7. Fonctions récursives primitives

Bruno Grenet

Université Grenoble Alpes – IM²AG
L3 Informatique
UE Modèles de calcul – Machines de Turing

Introduction

Les fonctions récursives primitives

- Une tentative de formalisation des algorithmes
- ightharpoonup Début du $xx^{\text{ème}}$, avant les machines de Turing, λ -calcul, fonctions μ -récursives
- ► Formalisation insuffisante : certaines fonctions intuitivement calculables ne sont pas récursives primitives

Intérêt moderne

- Correspond à un langage avec des boucles for mais sans while
 - on ne peut pas tout programmer avec seulement des boucles for
- Une fonction récursive primitive ne peut pas être Turing-complète

Plan de ce cours

- 1. Description du langage Loop ightarrow fonctions récursives primitives
- 2. Description de la fonction d'Ackermann-Péter
- 3. La fonction d'Ackermann-Péter n'est pas récursive primitive

Table des matières

1. Le langage LOOP

2. La fonction d'Ackermann-Péter

3. Les limites du langage LOOP

Table des matières

1. Le langage LOOP

2. La fonction d'Ackermann-Péter

3. Les limites du langage Loop

Description du langage LOOP

A. M. Meyer & D. M. Ritchie (1967)

Instructions

Variables x_0, x_1, \dots contenant des entiers

- $\rightarrow x_i \leftarrow 0$
- $ightharpoonup x_i \leftarrow x_i$
- \triangleright $x_i \leftarrow x_i + 1$
- LOOP x_i :

P : suite d'instructions

Utilisation du langage

- ► Entrées dans $x_1, x_2, ...$; sortie dans x_0
- Variables initialisées à 0 (sauf les entrées)
- LOOP: répète x_i fois les instructions P
 - ▶ valeur x_i fixée avant l'entrée dans la boucle
 - ▶ on peut supposer que $x_i \notin P$
- ightarrow Fonctions de \mathbb{N}^k dans \mathbb{N}

et autre via codage

Exemples

Addition

Entrées: $x_1 = a$

 $x_2 = b$

Sortie: $x_0 = a + b$

Multiplication

Entrées: $x_1 = a$

 $x_2 = b$

Sortie: $x_0 = a \times b$

Décrément

Entrée: $x_1 = a$

Sortie: $x_0 = a - 1 = = m$

Instructions avancées

LOOP est minimaliste mais on peut programmer les instructions standard

Arithmétique

$$x_i \leftarrow x_i + x_j$$
1. LOOP x_i :

2.
$$x_i \leftarrow x_i + 1$$

$$ightharpoonup x_i \leftarrow x_i + n \text{ où } n \in \mathbb{N}$$

1.
$$x_i \leftarrow x_i + 1$$

$$2. x_i \leftarrow x_i + 1$$

$$n. x_i \leftarrow x_i + 1$$

...

Test d'inégalité

$$x_i \leftarrow \begin{cases} 1 & \text{si } x_j < x_k \\ 0 & \text{sinon} \end{cases}$$

1.
$$x_i \leftarrow 0$$

2.
$$x_{k'} \leftarrow x_k$$

3. LOOP
$$x_j$$
:

4.
$$x_{k'} \leftarrow x_{k'} \div 1$$

5. LOOP
$$x_{k'}$$
:

6.
$$x_i \leftarrow 1$$

7.
$$x_{k'} \leftarrow 0$$

Test d'égalité

$$x_i \leftarrow \begin{cases} 1 & \text{si } x_j = x_k \\ 0 & \text{sinon} \end{cases}$$

1.
$$x_i \leftarrow 1$$

$$2. x_t \leftarrow (x_j < x_k)$$

3. LOOP
$$x_t$$
:

4.
$$x_i \leftarrow 0$$

$$5. x_t \leftarrow (x_k < x_j)$$

6. LOOP
$$x_t$$
:

7.
$$x_i \leftarrow 0$$

8.
$$x_t \leftarrow 0$$

Structures de contrôle

Boucle for

FOR $x_i = 1$ to $n: P_{(x_i)}$

- 1. $x_b \leftarrow n$
- 2. $x_i \leftarrow 1$
- 3. LOOP x_b :
- 4. $P_{(x_i)}$
- 5. $x_i \leftarrow x_i + 1$
- 6. $x_b \leftarrow 0$
- 7. $x_i \leftarrow 0$

Branchement conditionnel

IF $x_i \neq 0$ then P else Q

- 1. $x_p \leftarrow 0$
- 2. x_q ← 1
- 3. LOOP x_i :
- 4. $x_p \leftarrow 1$
- 5. $x_q \leftarrow 0$
- 6. LOOP x_p :
- **7.** *P*
- 8. LOOP x_q :
- 9. *Q*
- 10. $x_p \leftarrow 0$
- 11. $x_q \leftarrow 0$

