
L3INF (U. Grenoble-Alpes) B. Grenet

Modèles de calcul – machines de Turing

Exercice 1. Questions
Répondre aux questions suivantes, où on considère le modèle standard de machine
de Turing, sans variante.

1. Une machine peut-elle écrire un □ sur son ruban ?
2. Une étape de calcul peut-elle laisser la tête de lecture immobile ?
3. Une étape de calcul peut-elle laisser le ruban non modifié ?
4. Combien de cases du ruban peuvent être modifiées à chaque étape ?
5. Si la machine possède n états et l’alphabet k symboles, combien de transitions

la machine possède-t-elle au maximum ? Et au minimum ?

Exercice 2. Exemples de machines

1. Décrire des machines de Turing effectuant les calculs suivants.

i. Étant donné un mot w ∈ {0, 1}∗, la machine calcule son complémentaire
w défini par wi = 1−wi (par ex., 0010 devient 1101).

ii. Étant donné un entier n> 0 écrit en binaire, la machine calcule n− 1.
iii. Étant donné a#b où a et b sont deux entiers écrits en binaire, la machine

calcule a+ b.
iv. Étant donné un mot w ∈ {a, b}∗, la machine calcule w#w.
v. Étant donné un mot u ⊕ v où u, v ∈ {0,1}∗, la machine calcule w =

u XOR v.
vi. Étant donné deux entiers a et b, en binaire, sur deux rubans différents,

la machine calcule a+ b sur un troisième ruban, en temps linéaire en la
taille de a et b.

2. Décrire des machines de Turing reconnaissant les langages suivants.

i. L = {w ∈ {0, 1}∗ : w est l’écriture binaire d’un entier pair}
ii. L = {w ∈ {0, 1}∗ : w ne contient jamais trois 0 à la suite}

iii. L = {w ∈ {0, 1,#}∗ : w= u#v où u, v ∈ {0,1}∗ ont la même longueur}
iv. L = {an bn : n ∈ N}
v. L = {w ∈ {a, b}∗ : w contient autant de a que de b}

vi. L = {w ∈ {a, b}∗ : w contient deux fois plus de a que de b}
vii. L = {w ∈ {a, b}∗ : w ne contient pas deux fois plus de a que de b}

Exercice 3. Que font-elles ?
On considère les deux tables de transitions suivantes.

1

Table 1

q0
0
1

0
1
→
→

q0
q1

q1
0
1

1
1
←
→

q2
q1

q2 1 0 ← q3

q3

0
1
□

0
1
□

←
←
→

q3
q3
q0

Table 2

q0
a
B

A
B
→
→

q1
q4

q1

a
B
b

a
B
B

→
→
→

q1
q1
q2

q2

b
C
c

b
C
C

→
→
←

q2
q2
q3

q3
∗
A

∗
A
←
→

q3
q0

q4

B
C
□

B
C
□

→
→
→

q4
q4
oui

1. i. Dessiner l’automate correspondant à la machine M décrite par la table 1
et lister l’ensemble des états et l’alphabet.

ii. Appliquer M sur les entrées suivantes et donner l’état du ruban à la fin
du calcul : 10, 1010 et 00110.

iii. Décrire le calcul effectué par M.
2. i. Dessiner l’automate correspondant à la machine M décrite par la table 2

et lister l’ensemble des états et l’alphabet.
ii. Quels mots, parmi a, ac, abc, aabc, abca, aabbcc, sont dans L(M) ?

On écrit l’entrée w ∈ {a, b, c}∗ sous la forme w= aℓbmcnw′ avec ℓ, m, n≥ 0.
Exemples. aabccbac = a2 b1c2w′ avec w′ = bac, bbc = a0 b2c1w′ avec w′ = ϵ.

iii. Montrer que si ℓ, m ou n vaut 0, M se bloque dans l’état q0, q1 ou q2.
iv. Si ℓ > 0, m > 0 et n > 0, la machine revient dans l’état q0 : décrire la

configuration lors du (premier) retour en q0.

On suppose maintenant ℓ, m, n> 0.

v. Montrer que si m< ℓ ou n< ℓ, M se bloque dans l’état q1, q2 ou q4.
vi. Montrer que si m≥ ℓ et n≥ ℓ, alors la machine atteint l’état q4, et décrire

la configuration obtenue.
vii. Décrire aussi précisément que possible le langage accepté par M.

