2. Variantes des machines de Turing

Bruno Grenet

Université Grenoble Alpes – IM²AG
L3 Informatique
UE Modèles de calcul – Machines de Turing

Introduction

Rappels

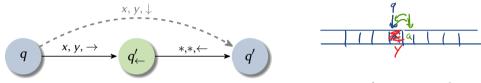
- Une machine de turing est un quadruplet $\mathcal{M} = (Q, \Sigma, q_0, \delta)$ où
 - Q est un ensemble fini d'états de taille quelconque
 - \triangleright Σ est *n'importe quel* alphabet fini, mais doit contenir \square
 - ightharpoonup δ est une *fonction partielle*: δ(q, x) peut être indéfini
- Ruban unidimensionnel, non borné ni vers la gauche ni vers la droite

- Est-ce que ces choix dans la définition sont importants?
- Qu'est-ce qui compte vraiment ? qu'est-ce qu'on peut modifier ?
- Y a-t-il d'autres possibilités pour définir une machine?

Premières remarques

Déplacements

- À chaque étape, la tête doit aller à gauche ou à droite
- ▶ On peut rajouter l'option « rester sur place » (↓)
- ▶ Définition équivalente car on peut simuler « rester sur place » :



* = n'importe quel symbole

On peut aussi séparer les instructions en écriture et déplacement

Fonction partielle?

- On peut rajouter un état « arrêt »
- Pour chaque état q et chaque symbole x, $\delta(q, x)$ est défini
- La machine s'arrête dès qu'elle atteint l'état « arrêt »

1. Taille de l'alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

1. Taille de l'alphabet

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

Encodage des données

Exemples de programmes en C

- Manipulation de floats (32 bits) ou doubles (64 bits)
- ► Manipulation d'ints, unsigned int, longs, ...
- Opérations sur des octets
- Opérations bit-à-bit
- **...**
- → on ne manipule pas forcément directement les bits mais on pourrait!

Et sur une machine de Turing?

- Définition générale : alphabet Σ quelconque
- Besoin d'un symbole spécial

 car ruban non borné
- On peut *encoder* n'importe quel alphabet en binaire
 - un encodage $\langle \cdot \rangle : \Sigma \to \{0,1\}^*$ est une fonction injective: $\langle u \rangle = \langle v \rangle \iff u = v$

Restriction à un alphabet binaire

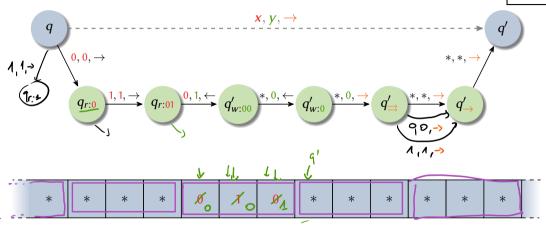
Théorème

```
Soit \mathcal{M}=(Q,\Sigma,q_0,\delta) une machine de Turing. Il existe une machine \mathcal{M}'=(Q',\{0,1,\square\},q'_0,\delta') et un encodage\ \langle\cdot\rangle:\Sigma\setminus\{\square\}\to\{0,1\}^* tels que (reconn.) w\in L(\mathcal{M}) si et seulement si \langle w\rangle\in L(\mathcal{M}') (calcul) \mathcal{M}'(\langle w\rangle)\uparrow si \mathcal{M}(w)\uparrow, sinon \langle f_{\mathcal{M}}(w)\rangle=f_{\mathcal{M}'}(\langle w\rangle)
```

