sébastien Tavenas for his help on Proposition 2.8, and
Erich L. Kaltofen for pointing us out a mistake in a previous version of
Theorem 5.4.

2 Wronskian and valuation

In this section, we consider a field K of characteristic zero and polynomials
over K.

2.1 Valuation upper bound

Theorem 2.1. Let P = ∑
ℓ
j=1 ajX

αj(uX + v)β j with α1 ≤ · · · ≤ αℓ and uv 6= 0.

If P is nonzero, its valuation is at most maxj(αj + (ℓ+1−j
2)).

Our proof of Theorem 2.1 is based on the so-called Wronskian of a
family of polynomials. This is a classical tool for the study of differ-
ential equations but it has recently been used in the field of algebraic
complexity [24, 26, 12].

Definition 2.2. Let f1, . . . , fℓ ∈ K[X]. Their Wronskian is the determinant
of the Wronskian matrix

wr(f1, . . . , fℓ) = det











f1 f2 · · · fℓ
f ′1 f ′2 · · · f ′

ℓ
...

...
...

f
(ℓ−1)
1 f

(ℓ−1)
2 · · · f

(ℓ−1)
ℓ











.

The main property of the Wronskian is its relation to linear indepen-
dence. The following result is classical (see [5] for a simple proof of this
fact).

Proposition 2.3. The Wronskian of f1, . . . , fℓ is nonzero if and only if the f j’s
are linearly independent over K.

5

To prove Theorem 2.1, an easy lemma on the valuation of the Wronskian
is needed.

Lemma 2.4. Let f1, . . . , fℓ ∈ K[X]. Then

val(wr(f1, . . . , fℓ)) ≥
ℓ

∑
j=1

val(f j)−

(

ℓ

2

)

.

Proof. Each term of the determinant is a product of ℓ terms, one from
each column and one from each row. The valuation of such a term is at
least ∑j val(f j)− ∑

ℓ−1
i=1 i since for all i, j, val(f

(i)
j) ≥ val(f j)− i. The result

follows.

The previous lemma is combined with a bound on the valuation of a
specific Wronskian.

Lemma 2.5. Let f j = Xαj(uX + v)β j , 1 ≤ j ≤ ℓ, such that αj, β j ≥ ℓ for all j
and uv 6= 0. If the f j’s are linearly independent, then

val(wr(f1, . . . , fℓ)) ≤
ℓ

∑
j=1

αj.

Proof. By Leibniz rule, for all i, j

f
(i)
j (X) =

i

∑
t=0

(

i

t

)

(αj)t(β j)i−tu
i−tXαj−t(uX + v)β j−i+t

where (m)n = m(m − 1) · · · (m − n + 1) is the falling factorial. Since
αj − t ≥ αj − i and β j − i + t ≥ β j − i for all t,

f
(i)
j (X) = Xαj−i(uX + v)β j−i ×

i

∑
t=0

(

i

t

)

(αj)t(β j)i−tu
i−tXi−1(uX + v)t.

Furthermore, since αj ≥ ℓ ≥ i, we can write Xαj−i = Xαj−ℓXℓ−i and since

β j ≥ ℓ ≥ i, (uX + v)β j−i = (uX + v)β j−ℓ(uX + v)ℓ−i. Thus, Xαj−ℓ(uX +

v)β j−ℓ is a common factor of the entries of the j-th column of the Wronskian
matrix, and Xℓ−i(uX + v)ℓ−i is a common factor of the entries of the i-th
row. Together, we get

wr(f1, . . . , fℓ) = X∑j αj−(ℓ2)(uX + v)∑j β j−(ℓ2) det(M)

6

where the matrix M is defined by

Mi,j =
i

∑
t=0

(

i

t

)

(αj)t(β j)i−tu
i−tXi−t(uX + v)t.

The polynomial det(M) is nonzero since the f j’s are supposed linearly

independent and its degree is at most (ℓ2). Therefore its valuation cannot

be larger than its degree and is bounded by (ℓ2).

Altogether, the valuation of the Wronskian is bounded by ∑j αj − (ℓ2) +

(ℓ2) = ∑j αj.

Proof of Theorem 2.1. Let P = ∑j ajX
αj(uX + v)β j , and let f j = Xαj(uX +

v)β j . We assume first that αj, β j ≥ ℓ for all j, and that the f j’s are linearly
independent. Note that val(f j) = αj for all j.

Let W denote the Wronskian of the f j’s. We can replace f1 by P in
the first column of the Wronskian matrix using column operations which
multiply the determinant by a1 (its valuation does not change). The matrix
we obtain is the Wronskian matrix of P, f2, . . . , fℓ. Now using Lemma 2.4,
we get

val(W) ≥ val(P) + ∑
j≥2

αj −

(

ℓ

2

)

.

This inequality combined with Lemma 2.5 shows that

val(P) ≤ α1 +

(

ℓ

2

)

. (1)

We now aim to remove our two previous assumptions. If the f j’s are
not linearly independent, we can extract from this family a basis f j1 , . . . , f jd .

Then P can be expressed in this basis as P = ∑
d
l=1 ãl f jl . We can apply

Equation (1) to f j1 ,. . . , f jd and obtain val(P) ≤ αj1 + (d
2). Since jd ≤ ℓ, we

have j1 + d − 1 ≤ ℓ and val(P) ≤ αj1 + (ℓ+1−j1
2). The value of j1 being

unknown, we conclude that

val(P) ≤ max
1≤j≤ℓ

(

αj +

(

ℓ+ 1 − j

2

))

. (2)

The second assumption is that αj, β j ≥ ℓ. Given P, consider P̃ =

Xℓ(uX + v)ℓP = ∑j ajX
α̃j(uX + v)β̃ j . Then P̃ satisfies α̃j, β̃ j ≥ ℓ, whence

by Equation (2), val(P̃) ≤ maxj(α̃j + (ℓ+1−j
2)). Since val(P̃) = val(P) + ℓ

and α̃j = αj + ℓ, the result follows.

7

2.2 Generalization

We first state a generalization of Theorem 2.1 to a sum of product of
powers of low-degree polynomials. Then we state a special case of this
generalization that is useful for computing multilinear factors.

For two polynomials F and P, we denote by µF(P) the multiplicity of F
as a factor of P, that is the integer µ such that Fµ divides P but Fµ+1 does
not.

Theorem 2.6. Let (αi,j) ∈ Zm×ℓ
+ and

P =
ℓ

∑
j=1

aj

m

∏
i=1

f
αi,j

i ∈ K[X],

where the degree of fi ∈ K[X] is di for all i. Let F ∈ K[X] be an irreducible
polynomial and let µi = µF(fi) for all i. Then the multiplicity µF(P) of F as a
factor of P satisfies

µF(P) ≤ max
1≤j≤ℓ

m

∑
i=1

(

µiαi,j + (di − µi)

(

ℓ+ 1 − j

2

))

.

Proof. Let Pj = ∏
m
i=1 f

αi,j

i for 1 ≤ j ≤ ℓ. As in the proof of Theorem 2.1, we
can assume without loss of generality that the Pj’s are linearly independent,
and the αi,j’s not less than ℓ.

We can use a generalized Leibniz rule to compute the derivatives of
the Pj’s. Namely

P
(T)
j = ∑

t1+···+tm=T

(

T

t1, . . . , tm

) m

∏
i=1

(f
αi,j

i)(ti), (3)

where (T
t1,...,tm

) = T!/(t1! · · · tm!) is the multinomial coefficient. Consider

now a derivative of the form (f α)(t). This is a sum of terms, each of which
contains a factor f α−t. (The worst case happens when t different copies
of f have been each derived once.) In Equation (3), each ti is bounded

by T. This means that P
(T)
j = QT,j ∏i f

αi,j−T

i for some polynomial QT,j.

Since the degree of P
(T)
j equals ∑i diαi,j − T, QT,j has degree ∑i diαi,j − T −

∑i(diαi,j − diT) = (∑i di − 1)T.
Consider now W = wr(P1, . . . , Pℓ). We can factor out in each column

∏i f
αi,j−ℓ

i and in each row ∏i f ℓ−T
i . At row T and column j, we therefore

8

factor out ∏i f
αi,j−ℓ

i · ∏i f ℓ−T
i = ∏i f

αi,j−T

i . Thus,

W =
m

∏
i=1

f
∑j αi,j−(ℓ2)

i det(M)

where MT,j = QT,j. Thus, det(M) is a polynomial of degree at most

(∑i di − 1)(ℓ2).
Therefore, the multiplicity µF(W) of F as a factor of W is bounded by

its multiplicity as a factor of ∏i f
∑j αi,j−(ℓ2)

i plus the degree of det(M). We
get

µF(W) ≤ ∑
i

µi

(

∑
j

αi,j −

(

ℓ

2

)

)

+ (∑
i

di − 1)

(

ℓ

2

)

= ∑
i

(

µi ∑
j

αi,j + (di − µi)

(

ℓ

2

)

)

−

(

ℓ

2

)

. (4)

To conclude the proof, it remains to remember Lemma 2.4 and use the
same proof technique as in Theorem 2.1. It was expressed in terms of the
valuation of the polynomials, but remains valid with the multiplicity of

any factor. In this case, it can be written as µF(W) ≥ ∑j µF(Pj)− (ℓ2) where
W is the Wronskian of the Pj’s. Using column operations, we can replace
the first column of the Wronskian matrix of the Pj’s by the polynomial

P and its derivatives. We get µF(W) ≥ µF(P) + ∑j≥2 µF(Pj)− (ℓ2), where

µF(Pj) = ∑i µiαi,j.
Together with (4), we get

µF(P) ≤ µF(W)− ∑
j≥2

µF(Pj) +

(

ℓ

2

)

≤ ∑
i

(

µi ∑
j

αi,j + (di − µi)

(

ℓ

2

)

)

−

(

ℓ

2

)

− ∑
j≥2

∑
i

µiαi,j +

(

ℓ

2

)

≤ ∑
i

(

µiαi1 + (di − µi)

(

ℓ

2

))

.