Exercice 4. Variantes

1. On considère un modèle de machine de Turing où la tête de lecture est
initialement placée sur la dernière lettre (la plus à droite) de l’entrée. Ce
modèle est-il équivalent au modèle standard ?

2. On considère des machines de Turing à plusieurs rubans ayant chacun des
droits en lecture et/ou écriture : un ruban peut être en lecture seule (on peut

2

lire le contenu du ruban mais pas le modifier), en écriture seule (on peut
écrire sur le ruban, mais pas relire ce qu’on y a écrit), ou en lecture/écriture
(on peut à la fois lire et écrire). Dans chaque cas, indiquer si la variante est
équivalente ou non au modèle standard :

i. tous les rubans sont en lecture seule ;
ii. un ruban est en lecture/écriture, les autres en lecture seule ;

iii. chaque ruban est soit en lecture seule, soit en écriture seule.

3. i. On considère une machine de Turing M qui, à chaque transition, déplace
sa tête vers la droite (mais jamais vers la gauche). Montrer que L(M)
est régulier, c’est-à-dire peut être reconnu par un automate fini.

ii. Montrer que le résultat reste vrai si on autorise la machine à soit déplacer
sa tête vers la droite, soit la garder immobile.

Exercice 5. Reconnaître, décider, calculer

1. Montrer qu’un algorithme A qui décide un langage L le reconnaît également.
2. Soit Mc une machine de Turing qui calcule une fonction totale f : Σ∗ →
{0, 1}. Montrer qu’on peut construire une machine de Turing Md qui décide
L f = {w ∈ Σ∗ : f (w) = 1}.

3. On applique la même construction qu’à la question précédente pour une
machine Mc qui calcule une fonction partielle f : Σ∗ → {0,1}. Que fait la
machine Md obtenue ?

4. Soit Md une machine de Turing qui décide un langage L. Montrer qu’on peut
construire une machine Mc qui calcule la fonction caractéristique χL de L.

Exercice 6. Programmes WHILE et machines RAM
On considère des programmes WHILE et des machines RAM dont les variables ou
registres sont sur n bits.

1. Pour les deux fonctions ci-dessous, écrire un programme WHILE puis le traduire
en machine RAM.

i. SUB(x , y) = x − y mod 2n

ii. MUL(x , y) = x × y mod 2n.

2. On s’intéresse à des machines dont les entrées et sorties sont dans {0,1} :
quelque soit la taille de mot n, on suppose que les valeurs des entrées sont
dans {0, 1} (sans avoir à le vérifier).

i. Écrire le code d’une machine RAM qui étant x ∈ {0,1} calcule ¬x .
ii. Écrire le code d’une machine RAM qui étant donné x , y ∈ {0, 1} calcule

x ∧ y .
iii. Écrire le code d’une machine RAM qui étant donné x , y ∈ {0, 1} calcule

x ∨ y .

3

iv. En déduire toute fonction booléenne f : {0,1}k → {0,1} peut être
calculée par une machine RAM.

Exercice 7. Traduction RAM vers WHILE

On veut montrer que tout programme en assembleur RAM peut être simulé
par un programme LOOP. Pour cela, on considère un programme en assembleur
RAM. Chaque instruction est l’une des suivante : COPY(Ri , R j), INC(Ri), DEC(Ri),
JUMP(Ri ,ℓ) ou STOP. L’idée de la simulation est de représenter chaque registre Ri
par une variable x i dans le langage WHILE, et d’avoir une variable supplémentaire
pc (pour program counter) qui retient l’instruction en cours. (La variable pc est
aussi de la forme x i pour un certain i, mais la notation permet d’être plus clair.)

1. Quelle doit être la valeur initiale de pc ?
2. Comment peut-on traduire une instruction du type COPY(Ri , R j), INC(Ri) ou

DEC(Ri) dans le langage WHILE ? La valeur de pc doit être mise à jour.
3. Comment traduire une instruction JUMP(Ri ,ℓ) ?
4. Donner l’architecture globale du programme WHILE qui simule une machine

RAM, en gérant en particulier l’instruction STOP.

