
Factoring bivariate lacunary polynomials
without heights∗

Arkadev Chattopadhyay† Bruno Grenet‡

Pascal Koiran‡ Natacha Portier‡ Yann Strozecki§

July 1, 2013

Abstract

We present an algorithm which computes the multilinear factors
of bivariate lacunary polynomials. It is based on a new Gap the-
orem which allows to test whether P(X) = ∑

k
j=1 ajX

αj(1 + X)β j is
identically zero in polynomial time. The algorithm we obtain is more
elementary than the one by Kaltofen and Koiran (ISSAC’05) since it
relies on the valuation of polynomials of the previous form instead
of the height of the coefficients. As a result, it can be used to find
some linear factors of bivariate lacunary polynomials over a field of
large finite characteristic in probabilistic polynomial time.

∗Part of this work was done while the authors were visiting the University of Toronto.
†School of Technology and Computer Science, Tata Institute for Fundamental Research,

arkadev.c@tifr.res.in.
‡LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon,

{bruno.grenet,pascal.koiran,natacha.portier}@ens-lyon.fr.
§LRI – Université Paris-Sud XI, strozecki@logique.jussieu.fr.

1

1 Introduction

The lacunary, or supersparse, representation of a polynomial

P(X1, . . . , Xn) =
k

∑
j=1

ajX
α1,j

1 · · · X
αn,j
n

is the list of the tuples (aj, α1,j, . . . , αn,j) for 1 ≤ j ≤ k. This representation
allows very high degree polynomials to be represented in a concise manner.
The factorization of lacunary polynomials has been investigated in a series
of papers. Cucker, Koiran and Smale first proved that integer roots
of univariate integer lacunary polynomials can be found in polynomial
time [3]. This result was generalized by Lenstra who proved that low-
degree factors of univariate lacunary polynomials over algebraic number
fields can also be found in polynomial time [21]. More recently, Kaltofen
and Koiran generalized Lenstra’s results to bivariate and then multivariate
lacunary polynomials [10, 11]. A common point to these algorithms is
that they all rely on a so-called Gap Theorem: If F is a factor of P(X̄) =

∑
t
j=1 ajX̄

ᾱj , then there exists k0 such that F is a factor of both ∑
k0
j=1 ajX̄

ᾱj

and ∑
k
j=k0+1 ajX̄

ᾱj . Moreover, the different Gap Theorems in these papers

are all based on the notion of height of an algebraic number, and some of
them use quite sophisticated results of number theory.

In this paper, we are interested in more elementary proofs for some of
these results. We focus on Kaltofen and Koiran’s first paper [10] dealing
with linear factors of bivariate lacunary polynomials. We show how a Gap
Theorem that does not depend on the height of an algebraic number can
be proved. In particular, our Gap Theorem is valid for any field of char-
acteristic zero. As a result, we get a new, more elementary algorithm for
finding linear factors of bivariate lacunary polynomials over an algebraic
number field. In particular, this new algorithm is easier to implement
since there is no need to explicitly compute some constants from number
theory, and the use of the Gap Theorem does not require to evaluate the
heights of the coefficients of the polynomial. Moreover we use the same
methods to prove a Gap Theorem for polynomials over some fields of pos-
itive characteristic, yielding an algorithm to find linear factors of bivariate
lacunary polynomials of the form (uX + vY + w) with uvw 6= 0. Finding
linear factors with u = 0 is NP-hard, and the same is true for linear factors

2

with v = 0 or w = 0. This follows from the fact that finding univariate
linear factors over finite fields is NP-hard [17, 1, 12]. In algebraic number
fields we can find all linear factors in polynomial time, even those with
uvw = 0. For this we rely as Kaltofen and Koiran on Lenstra’s univariate
algorithm [21].

Our Gap Theorem is based on the valuation of a univariate polynomial,
defined as the maximum integer v such that Xv divides the polynomial.
We give an upper bound on the valuation of a nonzero polynomial

P(X) =
k

∑
j=1

ajX
αj(1 + X)β j .

This bound can be viewed as an extension of a result due to Hajós [8, 23].
We also note that Kayal and Saha recently used the valuation of square
roots of polynomials to make some progress on the “Sum of Square Roots”
problem [16].

Lacunary polynomials have also been studied with respect to other
computational tasks. For instance, Plaisted showed the NP-hardness of
computing the greatest common divisor (GCD) of two univariate integer
lacunary polynomials [25], and his results were extended to finite fields [27,
15, 10]. On the other hand, some important special cases were identified
for which the GCD of two lacunary polynomials can be computed in
polynomial time [4]. Other efficient algorithms for lacunary polynomials
have been recently given, for instance for the detection of perfect powers [6,
7] or interpolation [13].

Acknowledgments. We wish to thank Sébastien Tavenas for his help
on Proposition 8, and Erich L. Kaltofen for pointing us out a mistake in
Theorem 19 in a previous version of this paper.

2 Bound on the valuation

In this section, we consider a field K of characteristic zero and polynomials
over K.

Theorem 1. Let P = ∑
k
j=1 ajX

αj(1 + X)β j with α1 ≤ · · · ≤ αk. If P is not

identically zero then its valuation is at most maxj(αj + (k+1−j
2)).

3

A lower bound for the valuation of P is clearly α1 (and it is attained

when α2 > α1 for instance). If the family (Xαj(1 + X)β j)1≤j≤k is linearly

independent over K, the upper bound we get is actually α1 + (k
2): At most

the first (k
2) lowest-degree monomials can be cancelled. If αj = α1 for all

j, Hajós’ Lemma [8, 23] gives the better bound α1 + (k − 1). (This bound
can be shown to be tight by expanding Xk−1 = (−1 + (X + 1))k−1 with
the binomial formula.) This is not true anymore when the αj’s are not all
equal. One can show that the valuation can be as large as α1 + (2k − 3)
(see Proposition 8). The exact bound remains unknown, and whether this
bound is still linear as in Hajós’ Lemma or quadratic is open.

Our proof of Theorem 1 is based on the so-called Wronskian of a
family of polynomials. This is a classical tool for the study of differential
equations but it has recently been used to bound the valuation of a sum
of square roots of polynomials [16] and also to bound the number of real
roots of some sparse-like polynomials [18].

Definition 2. Let f1, . . . , fk ∈ K[X]. Their Wronskian is the determinant of
the Wronskian matrix

W(f1, . . . , fk) = det











f1 f2 · · · fk

f ′1 f ′2 · · · f ′k
...