Idée de la preuve

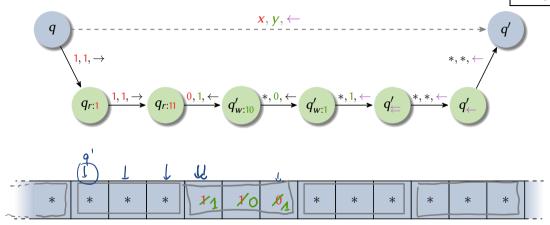
- ▶ Alphabet Σ : ensemble fini \rightarrow numérotation $x_0, x_1, ..., x_k = \square$
- ► Encodage $\langle x_i \rangle$ = BIN $_\ell$ (i): écriture en base de i en base 2 sur $\ell = \lceil \log k \rceil$ bits
- ► Simuler une transition :
 - ightharpoonup Lire ℓ bits à la suite
 - ightharpoonup Lire la transition dans la table de ${\cal M}$
 - \triangleright Écrire ℓ bits à la suite

Idée de la preuve : 1er dessin



8/25

Idée de la preuve : 2ème dessin



Bilan sur la taille d'alphabet

Résumé

- ► Toute machine de Turing peut être *simulée* par une machine d'alphabet $\{0, 1, \square\}$
- ▶ On peut même se restreindre à $\{1, \square\}$
- ▶ Remarque: cela se fait au prix d'une augmentation du nombre d'états

Inversement

- ▶ On peut *grouper* ℓ cases ensemble
 - Nouvel alphabet Σ^{ℓ}
 - lacktriangle Il suffit d'adapter la table de transition pour traiter ℓ symboles d'un coup

MORALE

- On peut choisir la taille d'alphabet qui nous arrange
 - pour décrire une machine, on peut utiliser beaucoup de symboles
 - ightharpoonup pour raisonner abstraitement sur une machine, on peut supposer $\Sigma = \{0,1,\square\}$
- ightarrow la taille d'alphabet n'a aucune importance!

Et le nombre d'états?

9 ×.11 => 0

Diminuer le nombre d'états

- ▶ Ajout de symboles du type $x^q \rightarrow$ état et position de la tête
- Nombre fixé d'états pour simuler une transition
- \rightarrow Toute machine de Turing peut être $\emph{simul\'ee}$ par un machine ayant (par exemple) 5 états

MORALE

- ► On peut choisir le nombre d'états
 - en utiliser beaucoup si ça nous arrange
 - supposer qu'elle en a peu si c'est plus simple
- \rightarrow le nombre d'états n'a aucune importance!

Interprétation

- ► Deux mémoires : ruban (non bornée) ; états (bornée)
- Compromis: transfert d'une quantité bornée de mémoire entre ruban et états
- ► Si besoin, aucun souci à utiliser beaucoup d'états **et** beaucoup de symboles!

1. Taille de l'alphabe

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

Ruban semi-borné

Théorème

Tout langage $L(\mathcal{M})$ reconnu par une machine de Turing \mathcal{M} peut être reconnu par une machine \mathcal{M}' dont le ruban est *borné à gauche*: \mathcal{M}' n'utilise que des cases du ruban situées à droite de sa case de départ.

Idée de la preuve

- ▶ Initialement, *décaler w* pour libérer une case à gauche et écrire # dans cette case
- Quand on lit #, recommencer l'opération de décalage
- Les autres transitions sont gardées telles qu'elles

0	1	0	0	1						
#	0	1	0	0	1					
#		0	1	0	0	1				

Ruban borné

Théorème

Soit $k \in \mathbb{N}$ et \mathcal{M} une machine de Turing qui, sur toute entrée w, utilise $\leq k$ cases de son ruban. Alors $L(\mathcal{M})$ est régulier (reconnaissable par un automate fini)

Preuve

Soit
$$M = (Q, Z, q_{0}, S)$$
 avec $\# Z = S$

Configuration: (q, ω, i) on $q \in Q$, $\omega \in Z \not= k$, $i \in \{-1, \dots, k\}$

Ly nb fini de configurations $\not= \# Q \times S^k \times (k+2)$

Automato fini: _ un stat pour chaque on fig. (q, ω, i)

- transition $(q, \omega, i) \xrightarrow{\mathcal{X}} (q', \omega', i')$
 $\stackrel{\cdot}{\otimes} \{q_{1}\omega_{1}i\} \vdash (q'_{1}\omega'_{1}i')$
 $\stackrel{\cdot}{\otimes} \{q_{1}\omega_{1}i\} \vdash (q'_{1}\omega'_{1}i')$

Bilan sur la mémoire bornée

Mémoire nécessaire

- Mémoire bornée insuffisante : automates finis
- La forme de la mémoire non bornée n'a pas d'importance
 - ▶ autre exemple : ruban bidimensionnel ou multidimensionnel

Et les automates à pile?