To obtain the bound of the theorem, the two initial assumption have to
be removed using the same technique as in Theorem 2.1.

As a special case, one obtains the following corollary.

Corollary 2.7. Let P = ∑
ℓ
j=1 ajX

αj(vX + t)β j(uX + w)γj , wt 6= 0. If P is

nonzero, its valuation is at most max1≤j≤ℓ(αj + 2(ℓ+1−j
2)).

9

2.3 Is Theorem 2.1 tight?

Let P be as in Theorem 2.1, that is

P =
ℓ

∑
j=1

ajX
αj(uX + v)β j

where uv 6= 0. Its valuation is at least α1, and this bound is attained when
α2 > α1 for instance. As we show, if the family (Xαj(1 + X)β j)1≤j≤ℓ is

linearly independent over K, the valuation of P is at most α1 + (ℓ2): At

most the first (ℓ2) lowest-degree monomials can be canceled. A natural
question concerns the tightness of this bound. In other words, can this
upper bound be attained? For instance in the special case αj = α1 for all j,
Hajós’ Lemma [16, 29] gives the better bound α1 + (ℓ− 1). (This bound
can be shown to be tight by expanding Xℓ−1 = (−1 + (X + 1))ℓ−1 with
the binomial formula.)

The aim of this section is first to prove that Hajós’ bound does not hold
when the αj’s are not all equal since for all ℓ ≥ 3 one can build explicit
examples with valuation α1 + (2ℓ − 3) (see Proposition 2.8). Then we
discuss possible ideas to get an improvement of Theorem 2.1. Nevertheless,
the exact bound remains unknown. In particular, it is not known if a
linear bound as in Hajós’ Lemma holds, or if there exist examples with a
superlinear valuation. As we shall see later on, the bound in Theorem 2.1
directly influences the complexity of our algorithm. This open question is
thus very relevant to the problem we address.

In the whole section, the families (f1, . . . , fℓ) are linearly independent.
To build examples of extremal valuation, one first notices that α2 has

to equal α1. Indeed, if α1 < αj for all j, val(P) = α1. Then α3 ≤ 1 since the
bound of Theorem 2.1 with two terms is 1. Using similar arguments one
can deduce, for small values of ℓ, conditions on the α′js, β j’s and aj’s to get

the largest possible valuation. With some luck, we were able to conjecture
from these small examples a general formula to build a polynomial with ℓ

terms of valuation (2ℓ− 3), for every ℓ ≥ 3.

Proposition 2.8. For ℓ ≥ 3, there exists a linearly independent family of polyno-

mials (Xαj(1 + X)β j)1≤j≤ℓ, α1 ≤ · · · ≤ αℓ and a family of rational coefficients
(aj)1≤j≤ℓ such that the polynomial

P(X) =
ℓ

∑
j=1

ajX
αj(1 + X)β j

is nonzero and has valuation α1 + (2ℓ− 3).

10

Proof. A polynomial that achieves this bound is

Pℓ(X) = −1 + (1 + X)2ℓ+3 −
ℓ

∑
j=0

ajX
2j+1(1 + X)ℓ+1−j,

where

aj =
2ℓ+ 3

2j + 1

(

ℓ+ 1 + j

ℓ+ 1 − j

)

.

We aim to prove that Pℓ(X) = X2ℓ+3. Since it has (ℓ+ 3) terms and α1 = 0,
this proves the proposition. To prove the result for an arbitrary value of
α1, it is sufficient to multiply Pℓ by some power of X.

It is clear that Pℓ has degree (2ℓ+ 3) and is monic. Let [Xm]Pℓ be the
coefficient of the monomial Xm in Pℓ. Then for m > 0

[Xm]Pℓ =

(

2ℓ+ 3

m

)

−
ℓ

∑
j=0

aj

(

ℓ+ 1 − j

m − 2j − 1

)

.

We aim to prove that [Xm]Pℓ = 0 as soon as m < 2ℓ + 3. Using the
definition of the aj’s, this is equivalent to proving

ℓ

∑
j=0

2ℓ+ 3

2j + 1

(

ℓ+ 1 + j

ℓ+ 1 − j

)(

ℓ+ 1 − j

m − 2j − 1

)

=

(

2ℓ+ 3

m

)

. (5)

To prove this equality, we rely on Wilf and Zeilberger’s algorithm [30],
and its implementation in the Maple package EKHAD of Doron Zeilberger
(see [30] for more on this package). The program asserts the correctness of
the equality and provides a recurrence relation satisfied by the summand
that we can verify by hand. We insist on the fact that despite the program
is used as an oracle providing the right recurrence, the validity of this
recurrence and the fact that it implies the result are proved in a standard
mathematical way. This means that there is no need to trust the program.

Let F(m, j) be the summand in equation (5) divided by (2ℓ+3
m). We thus

want to prove that ∑
ℓ
j=0 F(m, j) = 1. The EKHAD package provides

R(m, j) =
2j(2j + 1)(ℓ+ j + 2 − m)

(2ℓ+ 3 − m)(2j − m)

and claims that

mF(m + 1, j)− mF(m, j) = F(m, j + 1)R(m, j + 1)− F(m, j)R(m, j). (6)

11

In the rest of the proof, we show why this claim implies Equation (5), and
then that the claim holds.

Suppose first that Equation (6) holds and let us prove Equation (5). If
we sum Equation (6) for j = 0 to ℓ, we obtain

m(
ℓ

∑
j=0

F(m+ 1, j)− F(m, j)) = F(m, ℓ+ 1)R(m, ℓ+ 1)− F(m, 0)R(m, 0).

Since R(m, 0) = 0 and F(m, ℓ+ 1) = 0, ∑j F(m, j) is constant with respect
to m. One can easily check that the sum is 1 when m = 2ℓ+ 2. (Actually
the only nonzero term in this case is for j = ℓ.) Therefore, we deduce that
for all m < 2ℓ+ 3,1 ∑j F(m, j) = 1, that is Equation (5) is true.

To prove Equation (6), note that

F(m + 1, j)

F(m, j)
=

(j + ℓ+ 2 − m)(m + 1)

(m − 2j)(2ℓ+ 3 − m)

and
F(m, j + 1)

F(m, j)
=

(ℓ+ 2 − j)(m − 2j − 1)(m − 2j − 2)

(2j + 2)(2j + 3)(j + ℓ+ 3 − m)
.

Therefore, to prove the equality, it is sufficient to check that

0 = m
j + ℓ+ 2 − m

m − 2j

m + 1

2ℓ+ 3 − m
− m + R(m, j)

−
(ℓ+ 2 − j)(m − 2j − 1)(m − 2j − 2)

(2j + 2)(2j + 3)(j + ℓ+ 3 − m)
R(m, j + 1).

This is done by a mere computation.

We now address the question of improving the bound in Theorem 2.1.
The bound is obtained as a combination of a lower bound, given by
Lemma 2.4, and an upper bound, given by Lemma 2.5. We prove that
none of these bounds is tight.

We begin with Lemma 2.4. The next proposition states that a better
bound can be obtained if the valuations do not grow to fast.

Proposition 2.9. Let f1, . . . , fℓ ∈ K[X] such that val(f j−1) ≤ val(f j) ≤
val(f1) + (j − 1) for all j. Then

val(wr(f1, . . . , fℓ) ≥ ℓ val(f1).

1The bound on m is given by the fact that R(m, j) is undefined for m = 2ℓ+ 3.

12

We note that the bound is indeed better than Lemma 2.4: For all
j, val(f1) ≥ val(f j) − (j − 1), whence ℓ val(f1) ≥ ∑j val(f j) − ∑

ℓ−1
j=1 j =

∑j val(f j)− (ℓ2).

Proof. Consider the Wronskian matrix M of f1, . . . , fℓ. By adding a well-
chosen multiple of the first column to the second one, the polynomial f2

and its derivatives can be replaced by a polynomial g2 and its derivatives,
such that val(g2) ≥ val(f1) + 1. Let g1 = f1. More generally, one can
actually replace each f j by a polynomial gj, such that val(gj+1) > val(gj)
for all j > 1. In particular, val(gj+1) ≥ val(g1) + (j − 1). That is, one can
obtain a matrix N which is the Wronskian matrix of g1, . . . , gℓ, and such
that wr(f1, . . . , fℓ) = det(M) = det(N). Now, applying Lemma 2.4 to g1,
. . . , gℓ gives the lower bound

wr(f1, . . . , fℓ) ≥
ℓ

∑
j=1

val(gj)−

(

ℓ

2

)

≥ ℓ val(f1).