...
...

f
(k−1)
1 f

(k−1)
2 · · · f

(k−1)
k











.

The main property of the Wronskian is its relation to linear indepen-
dence. The following result is classical (see [2] for a simple proof of this
fact).

Proposition 3. The Wronskian of f1, . . . , fk is nonzero if and only if the f j’s are
linearly independent over K.

The next two lemmas are our main ingredients to give a bound on the
valuation for P, using a bound on the valuation of some Wronskian.

Lemma 4. Let f1, . . . , fk ∈ K[X]. Then

Val(W(f1, . . . , fk)) ≥
k

∑
j=1

Val(f j)−

(

k

2

)

.

4

Proof. Each term of the determinant is a product of k terms, one from
each column and one from each row. The valuation of such a term is at
least ∑j Val(f j)− ∑

k−1
i=1 i since for all i, j, Val(f

(i)
j) ≥ Val(f j)− i. The result

follows.

We can slightly refine the bound in this lemma. The term of valuation

∑j Val(f j)− (k
2) in the Wronskian is indeed the determinant of the matrix

made of the smallest degree monomials of each f
(i)
j . This determinant

can vanish. In fact, one can easily see that this is the case if two f j’s
have the same valuation since this yields two proportional columns in the
matrix. To use this idea more generally, consider that the f j’s are ordered
by increasing valuation. We define a plateau to be a set { f j0 , . . . , f j0+s} such
that for 0 < t ≤ s, Val(f j0+t) ≤ Val(f j0) + t − 1. The f j’s are naturally
partitioned into plateaux. Suppose that there are (m + 1) plateaux, of
length p0, . . . , pm respectively, and let f j0 , . . . , f jm their respective first
elements. Generalizing the previous remark to plateaux, it can be shown
that

Val(W(f1, . . . , fk)) ≥
m

∑
i=0

(

pi Val(f ji) +

(

pi

2

))

−

(

k

2

)

. (1)

This bound is at least as large as in the lemma. If all the f j’s have a different
valuation, then the bound is equal to the bound stated in the lemma since
there are in this case k plateaux, each of length 1. On the other side, if
they all have the same valuation α, there is one plateau of length k and the
bound is Val(W(f1, . . . , fk)) ≥ kα. We investigate the implications of this
refinement after the proof of Theorem 1.

Lemma 5. Let f j = Xαj(1 + X)β j , 1 ≤ j ≤ k, such that αj, β j ≥ k for all j. If
the f j’s are linearly independent, then

Val(W(f1, . . . , fk)) ≤
k

∑
j=1

αj.

Proof. By Leibniz rule, for all i, j

f
(i)
j (X) =

i

∑
t=0

(

i

t

)

(αj)t(β j)i−tX
αj−t(1 + X)β j−i+t (2)

5

where (m)n = m(m − 1) · · · (m − n + 1) is the falling factorial. Since
αj − t ≥ αj − i and β j − i + t ≥ β j − i for all t,

f
(i)
j (X) = Xαj−i(1 + X)β j−i ×

i

∑
t=0

(

i

t

)

(αj)t(β j)i−tX
i−1(1 + X)t.

Furthermore, since αj ≥ k ≥ i, we can write Xαj−i = Xαj−kXk−i and since

β j ≥ k ≥ i, (1 + X)β j−i = (1 + X)β j−k(1 + X)k−i. Thus, Xαj−k(1 + X)β j−k

is a common factor of the entries of the j-th column of the Wronskian
matrix, and Xk−i(1 + X)k−i is a common factor of the entries of the i-th
row. Together, we get

W(f1, . . . , fk) = X∑j αj−(k
2)(1 + X)∑j β j−(k

2) det(M)

where the matrix M is defined by

Mi,j =
i

∑
t=0

(

i

t

)

(αj)t(β j)i−tX
i−t(1 + X)t.

The polynomial det(M) is nonzero since the f j’s are supposed linearly

independent and its degree is at most (k
2). Therefore its valuation cannot

be larger than its degree and is bounded by (k
2).

Altogether, the valuation of the Wronskian is bounded by ∑j αj − (k
2) +

(k
2) = ∑j αj.

Proof of Theorem 1. Let P = ∑j ajX
αj(1 + X)β j , and let f j = Xαj(1 + X)β j .

We assume first that αj, β j ≥ k for all j, and that the f j’s are linearly
independent. Note that Val(f j) = αj for all j.

Let W denote the Wronskian of the f j’s. We can replace f1 by P in
the first column of the Wronskian matrix using column operations which
multiply the determinant by a1 (its valuation does not change). The matrix
we obtain is the Wronskian matrix of P, f2, . . . , fk. Now using Lemma 4,
we get

Val(W) ≥ Val(P) + ∑
j≥2

αj −

(

k

2

)

.

6

This inequality combined with Lemma 5 shows that

Val(P) ≤ α1 +

(

k

2

)

. (3)

We now aim to remove our two previous assumptions. If the f j’s are
not linearly independent, we can extract from this family a basis f j1 , . . . , f jd .

Then P can be expressed in this basis as P = ∑
d
l=1 ãl f jl . We can apply

Equation (3) to f j1 ,. . . , f jd and obtain Val(P) ≤ αj1 + (d
2). Since jd ≤ k, we

have j1 + d − 1 ≤ k and Val(P) ≤ αj1 + (k+1−j1
2). The value of j1 being

unknown, we conclude that

Val(P) ≤ max
1≤j≤k

(

αj +

(

k + 1 − j

2

))

. (4)

The second assumption is that αj, β j ≥ k. Given P, consider P̃ =

Xk(1 + X)kP = ∑j ajX
α̃j(1 + X)β̃ j . Then P̃ satisfies α̃j, β̃ j ≥ k, whence by

Equation (4), Val(P̃) ≤ maxj(α̃j + (k+1−j
2)). Since Val(P̃) = Val(P) + k and

α̃j = αj + k, the result follows.

Remark 6. In Theorem 1, we can replace (1 + X) by (uX + v) for any
u, v 6= 0. Indeed, we can write uX + v = v(u

v X + 1) and then use the
change of variables Y = u

v X. This gives us a polynomial of the same form
as in the theorem, with the same valuation as the original one.

Remark 7. Theorem 1 does not hold in positive characteristic as shown

by the equality (1 + X)2n
+ (1 + X)2n+1

= X2n
(1 + X) mod 2. Section 5

investigates the case of positive characteristic in more details.