Des programmes Loop (un peu plus) évolués

Nombres de Fibonacci Division euclidienne

$$F_{n} = \begin{cases} 0 & \text{si } n = 0 & x_{i} \leftarrow x_{j} \mod x_{k} \\ 1 & \text{si } n = 1 \\ F_{n-2} + F_{n-1} & \text{si } n \geq 2 \end{cases}$$

$$\begin{array}{c} 1. & x_{b} \leftarrow 1 \\ 2. & x_{t} \leftarrow x_{j} \end{array}$$

$$x_i \leftarrow x_j \mod x_k$$

- 3. LOOP X_i :
- 4. IF $x_b \neq 0$:
- 5. IF $x_t < x_k$:
- 6. $x_i \leftarrow x_t$
- 7. $x_b \leftarrow 0$
- 8. ELSE:
- 9. $x_t \leftarrow x_t x_k$
- 10. $x_t \leftarrow 0$

Primalité

$$x_i \leftarrow \begin{cases} 1 & \text{si } x_j \text{ est premier} \\ 0 & \text{sinon} \end{cases}$$

Bilan

Langage Loop

- ► Langage minimaliste
- Constructions possibles pour des instructions de haut niveau
- ▶ Branchements conditionnels et boucle *for*

Exemples

- lackbox On arrive à programmer beaucoup de fonctions de $\mathbb{N}^k o \mathbb{N}$
- Fonctions $\Sigma^* \to \Sigma^*$: nécessite un codage
 - aucune difficulté théorique
 - aucun intérêt pratique...

bijection $\mathbb{N} \leftrightarrow \Sigma^*$

- Le langage LOOP permet-il de tout calculer?
- Peut-on faire des boucles while?

Table des matières

1. Le langage Looi

2. La fonction d'Ackermann-Péter

3. Les limites du langage Loof

Les hyperopérations

Remarque de départ

```
a + b: b itérations de l'opération « +1 » à partir de a = a + 0
a \times b: b itérations de l'opération « +a » à partir de 0 = a \times 0
   a^b: b itérations de l'opération « \times a » à partir de 1 = a^0
```

Et si on continuait?

Hyperopérations

- $\vdash H_0(a,b) = 1+b$

Goodstein (1947)

$$\begin{array}{l} h_1(a,b) = 1+b \\ h_1(a,b) = a+b \\ h_2(a,b) = a \times b \\ h_3(a,b) = a^b \\ h_4(a,b) = a \times (a^{b-1}) \\ h_5(a,b) = a^b \\ h_7(a,b) = a \times (a^{b-1}) \\ h_8(a,b) = a^b \\ h_8(a,b) =$$

Notation et croissance

Puissances itérées

Knuth (1976)

$$a \uparrow^0 b = H_2(a, b) = a \times b$$

 $a \uparrow^1 b = H_3(a, b) = a^b = a \uparrow b$
 $a \uparrow^n b = H_{n+2}(a, b)$

Croissance: $2 \uparrow^n b$

$n \setminus b$	1	2	3	4	5	6
1	2	4	8	16	32	64
2	2	4	16	65536	2 ⁶⁵⁵³⁶	2 ²⁶⁵⁵³⁶
3	2	4	65536	$2^2 \cdot \cdot \cdot ^2 $ $_{65536}$	$\left\{ \frac{1}{2^2} \cdot \cdot \cdot \right\}_{2^2} \cdot \cdot \cdot \left\{ \frac{1}{65536} \right\}_{65536}$	$2^2 \cdot \cdot \cdot ^2 $ $2^2 \cdot \cdot \cdot ^2 $ $2^2 \cdot \cdot \cdot ^2 $ $2^3 \cdot \cdot \cdot ^2 $ $2^3 \cdot \cdot \cdot ^2 $
4	2	4	$2^2 \cdot \cdot \cdot ^2 $ $\left. \left. \right. \right\} 65536$			

Fonction d'Ackermann

Définition

Ackermann (1928)

$$\varphi(m,n,p) = \begin{cases} m+n & \text{si } p=0\\ 0 & \text{si } n=0 \text{ et } p=1\\ 1 & \text{si } n=0 \text{ et } p=2\\ m & \text{si } n=0 \text{ et } p>2\\ \varphi(m,\varphi(m,n-1,p),p-1) & \text{sinon} \end{cases}$$

Remarque

- $\varphi(m, n, 3) = H_4(m, n + 1) = m \uparrow^2 (n + 1)$ $\varphi(m, n, p) \simeq H_{p+1}(m, n + 1) = m \uparrow^{p-1} (n + 1)$

Fonction d'Ackermann-Péter(-Robinson)

Définition

Péter (1935), Robinson (1948)

$$A(m,n) = \begin{cases} n+1 & \text{si } m = 0 \\ A(m-1,1) & \text{si } n = 0 \\ A(m-1,A(m,n-1)) & \text{sinon} \end{cases}$$