One can generalize the previous proposition. Consider that the f j’s
are ordered by increasing valuation. We define a plateau to be a set
{ f j0 , . . . , f j0+s} such that for 0 < t ≤ s, val(f j0+t) ≤ val(f j0) + (t − 1).
The f j’s are naturally partitioned into plateaux. Suppose that there are
(m + 1) plateaux, of length p0, . . . , pm respectively, and let f j0 , . . . , f jm
their respective first elements. Using the same argument as in the proof of
Proposition 2.9, we get

val(wr(f1, . . . , fℓ)) ≥
m

∑
i=0

(

pi val(f ji) +

(

pi

2

))

−

(

ℓ

2

)

.

In the proof of Theorem 2.1, Lemma 2.4 is used to give the bound

val(wr(P, f2, . . . , fℓ)) ≥ val(P) + ∑
j>1

val(f j)−

(

ℓ

2

)

.

If the f j’s have all the same valuation α, Proposition 2.9, and actually
its generalization stated above, yields the bound val(wr(P, f2, . . . , fℓ)) ≥

val(P) + (ℓ − 1)α + (ℓ−1
2) − (ℓ2). This translates into the upper bound

val(P) ≤ α + (ℓ − 1), matching the bound of Hajós’ Lemma. Yet, this
improvement of Lemma 2.4 is not sufficient alone to improve Theorem 2.1
in the general case. For instance, in the case where val(f j+1) = val(f1) +
(j − 1), Proposition 2.9 yields the same bound as Lemma 2.4. It is thus
necessary to also improve Lemma 2.5.

13

Unfortunately, we are not yet able to give such an improvement for
Lemma 2.5. This requires a better understanding of the matrix M defined
in the proof of the lemma. In the special case where all the f j’s have
pairwise distinct valuations, for instance in the case val(f j+1) = val(f1) +
(j − 1), the matrix can be better understood. One can consider the matrix
M0 made of the constant coefficients of the entries of M. In particular, the
constant coefficient of det(M) equals det(M0). Then the entry (i, j) of M0

equals (αj)i. Therefore, M0 is similar to a Vandermonde matrix. If the αj’s
are pairwise distinct, the determinant of M0 does not vanish. In particular,
the valuation of det(M) is zero. Thus the valuation of the Wronskian

equals in this case ∑j αj − (ℓ2), though the bound given by Lemma 2.5 is

∑j αj. At the end, we get the (obvious) result that if the f j’s have pairwise

distinct valuations, the valuation of P equals val(f1).
We have shown that in the two extremal cases, a unique valuation or

pairwise distinct valuations, we are able to give the exact value for the
valuation of P. A better understanding of the Wronskian matrix could
yield an improvement of Lemma 2.5 and possibly an improvement of
Theorem 2.1. Of course, it may also be possible to improve Theorem 2.1
using completely different techniques.

3 Gap Theorems and their application to PIT

In this section, we first prove our Gap Theorems. Then we give very direct
applications of these theorems in the form of Polynomial Identity Testing
algorithms for some families of univariate polynomials.

3.1 Two Gap Theorems

We still assume that the coefficients of the polynomials we consider lie in
some field K of characteristic zero.

The bound on the valuation obtained in the Section 2.1 translates into
a Gap Theorem for linear factors.

Theorem 3.1 (Gap Theorem for linear factors). Let P = Q + R where

Q =
ℓ

∑
j=1

ajX
αjYβ j and R =

k

∑
j=ℓ+1

ajX
αjYβ j

such that α1 ≤ · · · ≤ αk. Suppose that ℓ is the smallest index such that

αℓ+1 > α1 + (ℓ2). Then, for every F = uX + vY + w with uvw 6= 0,

µF(P) = min(µF(Q), µF(R)).

14

Proof. Let F = uX + vY + w, uvw 6= 0. Then F divides P if and only if
P(X,− 1

v (uX + w)) = 0, and the same holds for the polynomials Q and R.

Let P⋆(X) = P(X,− 1
v (uX + w)), and define Q⋆ and R⋆ in the same way

from Q and R.
Let us first prove that F divides P if and only if it divides both Q

and R. For suppose that F does not divide Q, that is Q⋆ is nonzero. By

Theorem 2.1, its valuation is at most maxj≤ℓ(αj + (ℓ+1−j
2)). Furthermore,

αj+1 ≤ α1 + (j
2) for all j < ℓ by hypothesis. Therefore,

val(Q⋆) ≤ max
1≤j≤ℓ

(

αj +

(

ℓ+ 1 − j

2

))

≤ max
1≤j≤ℓ

(

α1 +

(

j − 1

2

)

+

(

ℓ+ 1 − j

2

))

≤ α1 +

(

ℓ

2

)

.

The last inequality holds since (j−1
2) + (ℓ−(j−1)

2) ≤ (ℓ2) for 1 ≤ j ≤ ℓ.
The valuation of R⋆ is at least αℓ+1 which is by hypothesis larger

than α1 + (ℓ2). Therefore, if Q⋆ is not identically zero, its monomial of
lowest degree cannot be canceled by a monomial of R⋆. In other words,
P⋆ = Q⋆ + R⋆ is nonzero and F does not divide P.

To show that µF(P) = min(µF(Q), µF(P)), we remark that F is a factor
of multiplicity µ of P if and only if it divides ∂mP/∂Xm for all m ≤ µ.
Since µ = µF(P) = µF(XdP) for all d, one can assume that α1 ≥ µ. Then

∂mP

∂Xm
=

k

∑
j=1

aj(αj)mXαj−mYβ j

for 1 ≤ m ≤ µ. The hypothesis αℓ+1 > α1 + (ℓ2) in the theorem only
depends on the difference between the exponents. By linearity of the
derivative, the previous argument actually shows that F divides ∂mP/∂Xm

if and only if it divides both ∂mQ/∂Xm and ∂mR/∂Xm. This proves that
µF(P) = min(µF(Q), µF(R)).

It is straightforward to extend this theorem to more gaps. The theorem
can be recursively applied to Q and R (as defined in the proof). Then, if
P = P1 + . . . + Ps where there is a gap between Pt and Pt+1 for 1 ≤ t < s,
then any linear polynomial (uX + vY + w) is a factor of multiplicity µ of
P if and only if it is a factor of multiplicity at least µ of each Pt. Moreover,

15

one can write every Pt as Xqt Qt such that X does not divide Qt. Then the

degree of Qt is bounded by (ℓt−1
2) where ℓt is its number of terms.

The following definition makes this discussion formal.

Definition 3.2. Let P as in Theorem 3.1. A set Q = {Q1, . . . , Qs} is a
decomposition of P with respect to X if there exist integers q1, . . . , qs such
that P = Xq1 Q1 + · · ·+ Xqs Qs with qt > qt−1 + degX(Qt−1) for 1 < t ≤ s.

A decomposition is compatible with a set F of polynomials if for all
F ∈ F , µF(P) = min1≤t≤s µF(Qt).

The degree in X (resp. in Y) of a decomposition is the sum of the
degrees in X (resp. in Y) of the Qt’s.

The Gap Theorem implies a decomposition of P of degree at most (k−1
2)

in X. Indeed, the degree of each Qt is at most (ℓt−1
2), with ∑t ℓt = k, and

the function k 7→ (k
2) is super-additive.

Remark 3.3. Let Q′ be the decomposition obtained from Q by replac-
ing Qt and Qt+1 by Q′

t = Qt + Xqt+1−qt Qt+1. It is easy to see that if Q is
compatible with a set F , then so does Q′. More generally, one obtains com-
patible decompositions by grouping together any number of consecutive
polynomials in a decomposition.

Using the generalization of Theorem 2.1 given in Section 2.2, one can
also prove a similar Gap Theorem, but for multilinear factors.

Theorem 3.4 (Gap Theorem for multilinear factors). Let P = Q + R where

Q =
ℓ

∑
j=1

ajX
αjYβ j and R =

k

∑
j=ℓ+1

ajX
αjYβ j ,

such that α1 ≤ · · · ≤ αk. If ℓ is the smallest index such that αℓ+1 > α1 + 2(ℓ2)
then for every F = uXY + vX + wY + t with wt 6= 0,

µF(P) = min(µF(Q), µF(R)).

Proof. Let F = uXY + vX + wY + t, wt 6= 0. Then F divides P if and only
if P(X,− vX+t

uX+w) = 0. This is equivalent to the fact that the polynomial

(uX + w)BP(X,−
vX + t

uX + w
) =

k

∑
j=1

ajX
αj(−vX − t)β j(uX + w)B−β j

vanishes, where B = maxj β j. The rest of the proof is identical to the
proof of the Gap Theorem for linear factors, using the valuation bound of
Corollary 2.7 instead of Theorem 2.1.

16

3.2 Polynomial Identity Testing

We give the first algorithmic application of our technical results. We give
two polynomial identity testing algorithms. The first algorithm deals with
a pretty simple family of polynomials. It is then generalized to a far larger
class of polynomials. The polynomials in this section have coefficients in
an algebraic number field K = Q[ξ]/〈ϕ〉 where ϕ ∈ Q[ξ] is irreducible.
An element e of K is uniquely represented by a polynomial pe ∈ Q[ξ] of
degree smaller than deg(ϕ). In the algorithms, a coefficient c ∈ K of a
lacunary polynomial is given as the dense representation of pc, that is the
list of all its coefficients including the zero ones. Moreover, the algorithms
are uniform in K in the sense that they can take as input the polynomial
ϕ defining K.