Exercice 8. Automates cellulaires unidimensionnels
Un automate cellulaire (unidimensionnel) consiste en un ruban constitué d’une
infinité de cases, chacune possédant un symbole d’un alphabet Σ, et d’une fonction
de transition locale f : Σ3→ Σ qui indique comment chaque cellule doit évoluer
à chaque étape en fonction de son symbole et des symboles de ses deux voisines.
Formellement, les cases du ruban sont indexées par les entiers relatifs : R = (ri)i∈Z.
Initialement, le ruban est dans la configuration initiale R(0) = (r(0)i)i∈Z. Une

étape de calcul fait passer de la configuration R(t) à R(t+1) définie par r(t+1)
i =

f (r(t)i−1, r(t)i , r(t)i+1) pour tout i. On suppose que la fonction de transition est totale.
Exemple. On définit l’automate sur l’alphabet Σ = {0,1} par f (0,0,0) = 0 et
f (a, b, c) = 1 si (a, b, c) ̸= (0, 0, 0). On dessine ci-dessous les configurations R(0) à
R(9) où r(0)0 = 1 et r(0)i = 0 si i ≠ 0. On représente r(t)i = 0 par une case blanche et

r(t)i = 1 par une case noire.
0
1
2
3
4
5
6
7
8
9

t =

1. On s’intéresse à des automates où Σ= {0, 1} et on utilise la même représen-

4

tation que dans l’exemple. Pour chacune des tables de transitions, représenter
les configurations R(0) à R(9) où r(0)0 = 1 et r(0)i = 0 si i ̸= 0.

i. f (1, 0,0) = f (0, 0,1) = 1 et f (a, b, c) = 0 sinon ;
ii. f (0, 1,0) = f (1, 0,0) = f (0, 1,1) = 1 et f (a, b, c) = 0 sinon ;

iii. f (1, 0, 0) = f (0, 1, 1) = f (0, 1, 0) = f (0, 0, 1) = 1 et f (a, b, c) = 0 sinon.

Notre objectif est de démontrer l’équivalence entre le modèle des automates
cellulaires unidimensionnels et les machines de Turing. Pour cela, on va faire
deux hypothèses sur les automates cellulaires : d’une part, il existe un symbole
spécial « blanc » □ (le 0 dans nos exemples) et la configuration initiale ne contient
qu’un nombre fini de symboles ̸= □ (l’entrée) ; d’autre part, f (□,□,□) = □.

2. Justifier l’intérêt de ces hypothèses.
3. Lister les principales similarités et différences entre une machine de Turing et

un automate cellulaire.
4. On veut simuler une machine M = (Q,Σ,q0,δ). L’idée est que l’alphabet

de l’automate cellulaire contienne non seulement Σ, mais également, pour
chaque état q ∈Q et symbole x ∈ Σ, un symbole xq.

i. Décrire formellement l’alphabet de l’automate cellulaire.
ii. Comment utiliser cet alphabet pour représenter la tête de lecture ?

iii. Considérons une transition δ(q, x) = (q′, y,↔) de la machine de Turing.
Traduire cette transition en des règles f (xq, ·, ·), f (·, xq, ·) et f (·, ·, xq),
en fonction du type de déplacement.

iv. Comment doit-on définir f (x , y, z) si x , y , z ∈ Σ ?

5. La fonction de transition locale d’un automate cellulaire est totale, ce qui im-
plique que l’automate ne termine jamais. La table de transition de la machine
n’est pas totale, donc la question précédente laisse encore des transitions à
compléter.

i. Supposons que M calcule une fonction f . Proposer une façon de com-
pléter la fonction f pour la rendre totale, et une convention pour définir
le résultat du calcul de l’automate cellulaire.

ii. Supposons que M reconnaît un langage L. Proposer une façon de com-
pléter la fonction f pour la rendre totale, et une convention pour affirmer
qu’un mot en entrée de l’automate cellulaire appartient ou non à L.

6. Expliquer comment simuler un automate cellulaire par une machine de Turing,
toujours avec les deux hypothèses ci-dessus.

Exercice 9. Nécessité des fonctions partielles
L’entreprise Disrupt® propose son super nouveau langage Halt! avec la promesse
qu’aucun programme écrit dans son langage ne peut rentrer dans une boucle
infinie. Bien sûr, Disrupt® promet également qu’on peut programmer tout ce qu’on
veut dans son langage, tant que ça ne boucle pas. C’est vraiment fantastique. . .