We argued after Lemma 4 that it can be refined. In the previous proof,
it is used with P, f2, . . . , fk. If all the f j’s have the same valuation α,

Equation (1) gives the bound Val(W) ≥ Val(P) + ((k − 1)α + (k−1
2)) −

(k
2), whence Val(P) ≤ α + (k − 1). In this case, replacing Lemma 4 by

Equation (1) gives us a new proof of Hajós’ Lemma, with the correct
bound.

On the other hand, if the f j’s have pairwise distinct valuations, Equa-
tion 1 gives the same bound as Lemma 4. Yet in this case Lemma 5 can

7

be refined to obtain the bound Val(W) ≤ ∑j αj − (k
2). Again, we find the

optimal bound for the valuation, that is Val(P) = α1 here.
The refinement of Lemma 4 alone is not sufficient to improve Theorem 1

in the general case. To this end, one needs to improve Lemma 5 as well. As
already mentioned, it is an open problem to determine the best achievable
bound for Theorem 1. The next proposition shows that it cannot be as low
as in Hajós’ Lemma.

Proposition 8. For k ≥ 3, there exists a linearly independent family of polyno-

mials (Xαj(1 + X)β j)1≤j≤k, α1 ≤ · · · ≤ αk and a family of rational coefficients
(aj)1≤j≤k such that the polynomial

P(X) =
k

∑
j=1

ajX
αj(1 + X)β j

is nonzero and has valuation α1 + (2k − 3).

Proof. A polynomial that achieves this bound is

Pk(X) = −1 + (1 + X)2k+3 −
k

∑
j=0

ajX
2j+1(1 + X)k+1−j,

where

aj =
2k + 3

2j + 1

(

k + 1 + j

k + 1 − j

)

.

We aim to prove that Pk(X) = X2k+3. Since it has (k + 3) terms and α1 = 0,
this proves the proposition. To prove the result for an arbitrary value of
α1, it is sufficient to multiply Pk by some power of X.

It is clear that Pk has degree (2k + 3) and is monic. Let [Xm]Pk be the
coefficient of the monomial Xm in Pk. Then for m > 0

[Xm]Pk =

(

2k + 3

m

)

−
k

∑
j=0

aj

(

k + 1 − j

m − 2j − 1

)

.

We aim to prove that [Xm]Pk = 0 as soon as m < 2k + 3. Using the
definition of the aj’s, this is equivalent to proving

k

∑
j=0

2k + 3

2j + 1

(

k + 1 + j

k + 1 − j

)(

k + 1 − j

m − 2j − 1

)

=

(

2k + 3

m

)

. (5)

8

To prove this equality, we rely on Wilf and Zeilberger’s algorithm [24],
and its implementation in the Maple package EKHAD of Doron Zeilberger
(see [24] for more on this package). The program asserts the correctness of
the equality and provides a recurrence relation satisfied by the summand
that we can verify by hand.

Let F(m, j) be the summand in equation (5) divided by (2k+3
m). We thus

want to prove that ∑
k
j=0 F(m, j) = 1. The EKHAD package provides

R(m, j) =
2j(2j + 1)(k + j + 2 − m)

(2k + 3 − m)(2j − m)

and claims that

mF(m + 1, j)− mF(m, j)

= F(m, j + 1)R(m, j + 1)− F(m, j)R(m, j). (6)

In the rest of the proof, we show why this claim implies Equation (5), and
then that the claim holds.

Suppose first that Equation (6) holds and let us prove Equation (5). If
we sum Equation (6) for j = 0 to k, we obtain

m(
k

∑
j=0

F(m + 1, j)− F(m, j))

= F(m, k + 1)R(m, k + 1)− F(m, 0)R(m, 0).

Since R(m, 0) = 0 and F(m, k + 1) = 0, ∑j F(m, j) is constant with respect
to m. One can easily check that the sum is 1 when m = 2k + 2. (Actually
the only nonzero term in this case is for j = k.) Therefore, we deduce that
for all m < 2k + 3,1 ∑j F(m, j) = 1, that is Equation (5) is true.

To prove Equation (6), note that

F(m + 1, j)

F(m, j)
=

(j + k + 2 − m)(m + 1)

(m − 2j)(2k + 3 − m)

and
F(m, j + 1)

F(m, j)
=

(k + 2 − j)(m − 2j − 1)(m − 2j − 2)

(2j + 2)(2j + 3)(j + k + 3 − m)
.

1The bound on m is given by the fact that R(m, j) is undefined for m = 2k + 3.

9

Therefore, to prove the equality, it is sufficient to check that

0 = m
j + k + 2 − m

m − 2j

m + 1

2k + 3 − m
− m + R(m, j)

−
(k + 2 − j)(m − 2j − 1)(m − 2j − 2)

(2j + 2)(2j + 3)(j + k + 3 − m)
R(m, j + 1).

This is done by a mere computation.

From Theorem 1, we can deduce the following Gap Theorem.

Theorem 9 (Gap theorem). Let P = ∑
k
j=1 ajX

αj(uX + v)β j with u, v 6= 0 and

αj+1 ≥ αj, 0 ≤ j < k. Assume that there exists ℓ such that

αℓ+1 > max
1≤j≤ℓ

(

αj +

(

ℓ+ 1 − j

2

))

. (7)

Then P is identically zero if and only if the polynomials ∑
ℓ
j=1 ajX

αj(uX + v)β j

and ∑
k
j=ℓ+1 ajX

αj(uX + v)β j are both identically zero.

In particular, the smallest ℓ satisfying (7) is the smallest ℓ satisfying

αℓ+1 > α1 +

(

ℓ

2

)

.

Proof. Let Q = ∑
ℓ
j=1 ajX

αj(uX + v)β j and R = P−Q. Suppose that Q is not

identically zero. By Theorem 1, its valuation is at most maxj(αj + (ℓ+1−j
2)).

Since αj ≥ αℓ+1 for j > ℓ, the valuation of R is at least αℓ+1 > maxj(αj +

(ℓ+1−j
2)). Therefore, if Q is not identically zero, its monomial of lowest

degree cannot be canceled by a monomial of R. In other words, P = Q + R
is not identically zero.