Theorem 3.5. Let K be an algebraic number field and

P =
k

∑
j=1

ajX
αj(uX + v)β j ∈ K[X].

There exists a deterministic polynomial-time algorithm to decide if P vanishes.

Proof. We assume without loss of generality that αj+1 ≥ αj for all j and
α1 = 0. If α1 is nonzero, Xα1 divides P and we consider P/Xα1 .

Suppose first that u = 0. Then P is given as a sum of monomials, and
we only have to test each coefficient for zero. Note that the αj’s are not

distinct. Thus the coefficients are of the form ∑j ajv
β j . Lenstra [27] gives an

algorithm to find low-degree factors of univariate lacunary polynomials.
It is easy to deduce from his algorithm an algorithm to test such sums for

zero. A strategy could be to simply apply Lenstra’s algorithm to ∑j ajX
β j

and then check whether (X − v) is a factor, but one can actually improve
the complexity by extracting from his algorithm the relevant part (we omit
the details). The case v = 0 is similar.

We assume now that uv 6= 0. Then P = 0 if and only if (Y − uX − v)

divides ∑j ajX
αjYβ j . Recursively using the Gap Theorem for linear factors

(Theorem 3.1), one computes a decomposition P = Xq1 Q1 + · · ·+ Xqs Qs

such that P is identically zero if and only if each Qt in this sum also.
Therefore, we are left with testing if each Qt is identically zero.

To this end, let Q be one these polynomials. With a slight abuse of

notation, it can be written Q = ∑
k
j=1 ajX

αj(uX + v)β j . It satisfies α1 = 0

and αj+1 ≤ (j
2) for all j. In particular, αk ≤ (k−1

2). Consider the change of

17

variables Y = uX + v. Then

Q(Y) =
k

∑
j=1

aju
−αj(Y − v)αjYβ j

is identically zero if and only if Q(X) is. We can express Q(Y) as a sum of
powers of Y:

Q(Y) =
k

∑
j=1

αj

∑
ℓ=0

aju
−αj

(

αj

ℓ

)

(−v)ℓYαj+β j−l.

There are at most k(k−1
2) = O(k3) monomials. Then, testing if Q(Y) is

identically zero consists in testing each coefficient for zero. Moreover, each

coefficient has the form ∑j (
αj

ℓj
)aju

−αj(−v)ℓj where the sum ranges over at

most k indices. Since ℓj, αj ≤ (k−1
2) for all j, the terms in these sums have

polynomial bit-lengths. Therefore, the coefficients can be tested for zero in
polynomial time.

Altogether, this gives a polynomial-time algorithm to test if P is identi-
cally zero.

One can actually replace the linear polynomial (uX + v) in the pre-
vious theorem by any binomial polynomial. Without loss of generality,
one can consider that this binomial is (uXd + v), and we assume that
it is represented in lacunary representation. In other words, its size is
polynomial in log(d).

Corollary 3.6. Let K be an algebraic number field and

P =
k

∑
j=1

ajX
αj(uXd + v)β j ∈ K[X].

There exists a deterministic polynomial-time algorithm to decide if the polynomial
P vanishes.

Proof. For all j we consider the Euclidean division of αj by d: αj = qjd + rj

with rj < d. We rewrite P as

P =
k

∑
j=1

ajX
rj(Xd)qj(uXd + v)β j .

18

Let us group in the sum all the terms with a common rj. That is, let

Pi(Y) = ∑
1≤j≤k

rj=i

ajY
qj(uY + v)β j

for 0 ≤ i < d. We remark that regardless of the value of d, the number

of nonzero Pi’s is bounded by k. We have P(X) = ∑
d−1
i=0 XiPi(Xd). Each

monomial Xα of XiPi(Xd) satisfies α ≡ i mod d. Therefore, P is identically
zero if and only if all the Pi’s are identically zero.

Since each Pi has the same form as in Theorem 3.5, and there are at
most k of them, the previous algorithm can be applied to each of them to
decide the nullity of P.

Using Theorem 2.6 instead of Theorem 2.1, one can give a polynomial
identity testing algorithm for a larger class of polynomials. In the next
algorithm, we use the dense representation for univariate polynomials, that
is the list of all their coefficients (including the zero ones). Then dense size
of a univariate polynomial is then the sum of the sizes of its coefficients.

Theorem 3.7. Let f1, . . . , fm be monic univariate polynomials over a number
field. Let

P =
k

∑
j=1

aj

m

∏
i=1

f
αi,j

i .

There is a deterministic algorithm to decide if P is zero whose running time is
polynomial in k, m, the dense sizes of the fi’s and the bitsizes of the aj’s and the
αi,j’s.

With an oracle to decide the nullity of sums of the form ∑j ∏i λ
αi,j

i where the
λi’s are in the number field, the above algorithm can be used with non monic
polynomials f1, . . . , fm.

Proof. Let us suppose that the fi’s are not monic. In time polynomial in the
degree of the fi’s, one can compute their monic irreducible factorizations.

Then we can write fi = λi ∏
n
t=1 g

βi,t
t for all i, where the gt’s are distinct

monic irreducible polynomials and βi,t ≥ 0. Then, the polynomial P can
be written as

P =
k

∑
j=1

[

aj

(m

∏
i=1

λ
αi,j

i

)(n

∏
t=1

g
∑i βi,tαi,j

t

)

]

.

For all j and t, let γj,t = ∑i βi,tαi,j and Λj = ∏i λ
αi,j

i . Note that the case of
monic polynomials is the case where Λj = 1.

19

If n = 1, that is all the fi’s are powers of a same polynomial g, then
P = ∑j ajΛjg

γj . It is thus sufficient to find the subsets of indices for which
γj is constant, and test for zero sums of the form ∑j ajΛj. These sums can
be easily tested for zero if Λj = 1, and using the oracle otherwise.

If n > 1, we use a Gap Theorem. To this end, we use the bound on the
multiplicity of the irreducible polynomial g1 given by Theorem 2.6. Let

Q =
ℓ

∑
j=1

ajΛj

n

∏
t=1

g
γj,t

t and R =
k

∑
j=ℓ+1

ajΛj

n

∏
t=1

g
γj,t

t

and suppose that ℓ is the smallest index such that

γℓ+1,1 > γ1,1 +

(

∑
t>1

deg(gt)

)(

ℓ

2

)

. (7)

Since µg1
(gt) = 0 for all t > 1 and µg1

(g1) = 1, Theorem 2.6 implies that

µg1
(Q) ≤ max

j≤ℓ

(

γ1,j + ∑
t>1

deg(gt)

(

ℓ− j + 1

2

))

≤ γ1,1 +

(

∑
t>1

deg(gt)

)(

ℓ

2

)

.

The second inequality can be proved exactly as in the proof of the Gap
Theorem for linear factors. In particular, one has γℓ+1,1 > µg1

(Q). There-
fore, if Q is nonzero, since µg1

(R) ≥ γℓ+1,1, then P = Q + R is nonzero.
The same argument of course works for any gt.

Algorithmically, we can decompose P into Q + R using Equation (7),
and recursively decompose R. In each polynomial of the decomposition we

factor out the largest possible power of g1. We obtain P = g
γ(1)

1 Q1 + · · ·+

g
γ(p)

1 Qp for some p such that P = 0 if and only if each Q1 = · · · = Qp = 0.

Furthermore, the exponents of g1 in Q1, . . . , Qp are bounded by (k
2). Let

us call {Q1, . . . , Qp} the decomposition of P with respect to g1.
The algorithm is then as follows. We initially consider the set Q = {P}.

Then for t = 1 to n, we replace each member of Q by its decomposition
with respect to gt. We obtain a set Q of polynomials such that P = 0 if
and only if Q = 0 for all Q ∈ Q.

It remains to test whether each polynomial of Q vanishes. To this
end, one can expand these polynomials as sums of monomials since their
degrees are polynomially bounded. The coefficients of the monomials
will have the form ∑j ajΛjcj,δ where cj,δ is the coefficient of Xδ in the

20

polynomial ∏t g
γj,t

t . Therefore, it has a polynomial bitsize. Testing the
nullity of these coefficients is then easy if Λj = 1 and done using the oracle
otherwise.

This proves the theorem.

Note that an alternative algorithm for the same class of polynomials is
given by Koiran, Portier and Tavenas [26], in the case where the fi’s are
not monic. Yet the complexity of their algorithm is exponential in k and m.
We also remark that our algorithm uses, for non monic polynomials, an
oracle to decide the nullity of a sum of products of powers of integers (or
elements of a number field). In a polynomial identity testing algorithm
for a similar class of polynomials given in [15], the exact same oracle was
needed. It would then be very interesting to study this kind of sums from
an algorithmic viewpoint.

4 Factoring lacunary polynomials

We now turn to the main applications of our Gap Theorems of Section 3.
We expose how to compute linear and multilinear factors of lacunary poly-
nomials over number fields. We first focus on bivariate polynomials. In
Section 4.3, we explain that our algorithms can be easily extended to mul-
tivariate polynomials. We discuss the case of other fields of characteristic
zero in Section 4.4.