5

1. i. Traduire la promesse « aucun programme ne peut rentrer dans une boucle
infinie » en une propriété sur les fonctions calculées par les programmes
écrits en Halt!.

ii. Justifier, intuitivement, que si on sait calculer une fonction f : N→ N
avec Halt!, alors on sait également calculer la fonction n 7→ f (n) + 1.

iii. Démontrer que l’ensemble des fonctions qu’on peut programmer avec
Halt! est dénombrable.

2. Montrer que Disrupt® fait de la publicité mensongère : les trois propriétés de
la question précédente impliquent qu’il existe une fonction g intuitivement
calculable qu’on ne peut pas programmer avec Halt!. Indication. Utiliser une
preuve par diagonalisation.

3. Dans la preuve précédente, qu’est-ce qui ne marche pas si le langage permet
des fonctions qui bouclent ? Autrement dit, pourquoi cela ne démontre pas
que pour tout langage, il existe un algorithme intuitivement calculable non
programmable dans le langage ?

Exercice 10. Rice ou pas Rice ?
Pour chacun des problèmes suivants, déterminer si le théorème de Rice s’applique.
Déterminer ensuite si le problème est décidable. Pour les questions (∗), déterminer
également si le problème est reconnaissable, co-reconnaissable, ou aucun des
deux.

1.(∗) Étant donné un programme dans votre langage préféré, est-ce que le pro-
gramme affiche J'adore la calculabilité. ?

2. Étant donné un algorithme A, est-ce qu’il existe deux entrées x et y telles que
A(x) = A(y) ?

3.(∗) Étant donné un algorithme A, est-ce que A possède deux boucles imbriquées ?
4. Étant donné un algorithme A, est-ce que fA est une fonction totale ?
5. Étant donné la fonction de transition d’un automate cellulaire et une confi-

guration initiale (avec un nombre fini de cases non blanches), est-ce que
l’automate atteint une configuration stable, qui n’évolue plus ?

6.(∗) Étant donné un algorithme A, est-ce que L(A) = ; ?
7. Étant donné un algorithme A, est-ce que pour tout w ∈ L(A), w ∈ L(A) ? Le

mot w est le complémentaire de w obtenu en inversant chaque bit.
8. Étant donné deux algorithmes A et B, est-ce que A(w) = B(w) pour toute

entrée (c’est-à-dire en particulier A(w) ↑ ⇐⇒ B(w) ↑) ?
9.(∗) Étant donné un automate fini déterministe A,

i. est-ce que A accepte le mot 001100 ?
ii. est-ce que le langage accepté par A est infini ?

Exercice 11. Décidabilité et réductions

1. i. Montrer qu’on peut simuler une machine de Turing M par une machine

6

qui, sur l’entrée w, ne visite jamais de case située à gauche la position
initiale de sa tête.

ii. En déduire qu’étant donné une machine de Turing M et une entrée w,
déterminer si elle visite une case située à gauche de la position initiale
de sa tête pendant le calcul est indécidable.

2. Déterminer la décidabilité des problèmes suivants : étant donné une machine
de Turing M,

i. est-ce que M effectue plus de 2025 étapes de calcul sur l’entrée vide ?
ii. est-ce qu’il existe une entrée w sur laquelle M effectue plus de 2025

étapes de calcul ?
iii. est-ce que M effectue plus de 2025 étapes de calcul sur toute entrée ?

3. On considère un programme dans votre langage préféré. Montrer qu’on ne
peut pas décider, étant donné le programme et une entrée x , si la ligne 17 du
programme est exécutée au cours du calcul.

Exercice 12. Valeurs numériques incalculables

1. On définit la fonction busy beaver BB : N→ N comme suit : pour un entier k,
on considère toutes les machines de Turing à k états, qui terminent sur l’entrée
vide ; soit BB(k) le nombre maximal d’étapes nécessaires pour une de ces
machines pour atteindre sa configuration d’arrêt. Autrement dit, toutes celles
qui s’arrêtent le font en ≤ k étapes de calcul, et l’une le fait en exactement k
étapes de calcul.

i. Montrer que si la fonction BB est calculable, on peut décider le problème
de l’arrêt.

ii. Qu’en déduit-on sur la fonction BB ?