For the second part of the theorem, consider the smallest ℓ satisfying

Equation (7). It is clear that αℓ+1 > α1 + (ℓ2). Moreover for all j ≤ ℓ, αj+1 ≤

maxi≤j(αi + (j+1−i
2)). We now prove by induction on j that αj ≤ α1 + (j−1

2)
for all j ≤ ℓ. This is obviously true for j = 1. Let j < ℓ and suppose that

for all i ≤ j, αi ≤ α1 + (i−1
2). Then

αj+1 ≤ max
i<j

(

αi +

(

j + 1 − i

2

))

≤ α1 + max
i<j

((

i − 1

2

)

+

(

j − (i − 1)

2

))

.

To conclude, we remark that (i−1
2) + (j−(i−1)

2) ≤ (j
2) for all i < j.

10

It is straightforward to extend this theorem to more gaps. The theorem
can be recursively applied to Q and R (as defined in the proof). Then, if
P = P1 + . . . + Ps where there is a gap between Pt and Pt+1 for 1 ≤ t < s,
then P is identically zero if and only if each Pt is zero.

3 Algorithms

In this section, we prove that there exists a deterministic polynomial-time
algorithm to test if a polynomial of the form

P =
k

∑
j=1

ajX
αj(uX + v)β j , (8)

is identically zero and give a deterministic polynomial-time algorithm to
compute the linear factors of a lacunary bivariate polynomial. The size of
P is defined by

size(P) = size(u) + size(v) +
k

∑
j=1

(size(aj) + log(αjβ j)). (9)

The algorithms use Lenstra’s algorithm [21] or a variant of it for treat-
ing some special cases. This use of Lenstra’s algorithm implies some
restrictions on the field K in which the coefficients of the polynomials
lie. In this section, K is an algebraic number field, and it is represented
as K = Q[ξ]/〈ϕ〉 where ϕ ∈ Z[ξ] is a monic irreducible polynomial. El-
ements of K are given as vectors in the basis (1, ξ, . . . , ξdeg ϕ−1). That is
for e ∈ K, e = (e0, . . . , edeg ϕ−1) with et = nt/dt for each t where nt, dt ∈ Z.
Then

size(e) = log(n1d1) + · · ·+ log(ndeg ϕ−1ddeg ϕ−1).

The size of a polynomial defined as above is then approximately the
number of bits needed to write down its binary representation.

Theorems 10 and 11 were already proven in [10]. We give here new
proofs based on our Gap Theorem. The structures of the algorithms we
propose are the same as in [10]. The only differences are the ones induced
by the use of a different Gap Theorem. This implies some differences in
terms of the complexity that are discussed at the end of this section.

11

Theorem 10. There exists a deterministic polynomial-time algorithm to decide if
a polynomial of the form (8) is identically zero.

Proof. We assume without loss of generality that αj+1 ≥ αj for all j and
α1 = 0. If α1 is nonzero, Xα1 is a factor of P and we consider P/Xα1 .

Suppose first that u = 0. Then P is given as a sum of monomials, and
we only have to test each coefficient for zero. Note that the αj’s are not

distinct. Thus the coefficients are of the form ∑j ajv
β j . Lenstra [21] gives an

algorithm to find low-degree factors of univariate lacunary polynomials.
It is easy to deduce from his algorithm an algorithm to test such sums for

zero. A strategy could be to simply apply Lenstra’s algorithm to ∑j ajX
β j

and then check whether (X − v) is a factor, but one can actually improve
the complexity by extracting from his algorithm the relevant part. The
case v = 0 is similar.

We assume now that u, v 6= 0. We split P into small parts P = P1 +
· · ·+ Ps, such that according to the Gap Theorem, P is identically zero if
and only if each part Pt is identically zero. Formally, let I1, . . . , Is be the
(unique) partition of {1, . . . , k} into intervals defined recursively as follows.
Let 1 ∈ I1. For 1 ≤ j < k, suppose that {1, . . . , j} has been partitioned
into I1, . . . , It, and let it be the smallest element of It. Then (j + 1) ∈ It

if αj+1 ≤ αit + (j−it+1
2), and (j + 1) ∈ It+1 otherwise. The polynomials

Pt = ∑j∈It
ajX

αj(1 + X)β j satisfy the conditions of Theorem 9. Therefore,

we are left with testing if the Pt’s are identically zero. Moreover, Xαit

divides Pt for each t and it is thus equivalent to be able to test if each
Pt/Xαit is identically zero.

To this end, let Q be a polynomial of the form (8) satisfying α1 = 0

and αj+1 ≤ (j
2) for all j. In particular, αk ≤ (k−1

2). Consider the change of
variables Y = uX + v. Then

Q(Y) =
k

∑
j=1

aju
−αj(Y − v)αjYβ j

is identically zero if and only if Q(X) is. We can express Q(Y) as a sum of
powers of Y:

Q(Y) =
k

∑
j=1

αj

∑
ℓ=0

aju
−αj

(

αj

ℓ

)

(−v)ℓYαj+β j−l.

12

There are at most k(k−1
2) = O(k3) monomials. Then, testing if Q(Y) is

identically zero consists in testing each coefficient for zero. Moreover, each

coefficient has the form ∑j (
αj

ℓj
)aju

−αj(−v)ℓj where the sum ranges over at

most k indices. Since ℓj, αj ≤ (k−1
2) for all j, the terms in these sums have

polynomial bit-lengths. Therefore, the coefficients can be tested for zero in
polynomial time.

Altogether, this gives a polynomial-time algorithm to test if P is identi-
cally zero.

Theorem 11. Let

P(X, Y) =
k

∑
j=1

ajX
αjYβ j ∈ K[X, Y].

There exists a deterministic polynomial-time algorithm that finds all the linear
factors of P, together with their multiplicities.

Proof. A linear factor of P is either of the form (Y − uX − v) or (X − a).
To search factors of the form (X − a), we see P as a univariate polynomial
in Y whose coefficients are univariate polynomials in X. Then, (X − a) is
a factor of P if and only if it is a factor of all the coefficients of P viewed
as a polynomial in Y. Lenstra gives an algorithm to compute linear factors
of univariate lacunary polynomials [21]. Thus, we can find all the factors
of the form (X − a) and their multiplicities using his algorithm.

Now (Y − uX − v) is a factor of P if and only if P(X, uX + v) vanishes

identically. We can assume that u 6= 0. If v = 0, P(X, uX) = ∑j aju
β j Xαj+β j .

