Bilan du cours

Bruno Grenet

Université Grenoble Alpes – IM²AG L3 Informatique UE Modèles de calcul – Machines de Turing

Formalisation des algorithmes

Il existe une définition formelle de la notion d'algorithme

Machine de Turing

- Un exemple de formalisation possible
- Nombreuses variantes équivalentes
- Modèle théorique utile pour des preuves, pas pour l'informatique en pratique

Nombreux modèles équivalents

- $ightharpoonup \lambda$ -calcul: modèle proche de la programmation fonctionnelle
- Machine RAM: modèle proche de la programmation impérative
- ▶ Langage de programmation \simeq formalisation
- ► Modèles *exotiques* (automates cellulaires, calcul par ADN, ...): notion de calcul très fondamentale

Thèse de Church-Turing

On a trouvé la bonne formalisation des algorithmes

Justification

- Aucun contre-exemple n'a été trouvé
- Modèles extrêmement divers tous équivalents
- Semble correspondre à l'expérience pratique (ordinateurs)

Nature de la thèse

- Par définition non démontrable
- ightharpoonup Hypothèse sur monde physique \simeq loi de la physique

Caractéristiques du calcul

Aspects nécessaires ou non pour calculer

Modèles variés et points communs

- Mémoire non bornée (et exploitable)
- Localité: à chaque instant, modifications bornées
- Temps fini

Exemple des machines RAM

Suffisant et équivalent : JUMP, GOTO ou WHILE

ou appels récursifs

- ► Non suffisant: FOR, REPEAT OU LOOP
- ▶ Remarque: IF ... THEN ... ELSE ... \rightarrow simulable

Incalculabilité

Les algorithmes ne peuvent pas tout calculer car il y a plus de fonctions que d'algorithmes

Algorithmes: dénombrable

- Représentation d'un algorithme \rightsquigarrow mot (fini) sur $\{0,1\}$
 - quelque soit le modèle!
- Nombre de mots finis : dénombrable = bijection avec N

Fonctions: indénombrable

- ▶ Spécification d'une fonction $f: \{0,1\}^* \rightarrow \{0,1\} \rightsquigarrow \text{mot infini sur } \{0,1\}$
- ▶ Preuve par diagonalisation: pas de bijection avec N

Des problèmes indécidables

Les propriétés de la fonction calculée par un algorithme sont indécidables

Théorème de l'arrêt

- ► Il n'existe pas d'algorithme H qui, étant donné (le code de) A et x, détermine si $A(x) \downarrow$
- ▶ Preuve par contradiction : si H, existe, on construit $D(\langle A \rangle)$:
 - ▶ si $H(\langle A, A \rangle) = 1$: boucle infinie; sinon: renvoyer 1 Alors $D(\langle D \rangle) \downarrow \iff H(\langle D, D \rangle) = 0 \iff D(\langle D \rangle) \uparrow$

Théorème de Rice

- ightharpoonup Propriété satisfaite par une fonction f: sous-ensemble (non trivial) P des fonctions
- Théorème de Rice : étant donné (le code de) A, impossible de déterminer si $A(\cdot) \in P$
 - ▶ $P_x = \{f : f(x) \downarrow\}$ → théorème de l'arrêt
 - ▶ $P_0 = \{f : f(z) = 0 \text{ pour au moins un } z\}$
 - $P_{\text{CARR\'e}} = \{ f : f(z) = z^2 \text{ pour tout } z \}$

Autres résultats d'incalculabilité

L'incalculabilité peut se trouver dans tous les domaines

Pavages et domino

- Peut-on paver le plan avec ces tuiles :

Autres problèmes

- ightharpoonup Étant donné $P \in \mathbb{Z}[x_1, \ldots, x_k]$, existe-t-il $n_1, \ldots, n_k \in \mathbb{N}$ tels que $P(n_1, \ldots, n_k) = 0$?
- Etant donné une fonction f définie par une expression mathématique, est-ce que f(x) = 0 pour tout x?
- Qui va gagner la partie de Magic: The Gathering?
- Étant donné une grammaire hors-contexte, est-elle ambigüe?