2. Variantes des machines de Turing

Bruno Grenet

Université Grenoble Alpes — IM?AG
L3 Informatique
UE Modéles de calcul — Machines de Turing

OFA Y0)
R

T o

[OF'S

https://membres-ljk.imag.fr/Bruno.Grenet/ MCAL-MT.html

https://membres-ljk.imag.fr/Bruno.Grenet/MCAL-MT.html

Introduction

Rappels

» Une machine de turing est un quadruplet M = (Q, X, qo, d) ol
> Qest un ensemble fini d’états de taille quelconque
> ¥ est n’importe quel alphabet fini, mais doit contenir [J
» § est une fonction partielle: 6(q, x) peut étre indéfini
» Ruban unidimensionnel, non borné ni vers la gauche ni vers la droite

> Est-ce que ces choix dans la définition sont importants ?
> Qu’est-ce qui compte vraiment ? qu’est-ce qu’on peut modifier ?
» Y a-t-il d’autres possibilités pour définir une machine ?

Premieres remarques

Déplacements

» A chaque étape, la téte doit aller & gauche ou a droite
> On peut rajouter 'option « rester sur place » ({)
> Définition équivalente car on peut simuler « rester sur place »:

—————
- -

L~
Y

P .. l ’
s AN e SR T2
7 f

* = n’importe quel symbole
> On peut aussi séparer les instructions en écriture et déplacement

Fonction partielle?
P On peut rajouter un état « arrét »
» Pour chaque état g et chaque symbole x, d(q, x) est défini
> La machine s’arréte dés qu’elle atteint I’état « arrét »

Contents

1. Taille de alphabet

2. Mémoire bornée ou non bornée ?

3. Machines a plusieurs rubans

4. Machines non déterministes

Contents

1. Taille de alphabet

Encodage des données

Exemples de programmes en C

>

>
>
>
| 4

Manipulation de floats (32 bits) ou doubles (64 bits)
Manipulation d’ints, unsigned int, longs, ...
Opérations sur des octets

Opérations bit-a-bit

— on ne manipule pas forcément directement les bits mais on pourrait!

Et sur une machine de Turing ?

>
| 4
>

Définition générale: alphabet ¥ quelconque
Besoin d’un symbole spécial [J car ruban non borné
On peut encoder n’importe quel alphabet en binaire
> un encodage (-) : ¥ \ 0 — {0,1}* est une fonction injective: {u)

> Extension aux mots: {(wjojw[j - - - Win—1)) = (Wjo]) (W) - -+ (W[n—1))

Restriction a un alphabet binaire

Théoréeme

Soit M = (Q, ¥, qo, §) une machine de Turing. Il existe une machine

M =(Q,{0,1,00}, qo, &') et un encodage (-) : ¥ \ {0} — {0,1} tels que
» QcqQ Q' contient Q
> si M(w) = (g, w, i), alors M'({w)) = (q,(w'),i X £) méme configuration finale
> si M(w) 1, alors M'({w)) 1

Idée de la preuve

» Pour chaque symbole x € ¥ \ OJ: code unique (x) sur ¢ bits 26> #y 1
> Pour chaque transition, suite de transitions pour:
> lire ¢ bits a la suite
> écrire { bits a la suite
(nouveaux états intermédiaires)

Idée de la preuve: 1°" dessin) = 001

(x) =110

|dée de la preuve : 2°™ dessin (y) = 101

9/25

Bilan sur la taille d’alphabet

Résumé
» Toute machine de Turing peut étre simulée par une machine d’alphabet {0, 1,0}
» On peut méme se restreindre a {1,0}
> Remarque: cela se fait au prix d’'une augmentation du nombre d’états

Inversement

» On peut grouper ¢ cases ensemble
» Nouvel alphabet ¥*
> |l suffit d’adapter la table de transition pour traiter £ symboles d’un coup

MORALE

» On peut choisir la taille d’alphabet qui nous arrange
> pour décrire une machine, on peut utiliser beaucoup de symboles
> pour raisonner abstraitement sur une machine, on peut supposer © = {0,1,}

— la taille d’alphabet n’a aucune importance!

Et le nombre d’états?

Diminuer le nombre d’états
> Ajout de symboles du type x7 — état et position de la téte
> Nombre fixé d’états pour simuler une transition
— Toute machine de Turing peut étre simulée par un machine ayant (par exemple) 5 états

MORALE

» On peut choisir le nombre d’états
> en utiliser beaucoup si ¢a nous arrange
> supposer qu’elle en a peu si C’est plus simple

— le nombre d’états n’a aucune importance!

Interprétation

P> Deux mémoires: ruban (non bornée); états (bornée)
> Compromis: transfert d’une quantité bornée de mémoire entre ruban et états
> Si besoin, aucun souci a utiliser beaucoup d’états et beaucoup de symboles!

Contents

2. Mémoire bornée ou non bornée ?

Ruban semi-borné

Tout langage L(M) reconnu par une machine de Turing M peut étre reconnu par une
machine M’ dont le ruban est borné a gauche: M’ n’utilise que des cases du ruban
situées a droite de sa case de départ.

Idée de la preuve

> Initialement, décaler w pour libérer une case a gauche et écrire # dans cette case
» Quand on lit #, recommencer 'opération de décalage
> Les autres transitions sont gardées telles qu’elles

0 1 0 0 1

0 1 0 0 1

Ruban borné

Théoréme

Soit k € N et M une machine de Turing qui, sur toute entrée w, utilise < k cases de son
ruban. Alors L(M) est régulier (reconnaissable par un automate fini)

Preuve

—T/C:(Q(Z/7°IS> Quxc :42::3
. #Lw&h“r‘k% = #Q x Sk x L
Oun crie w~ o:J‘oM«L £\'.~(746
- ;L\—S = ccw&—lswwxx'w H V/C

5.0 ot
- () S (3t w;{djfﬂ, 9

Bilan sur la mémoire bornée

Mémoire nécessaire
> Mémoire bornée insuffisante : automates finis

> La forme de la mémoire non bornée n’a pas d’importance
» autre exemple: ruban bidimensionnel ou multidimensionnel

Et les automates a pile ?