Therefore, it vanishes if and only if each coefficient vanishes. But a

coefficient of this polynomial is of the form ∑j aju
β j . Testing such a

coefficient for zero is done in polynomial time using Lenstra’s algorithm
as in the proof of Theorem 10, and there are at most k of them to test.

Suppose now that u, v 6= 0. Since P(X, uX + v) is of the form (8), we
can use our Gap Theorem (Theorem 9) as in the proof of Theorem 10:
Let P = ∑

s
i=1 Xα(i)Pi where each Pi is of the form (8) and satisfies α1 = 0

and αk ≤ (k−1
2). Then by Theorem 9, P(X, uX + v) vanishes if and only if

Pi(X, uX + v) vanishes for every i. Now apply the same transformation
to each Pi, inverting the roles of X and Y. Then each Pi can be written

as the sum ∑
si
ℓ=1 Yβ(ℓ)Piℓ where each Piℓ is of the form (8) and satisfies

13

α1 = β1 = 0 and αk, βk ≤ (k−1
2). Furthermore, P(X, uX + v) vanishes if

and only if all the Piℓ(X, uX + v) vanish.
Since the Piℓ’s are low-degree polynomials, and there are at most

k of them, one can find all their linear factors. This relies on one of
the numerous deterministic polynomial-time algorithms to factor dense
multivariate polynomials that appear in the literature, from [9, 20] to
[5, 19]. By the above discussion, the linear factors of P are exactly the
linear factors that all the Piℓ’s have in common. Several strategies can be
used to find these linear factors: Either we search the linear factors of all
the Piℓ’s and keep only the ones they have in common, or we search the
linear factors of one particular Piℓ (for instance the one of smallest degree)
and test if they are factors of the other Piℓ’s using our PIT algorithm, or
we compute the gcd of all the Piℓ’s and then search its linear factors. In
particular, this last solution directly gives the multiplicities of the factors
of P, since it is the same as their multiplicities in the gcd.

As Kaltofen and Koiran’s algorithm [10], our algorithm uses Lenstra’s
algorithm for univariate lacunary polynomials [21] to find univariate
factors of the input polynomial. To compare both algorithms, let us thus
focus on the task on finding truly bivariate linear factors, that is of the
form (Y − uX − v) with uv 6= 0.

A first remark concerns the simplicity of the algorithm. The compu-
tation of the gap function is much simpler in our case since we do not
have to compute the height of the coefficients. This means that the task
of finding the gaps in the input polynomial is reduced to completely
combinatorial considerations.

Both our and Kaltofen and Koiran’s algorithms use a dense factoriza-
tion algorithm as a subroutine. This is in both cases the main computa-
tional task since the rest of the algorithm is devoted to the computation of
the gaps in the input polynomial. Thus, a relevant measure to estimate
the complexity of these algorithms is the maximum degree of the polyno-
mials given as input to the dense factorization algorithm. This maximum
degree is given by the values of the gaps in the two Gap Theorems. In

our algorithm, the maximum degree is (k
2). In Kaltofen and Koiran’s, it

is O(k log k + k log hP) where hP is the height of the polynomial P and the
value log(hP) is a bound on the size of the coefficients of P. For instance, if
the coefficients of P are integers, then hP is the maximum of their absolute
values. Therefore, our algorithm has a better asymptotic complexity as

14

soon as the size of the coefficients exceeds the number k of terms. Fur-
thermore, the hidden constant in the bound for Kaltofen and Koiran’s
algorithm is only known to be bounded by approximately 15 while the
corresponding constant in our case is 1/2.

Note that an improvement of Theorem 1 to a linear bound instead
of a quadratic one would give us a better complexity than Kaltofen and
Koiran’s algorithm for all polynomials. Finally, it is naturally possible to
combine both Gap Theorems in order to obtain the best complexity in all
cases.

4 Generalizations

In this section, we aim to prove some generalizations of the results obtained
in Sections 2 and 3. The field K is still supposed to be an algebraic number
field as in Section 3, unless otherwise stated.

Our first generalization shows that the identity test algorithm of Theo-
rem 10 can be extended to a slightly more general family of polynomials.
Namely, the linear polynomial (uX + v) can be replaced by any 2-sparse
polynomial.

Theorem 12. Let P = ∑
k
j=1 ajX

αj(uXd + v)β j . There exists a deterministic

polynomial-time algorithm to decide if the polynomial P is identically zero.

In the theorem, (uXd + v) could be replaced by the seemingly more

general expression (uXd + vXd′) with d > d′ > 0. Yet, in this case

we can factor out Xd′ . A term Xαj(uXd + vXd′)β j can thus be written

Xαj+d′β j(uXd−d′ + v)β j . This has the same form as in the theorem, replac-
ing αj by (αj + d′β j) and d by (d − d′).

The size of the polynomial in the statement of the theorem is defined
as in Equation (9) of Section 3 with the additional term log d in the sum.
This means that the complexity of the algorithm is still polylogarithmic in
the degree.

Proof. For all j we consider the Euclidean division of αj by d: αj = qjd + rj

with rj < d. We rewrite P as

P =
k

∑
j=1

ajX
rj(Xd)qj(uXd + v)β j .

15

Let us group in the sum all the terms with a common rj. That is, let

Pi(Y) = ∑
1≤j≤k

rj=i

ajY
qj(uY + v)β j

for 0 ≤ i < d. We remark that regardless of the value of d, the number

of nonzero Pi’s is bounded by k. We have P(X) = ∑
d−1
i=0 XiPi(Xd). Each

monomial Xα of XiPi(Xd) satisfies α ≡ i mod d. Therefore, P is identically
zero if and only if all the Pi’s are identically zero.

Since each Pi is of the form (8), and there are at most k of them, we can
apply the algorithm of Theorem 10 to each of them.

We now state a generalization of Theorem 1. A special case of this gen-
eralization is used in the following to extend our factorization algorithm
of Theorem 11. It is not known whether the most general version of the
theorem can be used to further extend our algorithms to be able to find
small-degree factors of lacunary polynomials.

Note that this result holds whatever field K of characteristic zero is
considered.

Theorem 13. Let (αij) ∈ Zm×k
+ and

P =
k

∑
j=1

aj

m

∏
i=1

f
αij

i ∈ K[X],

where the degree of fi ∈ K[X] is di for all i. Let ξ ∈ K and denote by µi the
multiplicity of ξ as a root of fi. Then the multiplicity µP(ξ) of ξ as a root of P
satisfies

µP(ξ) ≤ max
1≤j≤k

m

∑
i=1

(

µiαij + (di − µi)

(

k + 1 − j

2

))

.

