
2. Variantes des machines de Turing

Bruno Grenet

Université Grenoble Alpes – IM²AG

L3 Informatique

UE Modèles de calcul – Machines de Turing

https://membres-ljk.imag.fr/Bruno.Grenet/MCAL-MT.html

https://membres-ljk.imag.fr/Bruno.Grenet/MCAL-MT.html

2/25

Introduction

Rappels

▶ Une machine de turing est un quadrupletM = (Q,Σ, q0, δ) où

▶ Q est un ensemble fini d’états de taille quelconque
▶ Σ est n’importe quel alphabet fini, mais doit contenir □
▶ δ est une fonction partielle : δ(q, x) peut être indéfini

▶ Ruban unidimensionnel, non borné ni vers la gauche ni vers la droite

▶ Est-ce que ces choix dans la définition sont importants ?

▶ Qu’est-ce qui compte vraiment ? qu’est-ce qu’on peut modifier ?

▶ Y a-t-il d’autres possibilités pour définir une machine ?

3/25

Premières remarques

Déplacements

▶ À chaque étape, la tête doit aller à gauche ou à droite

▶ On peut rajouter l’option « rester sur place » (↓)
▶ Définition équivalente car on peut simuler « rester sur place » :

q q′← q′

x , y , ↓

x , y ,→ ∗,∗,←

∗ = n’importe quel symbole

▶ On peut aussi séparer les instructions en écriture et déplacement

Fonction partielle ?

▶ On peut rajouter un état « arrêt »

▶ Pour chaque état q et chaque symbole x , δ(q, x) est défini

▶ La machine s’arrête dès qu’elle atteint l’état « arrêt »

4/25

Contents

1. Taille de l’alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

4. Machines non déterministes

5/25

Contents

1. Taille de l’alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

4. Machines non déterministes

6/25

Encodage des données

Exemples de programmes en C

▶ Manipulation de floats (32 bits) ou doubles (64 bits)

▶ Manipulation d’ints, unsigned int, longs, . . .

▶ Opérations sur des octets

▶ Opérations bit-à-bit

▶ . . .

→ on ne manipule pas forcément directement les bits mais on pourrait !

Et sur une machine de Turing ?

▶ Définition générale : alphabet Σ quelconque

▶ Besoin d’un symbole spécial □ car ruban non borné

▶ On peut encoder n’importe quel alphabet en binaire

▶ un encodage ⟨·⟩ : Σ \□→ {0, 1}ℓ est une fonction injective : ⟨u⟩ = ⟨v⟩ ⇐⇒ u = v

▶ Extension aux mots : ⟨w[0]w[1] · · ·w[n−1]⟩ = ⟨w[0]⟩⟨w[1]⟩ · · · ⟨w[n−1]⟩

7/25

Restriction à un alphabet binaire

Théorème

SoitM = (Q,Σ, q0, δ) une machine de Turing. Il existe une machine

M′ = (Q′, {0, 1,□}, q0, δ
′) et un encodage ⟨·⟩ : Σ \ {□} → {0, 1}ℓ tels que

▶ Q ⊂ Q ′ Q′ contient Q
▶ siM(w) = (q,w ′, i), alorsM′(⟨w⟩) = (q, ⟨w ′⟩, i × ℓ) même configuration finale

▶ siM(w) ↑, alorsM′(⟨w⟩) ↑

Idée de la preuve

▶ Pour chaque symbole x ∈ Σ \□ : code unique ⟨x⟩ sur ℓ bits 2
ℓ ≥ #Σ− 1

▶ Pour chaque transition, suite de transitions pour :

▶ lire ℓ bits à la suite

▶ écrire ℓ bits à la suite

(nouveaux états intermédiaires)

8/25

Idée de la preuve : 1
er

dessin

q

q0 q01 q′→
00

q′→
0

q′⇒ q′→

q′

0, 0,→

1, 1,→ 0, 1,← ∗, 0,← ∗, 0,→ ∗, ∗,→

∗, ∗,→

x, y,→

∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ ∗ ∗ ∗

⟨x⟩ = 010

⟨y⟩ = 001

∗ = 0 ou 1

9/25

Idée de la preuve : 2
ème

dessin

q

q1 q11 q′←
10

q′←
1

q′⇔ q′←

q′

1, 1,→

1, 1,→ 0, 1,← ∗, 0,← ∗, 1,← ∗, ∗,←

∗, ∗,←

x, y,←

∗ ∗ ∗ ∗ 1 1 0 ∗ ∗ ∗ ∗ ∗ ∗

⟨x⟩ = 110

⟨y⟩ = 101

∗ = 0 ou 1

10/25

Bilan sur la taille d’alphabet

Résumé

▶ Toute machine de Turing peut être simulée par une machine d’alphabet {0, 1,□}
▶ On peut même se restreindre à {1,□}
▶ Remarque : cela se fait au prix d’une augmentation du nombre d’états

Inversement

▶ On peut grouper ℓ cases ensemble

▶ Nouvel alphabet Σℓ

▶ Il suffit d’adapter la table de transition pour traiter ℓ symboles d’un coup

Morale

▶ On peut choisir la taille d’alphabet qui nous arrange

▶ pour décrire une machine, on peut utiliser beaucoup de symboles

▶ pour raisonner abstraitement sur une machine, on peut supposer Σ = {0, 1,□}

→ la taille d’alphabet n’a aucune importance !