The input polynomials in our algorithms are given in lacunary rep-
resentation. A monomial is represented by its coefficient and its vector
of exponents written in binary. For the representation of elements of a
number field, we refer to the discussion opening Section 3.2. The size of
the lacunary representation is the sum of the sizes of the representations
of the nonzero monomials. In particular, note that it is polynomial in the
logarithm of the degree.

As we shall see, finding binomial factors is a special case in our al-
gorithms. To simplify the next proofs, we first prove a lemma on the
computation of these factors.

Lemma 4.1. Let K be an algebraic number field and

P =
k

∑
j=1

ajX
αjYβ j ∈ K[X, Y].

There exists a deterministic polynomial-time algorithm that computes all the
multilinear binomial factors of P, together with their multiplicities.

21

Proof. Let F be an irreducible binomial factor of P. Without loss of gener-
ality, let us assume that it depends on X. Otherwise, invert the roles of
X and Y in what follows. Then F can be written F = uXYγ + vYδ with
u, v ∈ K and γ + δ ≤ 1. Then F divides P if and only if P(− v

uYδ−γ, Y) = 0.
In other words, F divides P if and only if G = uZ + v is a factor of the
polynomial Q(Y, Z) = Ymaxj αj P(ZYδ−γ, Y). One can view Q as an element
of K[Z][Y] and write it as Q = ∑ǫ qǫ(Z)Yǫ. Then G divides Q if and only
if it divides each qǫ. More precisely, the multiplicity µF(P) of F as a factor
of P equals minǫ µG(qǫ). Therefore, it is sufficient to compute the linear
factors of each qǫ, with multiplicities, using Lenstra’s algorithm [27].

To find all the multilinear binomial factors of P depending on X, one
has to apply the above algorithm with (γ, δ) = (1, 0), (0, 1) and (0, 0). For
the factors depending only on Y, one has to invert the roles of X and Y
and apply to above algorithm once more.

Note that in the previous algorithm, it is not possible to first compute
the gcd of the polynomials qǫ before the computation of their common
linear factors since this task is NP-hard to perform [31].

4.1 Finding linear factors

Theorem 4.2. Let K be a number field and

P(X, Y) =
k

∑
j=1

ajX
αjYβ j ∈ K[X, Y].

There exists a deterministic polynomial-time algorithm that finds all the linear
factors of P, together with their multiplicities.

Proof. The algorithm has three distinct parts. The first part is the obvious
computation of monomial factors, the second part is for binomial factors
using Lemma 4.1, and the third part for trinomial factors.

Consider the factors of the form F = uX + vY + w, uvw 6= 0. Using
recursively the Gap Theorem for linear factors (Theorem 3.1), we can

compute a decomposition of P with respect to X of degree at most (k−1
2),

compatible with the linear trinomial factors. That is, P can be written
P = Xq1 Q1 + · · ·+ Xqs Qs such that µF(P) = mint µF(Qt), and the sum of

the degrees of the Qt’s is bounded by (k−1
2). Inverting the roles of X and

Y, one can compute a compatible decomposition of each Qt with respect
to Y. Globally, the polynomial P can be expressed as

P =
s

∑
t=1

Xα(t)Yβ(t)Rt

22

where each Rt has ℓt terms, ∑t ℓt = k, and its degree in both X and Y is at

most (ℓt−1
2). The linear factors of P are the common linear factors of all the

Rt’s, or equivalently the linear factors of gcd(R1, . . . , Rs). One can thus
apply standard algorithms to compute this gcd and then factor it in time

polynomial in (k
2). Moreover, µF(P) = µF(gcd(R1, . . . , Rs)). Therefore, this

describes an algorithm to compute the linear trinomial factors of P and
their multiplicities.

We aim to compare our techniques with Kaltofen and Koiran’s [17, 18].
Their first result deals with linear factors of bivariate lacunary polynomials
over the rational numbers, while the second ones is an extension to the
case of low-degree factors, with multiplicities, of multivariate lacunary
polynomials over number fields. For the sake of the comparison, we there-
fore consider the algorithm to compute linear factors with multiplicities of
bivariate lacunary polynomials over number fields that one obtains using
Kaltofen and Koiran’s techniques presented in their two papers.

As Kaltofen and Koiran’s algorithm, our algorithm uses Lenstra’s
algorithm for univariate lacunary polynomials [27] to find binomial factors
of the input polynomial. To compare both techniques, let us focus on the
task of finding trinomial factors.

A first remark concerns the simplicity of the algorithm. The compu-
tation of the gap function is much simpler in our case since we do not
have to compute the height of the coefficients. This means that the task
of finding the gaps in the input polynomial is reduced to completely
combinatorial considerations on the exponents. Moreover, to compute
the multiplicities of the factors using their algorithm, one computes the
factors of the successive derivatives (or sparse derivatives). To the contrary,
our algorithm directly gives the multiplicities of the factors with no extra
work.

Both our and Kaltofen and Koiran’s algorithms use a low-degree fac-
torization algorithm as a subroutine. This is in both cases the main
computational task since the rest of the algorithm is devoted to the com-
putation of the gaps in the input polynomial. Thus, a relevant measure to
compare the complexity of these algorithms is the maximum degree of the
polynomials given as input to the low-degree factorization algorithm. This
maximum degree is given by the values of the gaps in the Gap Theorems.

In our algorithm, the maximum degree is (k−1
2). In Kaltofen and Koiran’s,

it is O(k log k+ k log hP) where hP is the height of the polynomial P and the
value log(hP) is a bound on the size of the coefficients of P. For instance, if
the coefficients of P are integers, then hP is the maximum of their absolute
values. Though, as previously mentioned, their algorithm does not give

23

at the same price the multiplicities. To this end, one needs to compute
(k − 1) sparse derivatives and apply the algorithm to them. This adds a
factor k to the complexity. Therefore, our algorithm is always faster to
compute the factors with multiplicities.

Note that an improvement of Theorem 2.1, as explained in Subsection
2.3, to a linear bound instead of a quadratic one would give us a better
complexity than Kaltofen and Koiran’s algorithm even for finding factor
without multiplicity. Finally, it is naturally possible to combine both Gap
Theorems in order to obtain the best complexity in all cases.

4.2 Finding multilinear factors

Theorem 4.3. Let K be a number field and

P =
k

∑
j=1

ajX
αjYβ j ∈ K[X, Y].

There exists a deterministic polynomial time algorithm to compute all the multi-
linear factors of P, with their multiplicities.

Proof. As for computing linear factors, the task of computing multilinear
factors can be split into three parts: computing the obvious monomial
factors, computing the binomial factors using Lemma 4.1, and computing
factors with at least three monomials.

One can find all factors of the form uXY + vX + wY + t with wt 6= 0
using the Gap Theorem for multilinear factors (Theorem 3.4). As for
linear factors, one can compute a decomposition of P with respect to

both X and Y in the sense of Definition 3.2: P = Xα(1)Yβ(1)R1 + · · · +

Xα(s)Yβ(s)Rs such that for all F = uXY+ vX +wY+ t with wt 6= 0, µF(P) =
min(µF(R1), . . . , µF(Rs)). Moreover the sum of the degrees of the Rt’s

(with respect to X or Y) is bounded by 2(k−1
2). Then, finding such factors

with their multiplicities is reduced to computing the multilinear factors of
gcd(R1, . . . , Rs) with multiplicities.

There are two other cases to consider: t = 0 and w = 0. Both cases can
be treated in the same way. Let us first concentrate on the case t = 0.

Suppose that uXY + vX + wY divides P, uvw 6= 0. Let PXY the recipro-
cal polynomial of P with respect to its two variables:

PXY = XAYBP(1/X, 1/Y) =
k

∑
j=1

ajX
A−αjYB−β j ,

24

where A = maxj αj and B = maxj β j. Then uXY + vX + wY divides P if
and only if u + vY + wX divides PXY. Therefore, one can compute the
linear factors of PXY with three monomials and deduce the factors of P of
the form uXY + vX + wY from them.

One treats in the same way the remaining case w = 0. Let PX =
XAP(1/X, Y), we have that uXY + vX + t divides P if and only if uY +
v + tX divides PX. Therefore, this case is also reduced to the computation
of linear factors.

Altogether, this gives a polynomial-time algorithm to compute multi-
linear factors of bivariate lacunary polynomials.

In the previous algorithm, factors with at least three monomials are
computed in several steps, using different Gap Theorems. There are three
cases: the general case wt 6= 0, and the special cases t = 0 and w = 0. Each
time, a first decomposition of the polynomial is computed with respect to
the variable X, and then refined with respect to the variable Y.

We aim to show that these three distinct steps can be performed in
only one step. That is, one can first compute a decomposition with respect
to the variable X which is compatible with all the multilinear factors with
at least three monomials, and then refine this decomposition with respect
to the variable Y.

The following proposition does not necessarily improve the running
time of the algorithm, and makes it more sequential. Yet the implemen-
tation becomes easier. And most importantly, it will be crucial for the
generalization to multivariate polynomials.

In the previous algorithms, some order on the monomials has been
implicitly used. To compute a decomposition of a polynomial with respect
to X, the monomials have to be ordered with an order compatible with the
natural order on the exponents of the variable X. In particular, we assume
in the next proposition that the indices are ordered such that j < ℓ implies
αj ≤ αℓ for all j and ℓ.

Proposition 4.4. Let P be as in Theorem 4.3. There exists a deterministic
polynomial time algorithm to compute a decomposition of P with respect to
X, compatible with the set of all multilinear polynomials with at least three

monomials, and of degree at most 3(k−1
2).