A proof of this theorem is given in Appendix A. Note that it can be
stated in the more general settings of rational exponents αij. It can then be
seen as a generalization of a result of Kayal and Saha [16, Theorem 2.1].

The following corollary, used to find multilinear factors of bivariate
lacunary polynomials, is a direct consequence of the theorem.

Corollary 14. Let P = ∑
k
j=1 ajX

αj(uX + v)β j(wX + t)γj , uvwt 6= 0. If P is

nonzero, its valuation is at most max1≤j≤k(αj + 2(k+1−j
2)).

16

We now describe how to use this corollary to get a new factorization al-
gorithm. Compared to Theorem 11, we are now able to find the multilinear
factors instead of the linear ones.

Theorem 15. Let P = ∑
k
j=1 ajX

αjYβ j . There exists a deterministic polynomial

time algorithm to compute all the multilinear factors of P, with multiplicity.

Proof sketch. The proof goes along the same lines as the proof of Theo-
rem 11. Suppose that XY − (aX − bY + c) is a factor of P. Then the rational
function P(X, aX+c

X+b) vanishes identically. Let us assume for simplicity that
a, b, c 6= 0. (The other cases can be handled separately, as in the proof of
Theorem 11.) Let

Q(X) = (X + b)maxi βi P(X,
aX + c

X + b
) =

k

∑
j=1

ajX
αj(aX + c)β j(X + b)γj

where γj = maxi(βi)− β j. Then Q is a polynomial and it vanishes if and

only if the rational function P(X, aX+c
X+b) does. By Corollary 14, if Q is

nonzero its valuation is at most maxj(αj + 2(k+1−j
2)). We can deduce a Gap

Theorem: For 1 ≤ k0 ≤ k, let

Q0(X) =
k0

∑
j=1

ajX
αj(aX + c)β j(X + b)γj

and Q1 = Q − Q0. Suppose that αk0+1 > max1≤j≤k0
(αj + 2(k0+1−j

2)). Then
Q vanishes identically if and only if Q0 and Q1 both vanish identically.
Hence, XY − (aX − bY + c) is a factor of P if and only if it is a factor of
both P0 and P1, defined by analogy with Q0 and Q1: P0 is the sum of the
k0 first terms of P and P1 the sum of the (k − k0) last terms.

This proves that P can be written as a sum of Piℓ’s as in the proof
of Theorem 11 such that the multilinear factors of P are the common
multilinear factors of the Piℓ’s, and such that each Piℓ is of the same form
as P and satisfies αk, βk ≤ 2(k−1

2). It thus remains to find the common
multilinear factors of some low-degree polynomials. Since there are at
most k of them, this can be done in polynomial time.

17

5 Positive characteristic

As mentioned earlier, Theorem 1 does not hold in positive characteristic.

We considered the polynomial (1 + X)2n
+ (1 + X)2n+1

= X2n
(X + 1) in

characteristic 2. It only has two terms, but its valuation equals 2n. There-
fore, its valuation cannot be bounded by a function of the number of
terms. Note that this can be generalized to any positive characteristic. In

characteristic p, one can consider the polynomial ∑
p
i=1(1 + X)pn+i

.
Nevertheless, the exponents used in all the examples depend on the

characteristic. In particular, the characteristic is always smaller than the
largest exponent that appears. We shall show that in large characteristic,
Theorem 1 still holds. This contrasts with the previous result [10] that uses
the notion of height of an algebraic number, and which is thus not valid
in any positive characteristic.

In fact, Theorem 1 holds as soon as W(f1, . . . , fk) does not vanish. The
difficulty in positive characteristic is that Proposition 3 does not hold
anymore. Yet, the Wronskian is still related to linear independence by the
following result (see [14]):

Proposition 16. Let K be a field of characteristic p and f1, . . . , fk ∈ K[X]. Then
f1, . . . , fk are linearly independent over K[Xp] if and only if their Wronskian
does not vanish.

This allows us to give an equivalent of Theorem 1 in large positive
characteristic.

Theorem 17. Let P = ∑
k
j=1 ajX

αj(1 + X)β j ∈ K[X] with α1 ≤ · · · ≤ αk. If

the characteristic p of K satisfies p > maxj(αj + β j), then the valuation of P is

at most maxj(αj + (k+1−j
2)), provided P does not vanish identically.

Proof. Let f j = Xαj(1 + X)β j for 1 ≤ j ≤ k. The proof of Theorem 1 has
two steps: We prove that we can assume that the Wronskian of the f j’s
does not vanish, and then under this assumption we get a bound of the
valuation of the polynomial. The second part only uses the non-vanishing
of the Wronskian and can be used here too. We are left with proving
that the Wronskian of the f j’s can be assumed to not vanish when the
characteristic is large enough.

Assume that the Wronskian of the f j’s is zero: By Proposition 3, there is
a vanishing linear combination of the f j’s with coefficients bj in K[Xp]. Let

18

us write bj = ∑ bi,jX
ip. Then ∑i Xip ∑j bi,j f j = 0. Since deg f j = αj + β j < p,

∑j bi,j f j = 0 for all i. We have thus proved that there is a linear combination
of the f j’s equal to zero with coefficients in K. Therefore, we can assume
we have a basis of the f j’s whose Wronskian is nonzero and use the same
argument as for the characteristic zero.

Based on this result, the algorithms we develop in characteristic zero
for PIT and factorization can be used for large enough characteristics.
Computing with lacunary polynomials in positive characteristic has been
shown to be hard in many cases [27, 15, 17, 10, 1, 12]. In particular, it
is shown in a very recent paper that it is NP-hard to find roots in Fp for
polynomials over Fp [1].

Let Fps be the field with ps elements for p a prime number and s > 0.
In the algorithms, it is given as Fp[ξ]/〈ϕ〉 where ϕ is a monic irreducible
polynomial of degree s with coefficients in Fp.

Theorem 18. Let P = ∑
k
j=1 ajX

αj(uX + v)β j ∈ Fps [X], where p > maxj(αj +

β j). There exists a polynomial-time deterministic algorithm to test if P vanishes
identically.