> Rappel: automate avec une pile...
> Moins puissant que les machines de Turing: par ex. reconnaitre a"b"c"
> Mais avec deux piles: pareil qu’'une machine de Turing

|
W N> Q

Contents

3. Machines a plusieurs rubans

Exemple: calcul du miroir

« = aoubou #|

— \ 33,4
nt b

#,D,(— k%,

Calcul du miroir a 2 rubans

—

(—

2] ®

Définition d’une machine a k rubans
Définition
Une machine de Turing 'a k rubans est un quadruplet M = (Q, X, go,0) ou
Q est un ensemble fini d’états
> est Palphabet contenant le blanc [J
qo € Qest I’état initial
0 :QxTK 5 Qx TKx {—, 1 Kest la table de transition

Remarque

> Méme définition, sauf pour d qui gére les k rubans a la fois
> Mémes régles de fonctionnement (adaptées)
> Configuration initiale:

» Mot w sur le 1" ruban, autres rubans vides

» Fonction a t entrées: entrées sur les rubans 1a t

» Calcul de fonction : choix du ou des rubans de sortie

Equivalence des deux modeéles
Théoreme

Une machine de Turing M(K) a k rubans peut étre simulée par une machine de Turing
classique M :

» si M) reconnait un langage L, on peut trouver M t.q. L = L(M);
> si M) calcule une fonction f, on peut trouver M t.q. f(w) = fas(w) pour tout w

Idée de la preuve

» Encodage de k rubans sur un seul
> Nouveaux symboles X pour chaque x € ©
» Simulation d’une transition:
> Parcourir le ruban et retenir les lettres lues
> Re-parcourir le ruban pour appliquer la transition

ex.: a la suite, séparés par #
position des tétes de lecture

nom des états

fex

Idée de la preuve: un dessin simplifié (!) ceT U U

~
~
=<
~
S
~
~
(S
x<
~
~

Bilan sur les machines a k rubans

Vers une preuve compléte (cas k = 2)
> Définir exactement la machine M :
> Nouvel alphabet: X UX U {#}
> Etats: pour ¢ € Q, xi, X2 € L = q, Gx,» q,((}?,q, s ,((]6,),(2 + états pour les décalages
> Transitions: chaque transition donne lieu & O(#X) transitions

> Preuve (trés) technique mais idée générale assez simple
> cas de k rubans similaire, mais encore plus technique!

MORALE

» Les machines a 1, 2, ou 1000 rubans sont équivalentes
» On peut choisir le modéle qui nous arrange
» pour décrire une machine, on peut s’autoriser plusieurs rubans
> pour raisonner abstraitement sur une machine, on peut supposer qu’elle n’en a qu’un

Contents

4. Machines non déterministes

Machine non déterministe
Définition
» Pour chaque état g € Qet lettre x € ¥, §(q, x) est un ensemble de triplets (¢, y, <)
» A chaque étape de calcul, la machine choisit de maniére non-déterministe un triplet
» Une machine de Turing non déterministe A reconnait un langage L si

> Yw € L, il existe des choix tels que NV termine dans I’état « oui »
» Vw ¢ L, aucun choix ne permet 4 N de terminer dans |’état « oui »

Théoréeme

Tout langage reconnu par une machine de Turing non déterministe A/ peut étre reconnu
par une machine de Turing classique D (déterministe)

Idée de la preuve

> Simuler toutes les exécutions possibles tous les choix possibles

N

(B

N RN

Crpio ¢, G Caee

Lew T t o

Machine non déterministe
Définition
» Pour chaque état g € Qet lettre x € ¥, §(q, x) est un ensemble de triplets (¢, y, <)
» A chaque étape de calcul, la machine choisit de maniére non-déterministe un triplet
» Une machine de Turing non déterministe A reconnait un langage L si

> Yw € L, il existe des choix tels que NV termine dans I’état « oui »
» Vw ¢ L, aucun choix ne permet 4 N de terminer dans |’état « oui »

Théoréeme

Tout langage reconnu par une machine de Turing non déterministe A/ peut étre reconnu
par une machine de Turing classique D (déterministe)

Idée de la preuve

> Simuler toutes les exécutions possibles
» Machine D a trois rubans:
1. Lecture seule: w, jamais modifié

2. Chemin vers le nceud courant de I’arbre
3. Ruban de N/

tous les choix possibles

incrément en base b
copie de w puis simulation

Conclusion

> Les machines de Turing sont un modéle de calcul trés robuste :
> les détails ne changent rien au modeéle...
> ... tant qu’on garde les caractéristiques importantes

Ce qui est important

» Avoir une mémoire non bornée mémoire bornée = automate fini
> Pouvoir I’exploiter complétement ex. des automates a pile

Ce qui ne change rien

> L’alphabet utilisé (> 2 symboles) > Les opérations élémentaires exactes

» Le nombre d’états > Déplacement de la téte

» La forme de la mémoire non bornée > Nombre de symboles lus/écrits
» Uni- ou multidimensionnelle P Séparation écriture / déplacement
> Bornée 3 une extrémité ou non > Les conditions d’arrét de la machine
» Un ou plusieurs rubans > Etat particulier

> Absence de transition possible

	Taille de l’alphabet
	Mémoire bornée ou non bornée?
	Machines à plusieurs rubans
	Machines non déterministes