Proof. A decomposition Q = {Q1, . . . , Qs} is completely determined by
a set of indices: for each Qt, we consider its smallest index jt. Then
J = {j1, . . . , js} ⊆ {1, . . . , k} determines Q. In the following, the decom-
positions are represented by their corresponding set of indices. To build

25

a unique decomposition, we take the intersection of several decomposi-
tions viewed as sets of indices. If J defines a decomposition compatible
with a set F then by Remark 3.3 any subset I ⊂ J of indices defines a
decomposition of P compatible with F . Therefore, the intersection of two
decompositions, respectively compatible with sets F and G, is compatible
with F ∪ G.

It remains to show that the intersection of the decompositions com-
patible with the different kinds of multilinear factors with at least three

monomials has degree at most 3(k−1
2). In the following, we consider only

decompositions with respect to X. The decomposition J = {j1, . . . , js}
compatible with uXY + vX + wY + t, wt 6= 0, is defined by j1 = 1 and for

all t ≥ 2, jt is the smallest index such that αjt − αjt−1
> 2(jt−jt−1

2).
The decompositions compatible with uXY + vX +wY and uXY +wY +

t are the same, that is defined by a same set of indices. To prove this, let
us first consider factors of the form uXY + vX + wY. A decomposition
Q compatible with such factors is defined as follows. The polynomial
uXY + vX + wY divides P if and only if u + vY + wX divides PXY. Then
one can compute a decomposition of PXY compatible with linear factors
based on the Gap Theorem for linear factors. This decomposition is
determined by a set L of indices. This set in turn defines the decomposition
Q of P. This means that L is defined as follows: The Gap Theorem for
linear factors applied to PXY gives the first gap between two indices ℓ and

ℓ+ 1 such that ℓ is the largest index such that A − αℓ > A − αk + (k−ℓ

2),

that is αk − αℓ > (k−ℓ

2). Now, one can apply the same reasoning with
factors of the form uXY + vX + t, corresponding to linear factors of PX. It
is easy to see that the condition to define the gaps is the same as before.
In other words, the decomposition compatible with factors of the form
uXY + vX + t is also determined by L.

Now, the set of indices L is the set of smallest indices of the polynomials
in the decomposition: If there is a gap between indices ℓ and ℓ+ 1, the
index ℓ+ 1 belongs to L (and ℓ /∈ L). To sum up, the set L = {ℓ1, . . . , ℓp}
of indices defining the common decomposition for uXY + vX + wY and
uXY + wY + t can be defined as follows: ℓp is the largest index such

that αk − αℓp
≤ (k−ℓp

2
); for 1 < t < p, ℓt is the largest index such that

αℓt+1−1 − αℓt
≤ (ℓt+1−ℓt−1

2); and ℓ1 = 1.
Now we aim to prove that the decomposition induced by J ∩ L has

degree in X at most 3(k−1
2). To this end, we assume that J ∩ L = ∅ and

we aim to prove that αk − α1 ≤ 3(k−1
2). The result then follows by super-

additivity of the function k 7→ 3(k−1
2). Let us take the convention that

26

js+1 = k + 1. Then

αk − α1 = (αk − αjs) +
s

∑
t=2

(αjt − αjt−1
)

= (αk − αjs) +
s

∑
t=2

[

(αjt − αjt−1) + (αjt−1 − αjt−1
)
]

=
s

∑
t=1

(αjt+1−1 − αjt) +
s

∑
t=2

(αjt − αjt−1).

For all t, αjt+1−1 − αjt ≤ 2(jt+1−jt−1
2) since jt+1 is the smallest index j such

that αj − αjt > 2(j−jt
2). Therefore, by super-additivity of the function

k 7→ (k
2), the first sum is bounded by 2(k−1

2). For the second sum, we
consider the second set L of indices. Since J ∩ L = ∅, we can consider
for each 2 < t ≤ s the consecutive indices ℓq and ℓq+1 of L such that
ℓq < jt < ℓq+1 (if no such ℓq+1 exists, then q = p and ℓp+1 = k + 1
by convention). In particular, ℓq+1 − 1 ≥ jt and ℓq ≤ jt − 1. Whence

αjt − αjt−1 ≤ αℓq+1−1 − αℓq
≤ (

ℓq+1−ℓq−1
2

). By super-additivity again, the

second sum is bounded by (k−1
2).

4.3 Generalization to multivariate polynomials

We state the generalization to multivariate polynomials only for multilinear
factors. This covers in particular the case of linear factors.

Finding multilinear factors of multivariate polynomials can be per-
formed in three distinct steps as in the case of bivariate polynomials. The
first step is the obvious computation of the monomial factors. The second
step deals with binomial factors and reduces to univariate factorization.
The third step reduces the computation of multilinear factors with at least
three monomials to low-degree factorization.

Let us begin with the third step, which is very close to the bivariate
case.

Theorem 4.5. Let K be an algebraic number field and

P =
k

∑
j=1

ajX
α0,j

0 · · · X
αn,j
n ∈ K[X0, . . . , Xn]

There exists a deterministic polynomial-time algorithm that finds all the multilin-
ear factors of P with at least three monomials, together with their multiplicities.

27

Proof. The idea of the algorithm is as before to compute a decomposition
of P, compatible with the set of multilinear factors with at least three
monomials. To this end, we first compute a decomposition with respect
to the variable X0, and then refine the decomposition using the other
variables, sequentially. The computation of the decomposition for each
variable is based on Proposition 4.4.

Without loss of generality, we describe the computation of the decom-
position with respect to the variable X0. Any irreducible multilinear poly-
nomial F with at least three monomials can be written as F = F0X0 + F1

with F0, F1 ∈ K[X1, . . . , Xn] and F1 6= 0. First assume that F0 6= 0. Since
F has at least three monomials, at least one of F0 and F1 must have two
monomials. If F0 has at least two monomials, there exists a variable, say
X1, such that F0 = uX1 + v for some nonzero uv ∈ K[X2, . . . , Xn]. If F1 has
two monomials, F1 = wX1 + t for some nonzero w, t ∈ K[X2, . . . , Xn]. In
both cases, F can be viewed as a polynomial in X0 and X1, with at least
three monomials, with coefficients in K[X2, . . . , Xn]. Therefore, one can
view P as a bivariate polynomial in X0 and X1 over the field K(X2, . . . , Xn)
and apply Proposition 4.4 to compute a decomposition of P with respect
to X0, compatible with all multilinear polynomials with at least three
monomials. In particular, this decomposition is compatible with the mul-
tilinear polynomials in X0, . . . , Xn over K with at least three monomials,
and such that the coefficient of X0 is nonzero. Now the decomposition is
also compatible with factors F ∈ K[X1, . . . , Xn] since such factors have to
divide every coefficient of P viewed as an element of K[X1, . . . , Xn][X0].

Applying this algorithm sequentially with respect to every variable
gives a decomposition of P compatible with all multilinear polynomials

with at least three monomials. Its total degree is at most 3(k−1
2) in each

variable and the total number of polynomials in the decomposition is
bounded by the number k of terms in P. One can therefore compute
the gcd of the polynomials in the decomposition and the irreducible
factorization of the gcd using classical algorithms. Then we return the
multilinear factors, together with their multiplicities. This completes the
proof.

For the computation of binomial multilinear factors, we extend Lemma 4.1.
The main difference comes from the fact that in Lemma 4.1 we used four
times a same algorithm, once for each possible choice of exponents. In
the case of multivariate polynomials, there is an exponential number of
choices of exponents. Thus the same strategy yields an algorithm of ex-
ponential complexity in the number of variables. Therefore, one has to
determine in advance a smaller number of possible vectors of exponents.

28

The proof is inspired by the proof of [18, Lemma 5].

Theorem 4.6. Let K be an algebraic number field and

P =
k

∑
j=1

ajX
α0,j

0 · · · X
αn,j
n ∈ K[X0, . . . , Xn]

There exists a deterministic polynomial-time algorithm that finds all the multilin-
ear factors of P with two monomials, together with their multiplicities.

Proof. In this proof, we denote by X the tuple of variables (X0, . . . , Xn).
The strategy is to compute a set of candidate pairs of monomials (Xβ, Xγ)
such that P may have a factor of the form uXβ + vXγ, and then to actually
compute the factors. For the first step, we write what it means for uXβ +
vXγ to be a factor of P and deduce conditions on β and γ. The second
step is then a reduction to finding linear factors of univariate polynomials.

We begin with the first step. Let F be an irreducible multilinear bino-
mial. One can write

F = u
n

∏
i=0

X
βi

i + v
n

∏
i=0

X
γi
i

with βi, γi ∈ {0, 1} and βi + γi ≤ 1 for all i. Without loss of generality, let
us assume that β 6= 0, and let i0 be an index such that βi0 = 1. Then F is a
factor of P if and only if the polynomial

∏
i 6=i0

X
Ai0
i P(X0, . . . , Xi0−1,−

v

u ∏
i 6=i0

X
γi−βi

i , Xi0+1, . . . , Xn)

vanishes, where Ai0 = maxj αi0,j. That is, F divides P if and only if

k

∑
j=1

aj

(

−
v

u

)αi0,j

∏
i 6=i0

X
αi,j+αi0,j(γi−βi)+Ai0
i = 0.