The proof of this theorem is very similar to the proof of Theorem 10,
using Theorem 17 instead of Theorem 1. The main difference occurs
when u = 0 or v = 0. In these cases, we rely in characteristic zero on

an external algorithm to test sums of the form ∑j ajv
β j for zero. This

external algorithm does not work in positive characteristic, but these tests
are actually much simpler. These sums can be evaluated using repeated
squaring in time polynomial in log β j, that is polynomial in the input
length.

Note that the condition p > maxj(αj + β j) means that p has to be
greater than the degree of P. This condition is a fairly natural condition
for many algorithms dealing with polynomials over finite fields, especially
prime fields, for instance for root finding algorithms [1].

The basic operations in the algorithm are operations in the ground
field Fp. Therefore, the result also holds if bit operations are considered.
The only place where computations in Fps have to be performed in the

algorithm is the tests for zero of coefficients of the form ∑j (
αj

ℓj
)aju

−αj(−v)ℓj

where the αj’s and ℓj’s are integers and aj ∈ Fps , and the sum has at most

19

k terms. The binomial coefficient is to be computed modulo p using for
instance Lucas’ Theorem [22].

We now turn to the problem of finding linear factors of lacunary
bivariate polynomials.

Theorem 19. Let P = ∑j ajX
αjYβ j ∈ Fps [X, Y], where p > maxj(αj + β j).

There exists a probabilistic polynomial-time algorithm to find all the linear factors
of P of the form (uX + vY + w) with uvw 6= 0.

Furthermore, deciding the existence of factors of the form (X − w), (Y − w)
or (X − wY) with w 6= 0 is NP-hard under randomized reductions.

Proof. The second part of the theorem is the consequence of the NP-
hardness (under randomized reductions) of finding roots in Fps of lacunary
univariate polynomials with coefficients in Fps [17, 1, 12]: Let Q be a lacu-
nary univariate polynomial over Fps , and define P(X, Y) = Q(X). Then P
has the same form as in the theorem with β j = 0 for all j, and factors of
the form (X − w) of P are in one-to-one correspondence with roots w of
Q. Thus, detecting such factors is NP-hard under randomized reductions.
The same applies to factors of the form (Y − w). Finally, let us now define

P as the homogeneization of Q, that is P(X, Y) = Ydeg(Q)Q(X/Y). Then,

P(wY, Y) = Ydeg(Q)P(w, 1) = Ydeg(Q)Q(w). In other words, factors of P
of the form (X − wY) correspond to roots w of Q. Thus detecting such
factors is also NP-hard under randomized reduction.

For the first part, the algorithm we propose is actually the same as in
characteristic zero (Theorem 11). This means that it relies on known re-
sults for factorization of dense polynomials. Yet, the only polynomial-time
algorithms known for factorization in positive characteristic are probabilis-
tic [26]. Therefore our algorithm is probabilistic and not deterministic as
in characteristic zero.

References

[1] J. Bi, Q. Cheng, and J. M. Rojas. Sub-Linear Root Detection, and New
Hardness Results, for Sparse Polynomials Over Finite Fields. In Proc.
ISSAC, pages 61–68, 2013. arXiv:1204.1113.

[2] A. Bostan and P. Dumas. Wronskians and linear independence. Am.
Math. Mon., 117(8):722–727, 2010.

20

http://arxiv.org/abs/1204.1113

[3] F. Cucker, P. Koiran, and S. Smale. A polynomial time algorithm for
Diophantine equations in one variable. J. Symb. Comput., 27(1):21–30,
1999.

[4] M. Filaseta, A. Granville, and A. Schinzel. Irreducibility and Greatest
Common Divisor Algorithms for Sparse Polynomials. In Number
Theory and Polynomials, volume 352 of P. Lond. Math. Soc., pages 155–
176. Camb. U. Press, 2008.

[5] S. Gao. Factoring multivariate polynomials via partial differential
equations. Math. Comput., 72(242):801–822, 2003.

[6] M. Giesbrecht and D. S. Roche. On lacunary polynomial perfect
powers. In Proc. ISSAC’08, pages 103–110. ACM, 2008.

[7] M. Giesbrecht and D. S. Roche. Detecting lacunary perfect powers
and computing their roots. J. Symb. Comput., 46(11):1242 – 1259, 2011.

[8] G. Hajós. [solution to problem 41] (in hungarian). Mat. Lapok, 4:40–41,
1953.

[9] E. Kaltofen. Polynomial-Time Reductions from Multivariate to Bi-
and Univariate Integral Polynomial Factorization. SIAM J. Comput.,
14(2):469–489, 1985.

[10] E. Kaltofen and P. Koiran. On the complexity of factoring bivariate
supersparse (lacunary) polynomials. In Proc. ISSAC’05, pages 208–215.
ACM, 2005.

[11] E. Kaltofen and P. Koiran. Finding small degree factors of multivariate
supersparse (lacunary) polynomials over algebraic number fields. In
Proc. ISSAC’06, pages 162–168. ACM, 2006.

[12] E. L. Kaltofen and G. Lecerf. Factorization of Multivariate Polynomi-
als. In Handbook of Finite Fields, Disc. Math. Appl. CRC Press, 2013.
To appear.

[13] E. L. Kaltofen and M. Nehring. Supersparse black box rational func-
tion interpolation. In Proc. ISSAC’11, pages 177–186. ACM, 2011.

[14] I. Kaplansky. An introduction to differential algebra. Actualités scien-
tifiques et industrielles. Hermann, 1976.

21

[15] M. Karpinski and I. Shparlinski. On the computational hardness
of testing square-freeness of sparse polynomials. In Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, volume 1719 of LNCS,
pages 731–731. Springer, 1999.

[16] N. Kayal and C. Saha. On the Sum of Square Roots of Polynomials
and Related Problems. In Proc. CCC’11, pages 292–299. IEEE, 2011.

[17] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryp-
tosystem by relinearization. In Proc. CRYPTO, pages 19–30. Springer,
1999.

[18] P. Koiran, N. Portier, and S. Tavenas. A Wronskian approach to the
real τ-conjecture. arXiv:1205.1015, 2012. Accepted for oral presenta-
tion at MEGA 2013.

[19] G. Lecerf. Improved dense multivariate polynomial factorization
algorithms. J. Symb. Comput., 42(4):477–494, 2007.

[20] A. K. Lenstra. Factoring Multivariate Polynomials over Algebraic
Number Fields. SIAM J. Comput., 16(3):591–598, 1987.