11/25

Et le nombre d’états ?

Diminuer le nombre d’états

▶ Ajout de symboles du type xq → état et position de la tête

▶ Nombre fixé d’états pour simuler une transition

→ Toute machine de Turing peut être simulée par un machine ayant (par exemple) 5 états

Morale

▶ On peut choisir le nombre d’états

▶ en utiliser beaucoup si ça nous arrange

▶ supposer qu’elle en a peu si c’est plus simple

→ le nombre d’états n’a aucune importance !

Interprétation

▶ Deux mémoires : ruban (non bornée) ; états (bornée)

▶ Compromis : transfert d’une quantité bornée de mémoire entre ruban et états

▶ Si besoin, aucun souci à utiliser beaucoup d’états et beaucoup de symboles !

12/25

Contents

1. Taille de l’alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

4. Machines non déterministes

13/25

Ruban semi-borné

Théorème

Tout langage L(M) reconnu par une machine de TuringM peut être reconnu par une

machineM′ dont le ruban est borné à gauche :M′ n’utilise que des cases du ruban

situées à droite de sa case de départ.

Idée de la preuve

▶ Initialement, décaler w pour libérer une case à gauche et écrire # dans cette case

▶ Quand on lit #, recommencer l’opération de décalage

▶ Les autres transitions sont gardées telles qu’elles

0 1 0 0 1

0 1 0 0 1

□ 0 1 0 0 1

14/25

Ruban borné

Théorème

Soit k ∈ N etM une machine de Turing qui, sur toute entrée w , utilise ≤ k cases de son

ruban. Alors L(M) est régulier (reconnaissable par un automate fini)

Preuve

15/25

Bilan sur la mémoire bornée

Mémoire nécessaire

▶ Mémoire bornée insuffisante : automates finis

▶ La forme de la mémoire non bornée n’a pas d’importance

▶ autre exemple : ruban bidimensionnel ou multidimensionnel

Et les automates à pile ?

▶ Rappel : automate avec une pile. . .

▶ Moins puissant que les machines de Turing : par ex. reconnaître anbncn

▶ Mais avec deux piles : pareil qu’une machine de Turing

16/25

Contents

1. Taille de l’alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

4. Machines non déterministes

17/25

Exemple : calcul du miroir

init # ? →

A

Bfin

∗ = a ou b ou #

a,a,←
b,b,←

□,#,→

#,#,→

□,□,←

a, #, ←

b, #, ←

a,a,→
b,b,→#,#,→

∗,∗,←

□,a,→

∗,∗,←

□,b,→

#,□,←

18/25

Calcul du miroir à 2 rubans

init

[
a
□

]
,

[
a
a

]
,

[
→
←

]

[
b
□

]
,

[
b
b

]
,

[
→
←

]

a b a a b

19/25

Définition d’une machine à k rubans

Définition

Une machine de Turing à k rubans est un quadrupletM = (Q,Σ, q0, δ) où

Q est un ensemble fini d’états
Σ est l’alphabet contenant le blanc □
q0 ∈ Q est l’état initial
δ : Q × Σk → Q × Σk × {→,←}k est la table de transition

Remarque

▶ Même définition, sauf pour δ qui gère les k rubans à la fois

▶ Mêmes règles de fonctionnement (adaptées)

▶ Configuration initiale :

▶ Mot w sur le 1
er

ruban, autres rubans vides

▶ Fonction à t entrées : entrées sur les rubans 1 à t
▶ Calcul de fonction : choix du ou des rubans de sortie

20/25

Équivalence des deux modèles

Théorème

Une machine de TuringM(k)
à k rubans peut être simulée par une machine de Turing

classiqueM :

▶ siM(k) reconnaît un langage L, on peut trouverM t.q. L = L(M) ;

▶ siM(k) calcule une fonction f , on peut trouverM t.q. f (w) = fM(w) pour tout w

Idée de la preuve

▶ Encodage de k rubans sur un seul ex.: à la suite, séparés par #
▶ Nouveaux symboles x̌ pour chaque x ∈ Σ position des têtes de lecture

▶ Simulation d’une transition :

▶ Parcourir le ruban et retenir les lettres lues nom des états

▶ Re-parcourir le ruban pour appliquer la transition

21/25

Idée de la preuve : un dessin simplifié (!)

q qu q(1)u,x q(2)u,x

q(3)u,x

q(4)u,xq(5)u,xq(6)u,xq′

ℓ, ℓ,→

ǔ, ǔ,→

ℓ, ℓ,→
#,#,→

x̌, x̌,←

∗, ∗,←

□,□,→

ℓ, ℓ,→

ǔ, v,→

ℓ, ℓ̌,→

ℓ, ℓ,→
#,#,→

x̌, y,←ℓ, ℓ̌,←

∗, ∗,←

□,□,→

[
u
x

]
,

[
v
y

]
,

[
→
←

]