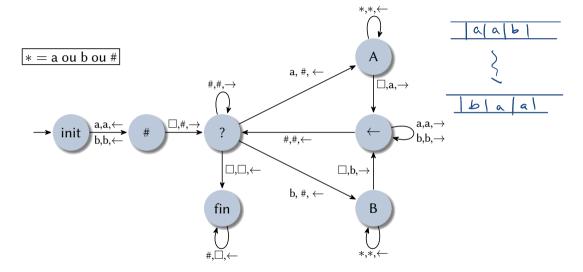
- Rappel: automate avec une pile...
- Moins puissant que les machines de Turing: par ex. reconnaître $a^n b^n c^n$
- Mais avec deux piles: pareil qu'une machine de Turing

1. Taille de l'alphabet

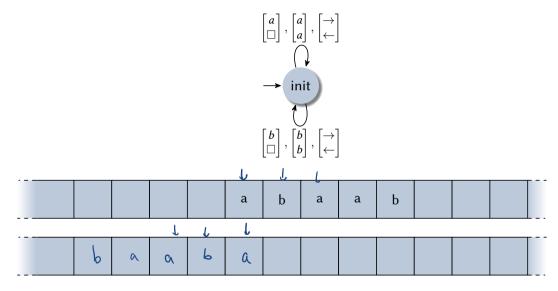
2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

Exemple: calcul du miroir



Calcul du miroir à 2 rubans



Définition d'une machine à *k* rubans

Définition

Une machine de Turing \grave{a} k rubans est un quadruplet $\mathcal{M}=(Q,\Sigma,q_0,\delta)$ où

- Q est un ensemble fini d'états
- ∑ est l'*alphabet* contenant le blanc □
- $q_0 \in Q$ est <u>l</u>'état initial
- $\delta: Q \times \Sigma^{k} \to Q \times \Sigma^{k} \times \{\to, \leftarrow\}^{k}$ est la table de transition

Remarque

- Même définition, sauf pour δ qui gère les k rubans à la fois
- Mêmes règles de fonctionnement (adaptées)
- Configuration initiale:
 - Mot w sur le 1er ruban, autres rubans vides
 - Fonction à t entrées : entrées sur les rubans 1 à t
- Calcul de fonction: choix du ou des rubans de sortie

Équivalence des deux modèles

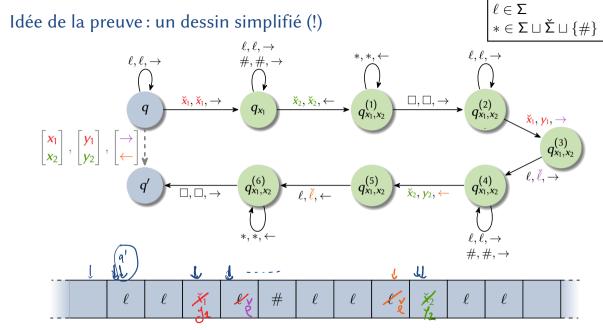
Théorème

Une machine de Turing $\mathcal{M}^{(k)}$ à k rubans peut être simul'ee par une machine de Turing $classique \mathcal{M}$:

- ▶ si $\mathcal{M}^{(k)}$ reconnaît un langage L, on peut trouver \mathcal{M} t.q. $L = L(\mathcal{M})$;
- ightharpoonup si $\mathcal{M}^{(k)}$ calcule une fonction f, on peut trouver \mathcal{M} t.q. $f(w) = f_{\mathcal{M}}(w)$ pour tout w