[21] H. Lenstra Jr. Finding small degree factors of lacunary polynomials.
In Number theory in progress, pages 267–276. De Gruyter, 1999.

[22] É. Lucas. Théorie des fonctions numériques simplement périodiques.
Amer. J. Math., 1(2–4):184–240,289–321, 1878.

[23] H. Montgomery and A. Schinzel. Some arithmetic properties of
polynomials in several variables. In Transcendence Theory: Advances
and Applications, chapter 13, pages 195–203. Academic Press, 1977.

[24] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A=B. AK Peters, 1996.

[25] D. Plaisted. Sparse complex polynomials and polynomial reducibility.
J. Comput. Syst. Sci., 14(2):210–221, 1977.

[26] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Camb. U.
Press, 2nd edition, 2003.

[27] J. von zur Gathen, M. Karpinski, and I. Shparlinski. Counting curves
and their projections. Comput. Complex., 6(1):64–99, 1996.

22

http://arxiv.org/abs/1205.1015

A Proof of Theorem 13

Let Pj = ∏
m
i=1 f

αij

i for 1 ≤ j ≤ k. As in the proof of Theorem 1, we first
assume that the Pj’s are linearly independent, and the αij’s not less than
(k − 1).

We can use a generalized Leibniz rule to compute the derivatives of
the Pj’s. Namely

P
(l)
j = ∑

t1+···+tm=l

(

l

t1, . . . , tm

) m

∏
i=1

(f
αij

i)(ti), (10)

where (l
t1,...,tm

) is the multinomial coefficient. Consider now a derivative

of the form (f α)(t). This is a sum of terms, each of which contains a
factor f α−t. (The worst case happens when t different copies of f have
been each derived once.) In Equation (10), each ti is bounded by l. This

means that P
(l)
j = Ql,j ∏i f

αij−l

i for some polynomial Ql,j. Since the degree

of P
(l)
j equals ∑i diαij − l, Ql,j has degree ∑i diαij − l − ∑i(diαij − dil) =

(∑i di − 1)l.
Consider now the Wronskian W of the Pj’s. We can factor out in each

column ∏i f
αij−k+1

i and in each row ∏i f k−1−l
i . At row l and column j, we

therefore factor out ∏i f
αij−k+1

i · ∏i f k−1−l
i = ∏i f

αij−l

i . Thus,

W =
m

∏
i=1

f
∑j αij−(k

2)

i det M

where Ml,j = Ql,j. Thus, det M is a polynomial of degree at most (∑i di −

1)(k
2).
Therefore, the multiplicity µW(ξ) of ξ as a root of W is bounded by its

multiplicity as a root of ∏i f
∑j αij−(k

2)

i plus the degree of det M. We get

µW(ξ) ≤ ∑
i

µi

(

∑
j

αij −

(

k

2

)

)

+ (∑
i

di − 1)

(

k

2

)

= ∑
i

(

µi ∑
j

αij + (di − µi)

(

k

2

)

)

−

(

k

2

)

. (11)

23

To conclude the proof, it remains to remember Lemma 4 and use the
same proof technique as in Theorem 1. It was expressed in terms of the
valuation of the polynomials, but remains valid with the multiplicity of

a root. In this case, it can be written as µW(ξ) ≥ ∑j µPj
(ξ)− (k

2) where W

is the Wronskian of the Pj’s. Using column operations, we can replace
the first column of the Wronskian matrix of the Pj’s by the polynomial

P and its derivatives. We get µW(ξ) ≥ µP(ξ) + ∑j≥2 µPj
(ξ)− (k

2), where

µPj
(ξ) = ∑i µiαij.

Together with (11), we get

µP(ξ) ≤ µW(ξ)− ∑
j≥2

µPj
(ξ) +

(

k

2

)

≤ ∑
i

(

µi ∑
j

αij + (di − µi)

(

k

2

)

)

−

(

k

2

)

− ∑
j≥2

∑
i

µiαij +

(

k

2

)

≤ ∑
i

(

µiαi1 + (di − µi)

(

k

2

))

.

It remains to remove our two assumptions. If the Pj’s are not linearly
independent, we can extract a basis (Pj1 , . . . , Pjd). We obtain µP(ξ) ≤

∑i

(

µiαij1 + (di − µi)(
d
2)
)

. Since d ≤ k + 1 − j1, we have

µP(ξ) ≤ max
1≤j≤k

m

∑
i=1

(

µiαij + (di − µi)

(

k + 1 − j

2

))

.

The second assumption is that αij ≥ k − 1 for all i and j. Let

P̃ = P · ∏
i

f k−1
i = ∑

j

aj ∏
i

f
α̃ij

i .

Since α̃ij = αij + k − 1 ≥ k − 1,

µP̃(ξ) ≤ max
1≤j≤k

m

∑
i=1

(

µiα̃ij + (di − µi)

(

k + 1 − j

2

))

= (k − 1)
m

∑
i=1

µi + max
1≤j≤k

m

∑
i=1

(

µiαij + (di − µi)

(

k + 1 − j

2

))

.

Since µP̃(ξ) = µP(ξ) + (k − 1)∑i µi, the result follows.

24

Remark 20. The ordering of the Pj’s in the theorem is arbitrary. Yet the
value of the bound depends on this ordering. Therefore, it is possible to
optimize this bound by using the ordering on the Pj’s that minimizes the
bound. Let us define

sj = ∑
i

(

µiαij + (di − µi)

(

k + 1 − j

2

))

.

The theorem states that µP(ξ) ≤ maxj sj. Let j1 < j2 such that ∑i µiαij1 ≥
∑i αij2 . Then sj1 > sj2 . These two terms appear in the maximum when Pj1
is before Pj2 in the ordering. If Pj1 and Pj2 are exchanged, the two terms are

replaced by ∑i(µiαij1 + (di − µi)(
k+1−j2

2)) and ∑i(µiαij2 + (di − µi)(
k+1−j1

2).
Neither term is greater than sj1 . This means that an exchange of Pj1 and
Pj2 in the ordering cannot increase the bound in the theorem.

This proves that to minimize the bound the Pj’s must be ordered with
respect to the value of ∑i µiαij. This is consistent with the order on the αj’s
chosen in Theorem 1. We also note that the bound in Theorem 1 is exactly
recovered as a special case.

25

	1 Introduction
	2 Bound on the valuation
	3 Algorithms
	4 Generalizations
	5 Positive characteristic
	A Proof of Theorem 13