Remarque

$$A(m, n) = H_m(2, n+3) - 3 \quad \text{pour } m > 0$$
$$= 2 \uparrow^{m-2} (n+3) + 3$$

Dans la suite, on utilise A mais ça reviendrait au même avec les autres fonctions

Calcul de la fonction A(m, n)

Algorithme récursif

A(m, n):

- 1. Si m = 0: renvoyer n + 1
- 2. Si n = 0: renvoyer A(m 1, 1)
- 3. Renvoyer A(m-1, A(m, n-1))

Terminaison

Appels récursifs sur des couples (m', n') où

- ightharpoonup m' < m, ou
- > m' = m et n' < n

Version itérative?

- ightharpoonup Utilisation d'une pile d'appels ightharpoonup boulot du compilateur
- Boucle while: « tant que la pile d'appels est non vide: ... »
- Possible et pénible

À m fixé

- Pour tout m, il existe un programme LOOP pour calculer $A(m, \cdot)$
 - ▶ Utilise $\simeq m$ Loops imbriquées
- \triangleright Ça n'implique pas qu'il existe un programme LOOP pour calculer $A(\cdot, \cdot)$
 - On ne peut pas avoir un nombre variables de LOOPS

Propriétés de la fonction d'Ackermann-Péter

Lemme

- A(1, n) = n + 2
- A(2, n) = 2n + 3
- ▶ $n+1 \le A(m,n) < A(m,n+1) \le A(m+1,n)$ pour tout m, n

Propriétés de la fonction d'Ackermann-Péter

Lemme

- A(1, n) = n + 2
- A(2, n) = 2n + 3
- ▶ $n+1 \le A(m,n) < A(m,n+1) \le A(m+1,n)$ pour tout m, n

Théorème

- $ightharpoonup A(m, A(m, n)) \le A(m+1, n)$ pour tout m, n
- ► $A(m_1, A(m_2, n-1)) \le A(m_2, n)$ pour $m_1 < m_2$

Bilan

Fonctions de type Ackermann

- ightharpoonup Toutes des variantes de la fonction φ d'Ackermann
- ▶ Objectifs: qu'elle croissent aussi vite que possible
- ► Algorithmes:
 - en théorie : aucune difficulté à les calculer
 - en pratique: absolument impossible de calculer au delà de toutes petites valeurs

Pourquoi les avoir présentées?

- Impossible de les programmer dans le langage LOOP
- ▶ Il *faut* une boucle *while* (ou des appels récursifs, ce qui est équivalent)

À part ça, elles servent à quoi?

- Structure de données Union-Find:
 - Partition de $\{1, ..., n\}$ en sous-ensembles $X_1, ..., X_k$
 - Poperations: UNION $(X_i, X_j) = X_i \cup X_j$; FIND $(x) = X_i$ si $x \in X_i$
- Complexité de chaque opération : $O(n\alpha(n))$ où $\alpha(n) = \min\{k : A(k,k) > n\}$

Table des matières

1. Le langage Looi

2. La fonction d'Ackermann-Péter

3. Les limites du langage LOOP

LOOP et fonctions totales

Théorème (très facile!)

Une fonction $f:\mathbb{N}^k \to \mathbb{N}$ calculée par un programme LOOP est totale

Corollaire

Il existe des algorithmes non programmables avec Loop

Preuve

Croissance des fonctions LOOP

Théorème

Soit P un programme LOOP. Alors il existe un entier j tel que

$$S_P < A(j,S)$$

οù

- ► *S* est la somme des variables en entrée
- \triangleright S_P est la somme des variables en sortie
- \blacktriangleright $A(\cdot, \cdot)$ est la fonction d'Ackermann-Péter

Remarques

- ▶ j ne dépend que de P, pas de S
 - ▶ j est \simeq le nombre de boucles imbriquées
- ightharpoonup Ce qui nous intéresse est la croissance des $x_i
 ightarrow$ la somme est un *résumé*

Preuve du théorème

Conséquence

Corollaire

Il n'existe pas de programme LOOP pour calculer A(m, n)

Preuve

Conclusion

Programmes Loop

- Programmes itératifs, sans boucle while
- ▶ Permet de faire tout ce qu'on sait faire avec des for et if ... then ... else
- Programmes qui terminent toujours

Les fonctions calculées par les programmes LOOP sont dites récursives primitives

La boucle while est nécessaire

- Les fonctions récursives primitives ne capturent pas la notion d'algorithme
 - besoin des fonctions partielles
 - exemple de la fonction d'Ackermann-Péter : croissance trop rapide
- ▶ Il suffit de rajouter une boucle *while* pour obtenir un modèle Turing-complet
 - Langage WHILE
 - Langage сото