Idée de la preuve (cas k = 2)

- Contenus des 2 rubans à la suite, avec un nouveau symbole # pour les séparer
- Nouveaux symboles $(x \rightsquigarrow x \text{ et } \check{x})$: positions des têtes de lecture
- Simuler une transition:
 - Parcourir le ruban et retenir les deux lettres lues
 - Lire la transition dans la table de $\mathcal{M}^{(2)}$
 - Re-parcourir le ruban pour appliquer la transition



Bilan sur les machines à *k* rubans

Preuve complète

- ightharpoonup Définir exactement la machine \mathcal{M} :
 - ▶ Nouvel alphabet : $\Sigma \sqcup \check{\Sigma} \sqcup \{\#\}$
 - ► États: pour $q \in Q$, $x_1, x_2 \in \Sigma \to q$, $q_{x_1}, q_{x_1, x_2}^{(1)}, ..., q_{x_1, x_2}^{(6)}$
 - ► Transitions : chaque transition donne lieu à \simeq 10#Σ transitions
- Preuve (très) technique mais idée générale assez simple
- Quelques détails ignorés
 - besoin de décaler les rubans si on manque de place à cause du #
 - comment lit-on la sortie?
 - cas de *k* rubans

Morale

- Les machines à 1, 2, ou 1000 rubans sont équivalentes
- ► On peut choisir le *modèle* qui nous arrange
 - pour décrire une machine, on peut s'autoriser plusieurs rubans
 - pour raisonner abstraitement sur une machine, on peut supposer qu'elle n'en a qu'un

1. Taille de l'alphabe

2. Mémoire bornée ou non bornée ?

3. Machines à plusieurs rubans

Machine non déterministe

Définition

- Pour chaque état $q \in Q$ et lettre $x \in \Sigma$, $\delta(q, x)$ est un ensemble de triplets (q', y, \leftrightarrow)
- À chaque étape de calcul, la machine choisit de manière non-déterministe un triplet
- ightharpoonup Une machine de Turing non déterministe ${\cal N}$ reconnaît un langage L si
 - $\forall w \in L$, il existe des choix tels que \mathcal{N} termine dans l'état « oui »
 - ightharpoonup orall w
 otin L, aucun choix ne permet à $\mathcal N$ de terminer dans\l'état « oui »

Théorème

Tout langage reconnu par une machine de Turing non déterministe $\mathcal N$ peut être reconnu par une machine de Turing classique $\mathcal D$ (déterministe)

Idée de la preuve

- Les choix de ${\mathcal N}$ forment un arbre, que ${\mathcal D}$ parcourt en largeur avec 3 rubans :
 - Le 1^{er} contient w, jamais modifié
 - Le 2ème contient (le chemin vers) le nœud de l'arbre qu'on est en train de visiter
 - Le $3^{\mathrm{ème}}$ sert à simuler le ruban de $\mathcal N$

Conclusion

- Les machines de Turing sont un modèle de calcul très **robuste**:
 - les détails ne changent rien au modèle...
 - ... tant qu'on garde les caractéristiques importantes

Ce qui est important

- Avoir une mémoire non bornée
- Pouvoir l'exploiter complètement

Ce qui ne change rien

- ► L'alphabet utilisé (≥ 2 symboles)
- Le nombre d'états
- La forme de la mémoire non bornée
 - Uni- ou multidimensionnelle
 - Bornée à une extrémité ou non
 - Un ou plusieurs rubans

mémoire bornée = automate fini ex. des automates à pile

- Les opérations élémentaires exactes
 - Déplacement de la tête
 - Nombre de symboles lus/écrits
 - Séparation écriture / déplacement
- Les conditions d'arrêt de la machine
 - État particulier
 - Absence de transition possible