In particular, the term for j = 1 has to be canceled out by at least another
term. In other words, there must exist j ∈ {2, . . . , k} such that

∀i, αi,1 + αi0,1(γi − βi) = αi,j + αi0,j(γi − βi). (8)

Furthermore αi0,1 6= αi0,j, for it would imply that αi,1 = αi,j for all i
otherwise. Thus Equation (8) uniquely determines γi − βi, hence uniquely
determines both βi and γi.

The variable Xi0 does not play a special role in the previous discussion
and the same reasoning applies with any variable Xi such that βi 6= 0. In

29

the same way, β and γ play symmetric roles. This means that for every
j ≥ 2, if the system defined by Equation (8) has a nonzero solution (β, γ),
it defines a candidate pair (Xβ, Xγ) and its symmetric pair (Xγ, Xβ). The
symmetric pair is redundant and we may only consider the pair (Xβ, Xγ).
More precisely, for j ≥ 2, if there exists an integer q > 0 such that for all i,
either αi,j − αi,1 = 0 or αi,j − αi,1 = ±q, then one can define βi and γi for
all i as follows:

(βi, γi) =











(0, 0) if αi,j − αi,1 = 0,

(1, 0) if αi,j − αi,1 = q,

(0, 1) if αi,j − αi,1 = −q.

Therefore, we can compute at most (k − 1) candidate pairs. It remains to
prove that, given a candidate pair (Xβ, Xγ), one can indeed compute all
the factors of P of the form uXβ + vXγ.

The algorithm for the second step is actually almost the same as in the
proof of Lemma 4.1. Suppose that β 6= 0. (Otherwise, invert β and γ.) Let
i0 be any index such that βi0 = 1. Let

Q(Y, X) = ∏
i 6=i0

X
Ai0
i P(X0, . . . , Xi0−1, Y ∏

i 6=i0

X
γi−βi

i , Xi0+1, . . . , Xn)

where Ai0 = maxj αi0,j, viewed as an element of K[Y][X0, . . . , Xn]. That is,

let us write Q = ∑δ qδ(Y)Xδ.
Let F = uXβ + vXγ be a candidate factor. Then F divides P if and only

if G = uY + v divides Q, if and only if G divides each qδ. More precisely,
µF(P) = µG(Q) = minδ µG(qδ). Therefore, factors of the form uXβ + vXγ

can be computed in deterministic polynomial-time by computing the
factors of the univariate polynomials qδ, using Lenstra’s algorithm [27].

Note that in the previous algorithm, one could actually decrease the
number of candidate pairs. To compute these pairs, we used the fact
that the term for j = 1 has to be canceled by at least another term. One
could then use the same argument for every term: Each term has to be
canceled by another one. Applying the same reasoning for all terms would
imply more conditions on (β, γ), thus potentially decrease the number of
candidate pairs.

4.4 Factorization in other fields of characteristic zero

We have given algorithms to compute the multilinear factors of multi-
variate polynomials over number fields. Nevertheless, the Gap Theorems

30

these algorithms are based on are valid over any field of characteristic
zero. This means that we actually give a reduction algorithm from the
problem of computing multilinear factors of lacunary polynomials to the
two problems of computing linear factors of univariate polynomials on
the one hand, and multilinear factors of low-degree polynomials on the
other hand. And this algorithm is valid over any field of characteristic
zero. In other words, as soon as there exist algorithms for these two latter
problems over some field K, our reduction yields an algorithm for the
former problem as well. The complexity of the new algorithm is then
polynomial in the complexity of the two other algorithms.

To the best of our knowledge, the only fields for which polynomial-time
algorithms for both problems are known are number fields. More precisely,
the only known algorithm to compute linear factors of univariate lacunary
polynomials is Lenstra’s algorithm, working over number fields. But there
exist several other fields for which low-degree factorization algorithms are
known.

Let us first consider the algebraic closure Q of the field of rational
numbers. Given a polynomial P with coefficients in a number field K,
one can seek factors of P with coefficients in Q. This so-called absolute
factorization can be computed in time polynomial in the degree of the input
polynomial [8], see also [9]. Therefore, our algorithms can be extended
to the computation of multilinear factors with at least three monomials
over Q of multivariate lacunary polynomials. Note that since the absolute
factorization of a univariate polynomial of degree d consists in d linear
polynomials, it cannot be computed in time polynomial in the lacunary
representation of the polynomial. Therefore, binomial factors over Q

cannot be computed in polynomial-time either.
For other fields of characteristic zero, our algorithms can also be used

to compute the multilinear factors with at least three monomials. This
includes approximate factors with complex coefficients [19], factors over a
p-adic field [7], and factors over fields with parameters [2, 3].

5 Positive characteristic

To extend the previous results to positive characteristic, one needs an
equivalent of Theorem 2.1. Unfortunately, Theorem 2.1 does not hold
in positive characteristic. In characteristic 2, the polynomial (1 + X)2n

+

(1 + X)2n+1
= X2n

(X + 1) has only two terms, but its valuation equals 2n.
Therefore, its valuation cannot be bounded by a function of the number of
terms. Note that this can be generalized to any positive characteristic. In

31

characteristic p, one can consider the polynomial ∑
p
i=1(1 + X)pn+i

.
Nevertheless, the exponents used in all these examples depend on the

characteristic. In particular, the characteristic is always smaller than the
largest exponent that appears. We shall show that in large characteristic,
Theorem 2.1 still holds and can be used to give factorization algorithms.
This contrasts with the previous results that use the notion of height of an
algebraic number, hence are not valid in any positive characteristic.

In fact, Theorem 2.1 holds as soon as wr(f1, . . . , fk) does not vanish.
The difficulty in positive characteristic is that it is not true anymore that the
Wronskian does not vanish as soon as (f j)j is a linearly independent family.

Consider for instance the family f1 = 1 and f2 = X2 in characteristic 2.
Yet, the Wronskian is still related to linear independence by the following
result (see [22]):

Proposition 5.1. Let K be a field of characteristic p and f1, . . . , fk ∈ K[X]. Then
f1, . . . , fk are linearly independent over K[Xp] if and only if their Wronskian
does not vanish.

This allows us to give an equivalent of Theorem 2.1 in large positive
characteristic.

Theorem 5.2. Let P = ∑
k
j=1 ajX

αj(1 + X)β j ∈ K[X] with α1 ≤ · · · ≤ αk. If

the characteristic p of K satisfies p > maxj(αj + β j), then the valuation of P is

at most maxj(αj + (k+1−j
2)), provided P is nonzero.

Proof. Let f j = Xαj(1 + X)β j for 1 ≤ j ≤ k. The proof of Theorem 2.1
has two steps: We prove that we can assume that the Wronskian of the
f j’s does not vanish, and under this assumption we get a bound of the
valuation of the polynomial. The second part only uses the non-vanishing
of the Wronskian and can be used here too. We are left with proving
that the Wronskian of the f j’s can be assumed to be nonzero when the
characteristic is large enough.

Assume that the Wronskian of the f j’s is zero: By Proposition 5.1,
there is a vanishing linear combination of the f j’s with coefficients bj

in K[Xp]. Let us write bj = ∑ bi,jX
ip. Then ∑i Xip ∑j bi,j f j = 0. Since

deg f j = αj + β j < p, ∑j bi,j f j = 0 for all i. We have thus proved that there
is a linear combination of the f j’s equal to zero with coefficients in K.
Therefore, we can assume we have a basis of the f j’s whose Wronskian is
nonzero and use the same argument as for the characteristic zero.

Based on this result, the algorithms we develop in characteristic zero
for PIT and factorization can be used for large enough characteristics.

32

Computing with lacunary polynomials in positive characteristic has been
shown to be hard in many cases [33, 23, 25, 17, 4, 20]. In particular, Bi,
Cheng and Rojas have recently shown that it is NP-hard to find roots in Fp

for polynomials over Fp [4].
Let Fps be the field with ps elements for p a prime number and s > 0.

It is represented as Fp[ξ]/〈ϕ〉 where ϕ is a monic irreducible polynomial
of degree s with coefficients in Fp. As for number fields, ϕ can be given
as input of the algorithms, and a coefficient c ∈ Fps is represented by a
polynomial of degree smaller than deg(ϕ).

Theorem 5.3. Let Fps be a finite field, and

P =
k

∑
j=1

ajX
αj(uX + v)β j ∈ Fps [X],

where p > maxj(αj + β j). There exists a polynomial-time deterministic algorithm
to test if P vanishes identically.

Proof idea. The proof of this theorem is very similar to the proof of Theo-
rem 3.5, using Theorem 5.2 instead of Theorem 2.1. The main difference
occurs when u = 0 or v = 0. In these cases, we rely in characteristic

zero on Lenstra’s algorithm to test sums of the form ∑j ajv
β j for zero.

There is no equivalent of Lenstra’s algorithm in positive characteristic, but
these tests are actually much simpler. These sums can be evaluated using
repeated squaring in time polynomial in log(β j), that is polynomial in the
input length.

The basic operations in the algorithm are operations in the ground
field Fp. Therefore, the result also holds if bit operations are considered.
The only place where computations in Fps have to be performed in the

algorithm is the tests for zero of coefficients of the form ∑j (
αj

ℓj
)aju

−αj(−v)ℓj

where the αj’s and ℓj’s are integers and aj ∈ Fps , and the sum has at most
k terms. The binomial coefficient is to be computed modulo p using for
instance Lucas’ Theorem [28].