2. Pour un fichier f , on note TAILLE(f) sa taille en octet. Étant donné votre
langage de programmation préféré, on définit la complexité 1 K(f) d’un fichier
f comme la taille du plus petit programme qui, sans entrée, écrit le fichier f
en mémoire. La taille du programme est la taille de son fichier source.

i. Justifier que K(f)≤ TAILLE(f) + c où c est une constante qui ne dépend
que du langage de programmation.

On veut montrer que K(f) est incalculable. Supposons au contraire qu’on a
un programme pour la fonction K .

ii. Montrer qu’on peut alors écrire un programme qui prend en entrée un
entier k et écrit sur le disque un fichier f de complexité ≥ k.

iii. En codant k en dur dans le programme, trouver une contradiction.
iv. En déduire qu’il n’existe aucun programme de compression sans perte

optimal.

1. La notion théorique correspondante s’appelle complexité de Kolmogorov.

7

Exercice 13. Un peu de théorie

1. Montrer que L est décidable si et seulement si L est décidable.
2. Montrer que si un langage L est reconnaissable et si L ≤m L, alors L est

décidable.
3. i. Montrer que L est reconnaissable si et seulement s’il est le domaine de

définition d’un algorithme : il existe un algorithme A tel que A(w) ↓ si et
seulement si w ∈ L.

ii. Montrer que L est reconnaissable si et seulement s’il est l’image d’un
algorithme : il existe un algorithme A tel que L = {A(x) : x ∈ {0,1}∗}.

4. Montrer que L est reconnaissable si et seulement si L ≤m K où K est le
problème de l’arrêt.

5. Soit D un langage décidable, non vide et ̸= {0, 1}∗. Montrer que L est décidable
si et seulement si L ≤m D.

6. Soit L un langage reconnaissable. Montrer que si L contient exactement un
mot de chaque longueur, alors L est décidable.

7. Soit L un langage énumérable par un algorithme E qui énumère les mots
de L par ordre de taille, puis lexicographique (pour ceux de même taille).
Montrer que L est décidable.

Exercice 14. Calculabilité relative
On imagine posséder une instruction magique pour résoudre le problème de
l’arrêt : étant donné 〈A〉 et w, STOP?(〈A〉, w) renvoie 1 si A(w) ↓ et 0 si A(w) ↑. Cette
instruction magique s’appelle l’oracle K (le problème de l’arrêt) et un algorithme
qui l’utilise est un algorithme avec oracle K, noté AK . On peut, comme pour un
algorithme sans oracle, représenter AK par un mot binaire 〈AK〉.

1. Montrer que déterminer, étant donné 〈AK〉 et un mot w, si AK(w) ↓ est indéci-
dable.

2. Le problème est-il décidable par des algorithmes à oracle ? Autrement dit,
existe-t-il un algorithme à oracle HK tel que HK(〈AK , w〉) = 1 si AK(w) ↓ et 0
si AK(w) ↑ ?

Exercice 15. Autres problèmes indécidables

1. Déterminer si le problème de correspondance de Post est décidable dans les
cas suivants :

i. lorsque chaque domino possède deux mots de même longueur ;
ii. lorsque l’alphabet utilisé ne possède qu’une seule lettre ;

iii. lorsque l’alphabet utilisé possède deux lettres.

2. Le problème du pavage est-il décidable en dimension 1 ? Précisions : on a en
entrée un ensemble de tuiles possédant une couleur à gauche et une à droite, et
on cherche à remplir une ligne complète en respectant les couleurs, étant donné
une tuile de départ.

8

	1. Questions
	2. Exemples de machines
	3. Que font-elles?
	4. Variantes
	5. Reconnaître, décider, calculer
	6. Programmes while et machines RAM
	7. Traduction RAM vers while
	8. Automates cellulaires unidimensionnels
	9. Nécessité des fonctions partielles
	10. Rice ou pas Rice?
	11. Décidabilité et réductions
	12. Valeurs numériques incalculables
	13. Un peu de théorie
	14. Calculabilité relative
	15. Autres problèmes indécidables