ℓ ℓ ǔ ℓ # ℓ ℓ ℓ x̌ ℓ ℓ

ℓ ∈ Σ
∗ ∈ Σ ⊔ Σ̌ ⊔ {#}

22/25

Bilan sur les machines à k rubans

Vers une preuve complète (cas k = 2)

▶ Définir exactement la machineM :

▶ Nouvel alphabet : Σ ⊔ Σ̌ ⊔ {#}
▶ États : pour q ∈ Q, x1, x2 ∈ Σ → q, qx1

, q(1)x1,x2
, . . . , q(6)x1,x2

+ états pour les décalages

▶ Transitions : chaque transition donne lieu à O(#Σ) transitions

▶ Preuve (très) technique mais idée générale assez simple

▶ cas de k rubans similaire, mais encore plus technique !

Morale

▶ Les machines à 1, 2, ou 1000 rubans sont équivalentes

▶ On peut choisir le modèle qui nous arrange

▶ pour décrire une machine, on peut s’autoriser plusieurs rubans

▶ pour raisonner abstraitement sur une machine, on peut supposer qu’elle n’en a qu’un

23/25

Contents

1. Taille de l’alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

4. Machines non déterministes

24/25

Machine non déterministe

Définition

▶ Pour chaque état q ∈ Q et lettre x ∈ Σ, δ(q, x) est un ensemble de triplets (q′, y,↔)
▶ À chaque étape de calcul, la machine choisit de manière non-déterministe un triplet

▶ Une machine de Turing non déterministe N reconnaît un langage L si

▶ ∀w ∈ L, il existe des choix tels que N termine dans l’état « oui »

▶ ∀w /∈ L, aucun choix ne permet à N de terminer dans l’état « oui »

Théorème

Tout langage reconnu par une machine de Turing non déterministe N peut être reconnu

par une machine de Turing classique D (déterministe)

Idée de la preuve

▶ Simuler toutes les exécutions possibles tous les choix possibles

▶ Machine D à trois rubans :

1. Lecture seule : w , jamais modifié

2. Chemin vers le nœud courant de l’arbre incrément en base b
3. Ruban de N copie de w puis simulation

24/25

Machine non déterministe

Définition

▶ Pour chaque état q ∈ Q et lettre x ∈ Σ, δ(q, x) est un ensemble de triplets (q′, y,↔)
▶ À chaque étape de calcul, la machine choisit de manière non-déterministe un triplet

▶ Une machine de Turing non déterministe N reconnaît un langage L si

▶ ∀w ∈ L, il existe des choix tels que N termine dans l’état « oui »

▶ ∀w /∈ L, aucun choix ne permet à N de terminer dans l’état « oui »

Théorème

Tout langage reconnu par une machine de Turing non déterministe N peut être reconnu

par une machine de Turing classique D (déterministe)

Idée de la preuve

▶ Simuler toutes les exécutions possibles tous les choix possibles

▶ Machine D à trois rubans :

1. Lecture seule : w , jamais modifié

2. Chemin vers le nœud courant de l’arbre incrément en base b
3. Ruban de N copie de w puis simulation

24/25

Machine non déterministe

Définition

▶ Pour chaque état q ∈ Q et lettre x ∈ Σ, δ(q, x) est un ensemble de triplets (q′, y,↔)
▶ À chaque étape de calcul, la machine choisit de manière non-déterministe un triplet

▶ Une machine de Turing non déterministe N reconnaît un langage L si

▶ ∀w ∈ L, il existe des choix tels que N termine dans l’état « oui »

▶ ∀w /∈ L, aucun choix ne permet à N de terminer dans l’état « oui »

Théorème

Tout langage reconnu par une machine de Turing non déterministe N peut être reconnu

par une machine de Turing classique D (déterministe)

Idée de la preuve

▶ Simuler toutes les exécutions possibles tous les choix possibles
▶ Machine D à trois rubans :

1. Lecture seule : w , jamais modifié

2. Chemin vers le nœud courant de l’arbre incrément en base b
3. Ruban de N copie de w puis simulation

25/25

Conclusion

▶ Les machines de Turing sont un modèle de calcul très robuste :

▶ les détails ne changent rien au modèle. . .

▶ . . . tant qu’on garde les caractéristiques importantes

Ce qui est important

▶ Avoir une mémoire non bornée mémoire bornée = automate fini

▶ Pouvoir l’exploiter complètement ex. des automates à pile

Ce qui ne change rien

▶ L’alphabet utilisé (≥ 2 symboles)

▶ Le nombre d’états

▶ La forme de la mémoire non bornée

▶ Uni- ou multidimensionnelle

▶ Bornée à une extrémité ou non

▶ Un ou plusieurs rubans

▶ Les opérations élémentaires exactes

▶ Déplacement de la tête

▶ Nombre de symboles lus/écrits

▶ Séparation écriture / déplacement

▶ Les conditions d’arrêt de la machine

▶ État particulier

▶ Absence de transition possible

	Taille de l’alphabet
	Mémoire bornée ou non bornée?
	Machines à plusieurs rubans
	Machines non déterministes