Note that the condition p > maxj(αj + β j) means that p has to be
greater than the degree of P. This condition is a fairly natural condition
for many algorithms dealing with polynomials over finite fields, especially
prime fields, for instance for root finding algorithms [4].

We now turn to the problem of factoring lacunary polynomials with
coefficients in fields of large characteristic. We state it in the most general
case of finding multilinear factors of multivariate polynomials.

33

Theorem 5.4. Let Fps be the field with ps elements, and

P =
k

∑
j=1

ajX
α0,j

0 · · · X
αn,j
n ∈ Fps [X0, . . . , Xn],

where p > maxj(αj + β j). There exists a probabilistic polynomial-time algorithm
to find all the multilinear factors of P with at least three monomials, together with
their multiplicities.

On the other hand, deciding whether P has a binomial factor is NP-hard
under randomized reductions. More precisely, for every pair of relatively prime
multilinear monomials (Xβ, Xγ), deciding whether there exist nonzero u and v
such that uXβ + vXγ divides P is NP-hard under randomized reductions.

Proof. The second part of the theorem is the consequence of the NP-
hardness (under randomized reductions) of finding roots in Fps of lacunary
univariate polynomials with coefficients in Fps [25, 4, 20]: Let Q be a lacu-
nary univariate polynomial over Fps , and let d = deg(Q). Let us define

P(X0, . . . , Xn) = (Xβ)dQ(Xγ−β) where Xγ−β = ∏i X
γi−βi

i . Then P is a
polynomial. We aim to show that Q has a nonzero root if and only if P has
a binomial factor of the form uXβ + vXγ. Let F = uXβ + vXγ. Without
loss of generality, we can assume that β 6= 0 and β0 = 1. Then F divides P
if and only if

(Xγ)maxj α0,j P

(

−
v

u ∏
i>0

X
γi−βi

i , X1, . . . , Xn

)

= 0.

Let Xδ = (Xγ)maxj α0,j(Xβ)d. Since β0 = 1 and γ0 = 0, the previous
equality is equivalent to

XδQ





(

−
v

u ∏
i>0

X
γi−βi

i

)−1

∏
i>0

X
γi−βi

i



 = XδQ(−
u

v
) = 0.

In other words, this is equivalent with the fact that −u/v is a root of Q.
Deciding whether uXβ + vXγ divides P is thus NP-hard under randomized
reductions.

For the first part, the algorithm we propose is actually the same as in
characteristic zero (Theorem 4.2). This means that it relies on known re-
sults for factorization of dense polynomials. Yet, the only polynomial-time
algorithms known for factorization in positive characteristic are probabilis-
tic [32]. Therefore our algorithm is probabilistic and not deterministic as
in characteristic zero.

34

References

[1] F. Amoroso, L. Leroux, and M. Sombra. Overdetermined systems
of sparse polynomial equations. arXiv:1307.5788, 2013. Presented at
MEGA 2013, submitted.

[2] A. Ayad. Complexité de la résolution des systèmes algébriques
paramétriques. PhD thesis, Université Rennes 1, 2006.

[3] A. Ayad. Complexity of solving parametric polynomial systems. J.
Math. Sci., 179(6):635–661, 2011.

[4] J. Bi, Q. Cheng, and J. M. Rojas. Sub-Linear Root Detection, and New
Hardness Results, for Sparse Polynomials Over Finite Fields. In Proc.
ISSAC’13, 2013. arXiv:1204.1113.

[5] A. Bostan and P. Dumas. Wronskians and linear independence. Am.
Math. Mon., 117(8):722–727, 2010.

[6] A. Chattopadhyay, B. Grenet, P. Koiran, N. Portier, and Y. Strozecki.
Factoring bivariate lacunary polynomials without heights. In Proc.
ISSAC’13, pages 141–158, 2013.

[7] A. Chistov. Algorithm of polynomial complexity for factoring poly-
nomials over local fields. J. Math. Sci., 70(4):1912–1933, 1994.

[8] G. Chèze and A. Galligo. Four lectures on polynomial absolute
factorization. In A. Dickenstein and I. Z. Emiris, editors, Solving
Polynomial Equations, volume 14 of Algorithms Comput. Math., pages
339–392. 2005.

[9] G. Chèze and G. Lecerf. Lifting and recombination techniques for
absolute factorization. J. Complexity, 23(3):380–420, 2007.

[10] F. Cucker, P. Koiran, and S. Smale. A polynomial time algorithm for
Diophantine equations in one variable. J. Symb. Comput., 27(1):21–30,
1999.

[11] M. Filaseta, A. Granville, and A. Schinzel. Irreducibility and Greatest
Common Divisor Algorithms for Sparse Polynomials. In J. McKee
and C. Smyth, editors, Number Theory and Polynomials, volume 352 of
P. Lond. Math. Soc., pages 155–176. Camb. U. Press, 2008.

35

http://arxiv.org/abs/1307.5788
http://arxiv.org/abs/1204.1113

[12] M. A. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for
Multilinear Read-Once Algebraic Branching Programs, in any Order.
arXiv:1309.5668, 2013.

[13] M. Giesbrecht and D. S. Roche. On lacunary polynomial perfect
powers. In Proc. ISSAC’08, pages 103–110. ACM, 2008.

[14] M. Giesbrecht and D. S. Roche. Detecting lacunary perfect powers
and computing their roots. J. Symb. Comput., 46(11):1242 – 1259, 2011.

[15] B. Grenet, P. Koiran, N. Portier, and Y. Strozecki. The Limited Power
of Powering: Polynomial Identity Testing and a Depth-four Lower
Bound for the Permanent. In Proc. FSTTCS’11, number 13 in LIPIcs,
pages 127–139, 2011.

[16] G. Hajós. [solution to problem 41] (in hungarian). Mat. Lapok, 4:40–41,
1953.

[17] E. Kaltofen and P. Koiran. On the complexity of factoring bivariate
supersparse (lacunary) polynomials. In Proc. ISSAC’05, pages 208–215.
ACM, 2005.

[18] E. Kaltofen and P. Koiran. Finding small degree factors of multivariate
supersparse (lacunary) polynomials over algebraic number fields. In
Proc. ISSAC’06, pages 162–168. ACM, 2006.

[19] E. Kaltofen, J. P. May, Z. Yang, and L. Zhi. Approximate factorization
of multivariate polynomials using singular value decomposition. J.
Symb. Comput., 43(5):359–376, 2008.

[20] E. L. Kaltofen and G. Lecerf. Factorization of Multivariate Polynomi-
als. In G. L. Mullen and D. Panario, editors, Handbook of Finite Fields,
Disc. Math. Appl. CRC Press, 2013.

[21] E. L. Kaltofen and M. Nehring. Supersparse black box rational func-
tion interpolation. In Proc. ISSAC’11, pages 177–186. ACM, 2011.

[22] I. Kaplansky. An introduction to differential algebra. Actualités scien-
tifiques et industrielles. Hermann, 1976.

[23] M. Karpinski and I. Shparlinski. On the computational hardness of
testing square-freeness of sparse polynomials. In Proc. AAECC-13,
volume 1719 of LNCS, pages 731–731. Springer, 1999.

36

http://arxiv.org/abs/1309.5668

[24] N. Kayal and C. Saha. On the Sum of Square Roots of Polynomials
and Related Problems. In Proc. CCC’11, pages 292–299. IEEE, 2011.

[25] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key
cryptosystem by relinearization. In Proc. CRYPTO’99, pages 19–30.
Springer, 1999.

[26] P. Koiran, N. Portier, and S. Tavenas. A Wronskian approach to the
real τ-conjecture. arXiv:1205.1015, 2012. Presented at MEGA 2013,
submitted.

[27] H. Lenstra Jr. On the factorization of lacunary polynomials. In Number
theory in progress, pages 277–291. De Gruyter, 1999.

[28] É. Lucas. Théorie des fonctions numériques simplement périodiques.
Amer. J. Math., 1(2–4):184–240,289–321, 1878.

[29] H. Montgomery and A. Schinzel. Some arithmetic properties of
polynomials in several variables. In A. Baker and D. W. Masser,
editors, Transcendence Theory: Advances and Applications, chapter 13,
pages 195–203. Academic Press, 1977.

[30] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A=B. AK Peters, 1996.

[31] D. Plaisted. Sparse complex polynomials and polynomial reducibility.
J. Comput. Syst. Sci., 14(2):210–221, 1977.

[32] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Camb. U.
Press, 2nd edition, 2003.

[33] J. von zur Gathen, M. Karpinski, and I. Shparlinski. Counting curves
and their projections. Comput. Complex., 6(1):64–99, 1996.

37

http://arxiv.org/abs/1205.1015

	1 Introduction
	2 Wronskian and valuation
	2.1 Valuation upper bound
	2.2 Generalization
	2.3 Is Theorem 2.1 tight?

	3 Gap Theorems and their application to PIT
	3.1 Two Gap Theorems
	3.2 Polynomial Identity Testing

	4 Factoring lacunary polynomials
	4.1 Finding linear factors
	4.2 Finding multilinear factors
	4.3 Generalization to multivariate polynomials
	4.4 Factorization in other fields of characteristic zero

	5 Positive characteristic

