1. Introduction

Bruno Grenet

Université Grenoble Alpes – IM²AG L3 Informatique UE Modèles de calcul – Machines de Turing

Table des matières

1. Informations générales

2. Introduction

3. Machines de Turing

Table des matières

1. Informations générales

2. Introduction

3. Machines de Turing

Présentation

Nom: Bruno Grenet

Page web: https://membres-ljk.imag.fr/Bruno.Grenet/

Affiliation: Université Grenoble Alpes

UFR IM²AG

Laboratoire Jean Kuntzmann (LJK)

Téléphone: +33 457 421 721

Bureau: Bâtiment IMAG (150 pl. du Torrent); 1er étage; bureau 106

Organisation

Équipe pédagogique

Cours: Bruno Grenet TD G1: Linda Gutsche

TD G2: Thomas Rahab-Lacroix

TD G3: Ernest Foussard TD G4: Bruno Grenet

Contacts: <Prenom>. <Nom>@univ-grenoble-alpes.fr

Planning

Cours: 1 séance par semaine

TD: 1 séance par semaine

pas cette semaine

Communications

► Email + mattermost

Consultez ADE!

Évaluations

EC_{MT}: Évaluation continue (*quick*)

Durée: 1h Coefficient: 0,4

Date: lundi 24 février 9h45 Contenu: uniquement MT

ET: Évaluation terminale

Durée: 2h Coefficient: 1,2

Date: jeudi 17 avril 2025 (?)

Contenu: commun MT et LC

ES: Évaluation supplémentaire

Similaire à l'évaluation terminale

mardi 24 juin 2025 (?)

Note finale

```
Session 1: \max(\text{ET}; \frac{1}{2}(0, 4 \cdot \text{EC}_{\text{MT}} + 0, 4 \cdot \text{EC}_{\text{LC}} + 1, 2 \cdot \text{ET}))
Session 2: \max(\text{ES}; \frac{1}{2}(0, 4 \cdot \text{EC}_{\text{MT}} + 0, 4 \cdot \text{EC}_{\text{LC}} + 1, 2 \cdot \text{ES}))
```

Page du cours

https://membres-ljk.imag.fr/Bruno.Grenet/MCAL-MT.html

Contenu

- ▶ Diapositives de cours, avec annotations
- Sujets de TD
- ► Bibliographie:
 - livres, notes de cours
 - ▶ liens: vidéos, articles de vulgarisation, sites web, ...
- \rightarrow Très utile à consulter!

Table des matières

1. Informations générales

2. Introduction

3. Machines de Turing

De quoi va-t-on parler?

Résumé (personnel) de la vidéo

Origines

► Mécanisation du raisonnement ? Leibniz (xvıı^e siècle)

Entscheidungsproblem: existe-t-il un algorithme pour décider si un énoncé mathématique est correct? Hilbert & Ackermann (1928)

ightharpoonup Années 1930 : intuition de l'absence d'algorithme ightarrow comment la prouver?

Formalisation des algorithmes

Fonctions μ -récursives Herbrand-Gödel (1931-34)

 $ightharpoonup \lambda$ -calcul Kleene-Church (1932-36)

► Machines de Turing (1936)

Trois définitions prouvées équivalentes \rightarrow c'est la « bonne » définition !

Incalculabilité

- Pas d'algorithme pour le problème de la décision, le problème de l'arrêt, ...
- → Résultats négatifs mais une des origines de l'informatique

Objectifs du cours

Machines de Turing

- Étude d'un des modèles de calcul
- (Autre modèle λ -calcul étudié dans l'autre partie du cours)
- Comparaison avec d'autres modèles

Calculabilité

- ▶ Qu'est-ce que veut dire *calculer*?
- Comment démontrer l'inexistence d'algorithme pour un problème donné?
- Liens avec l'informatique de tous les jours?

Avant / après

- ► Automates et Langages (L2); Analyse syntaxique (L3)
 - Automates finis; automates à pile
- Complexité Algorithmique ; Fundamentals of Computer Science (M1 Mosig / INFO)
 - Théorie de la complexité

Plan (approximatif)

1, 2. Machines de Turing et variantes

- Exemples de machines
- Définition (informelle et formelle)
- ▶ Robustesse: les variantes ne changent pas grand chose

3. Thèse de Church-Turing

- Algorithme = Machine de Turing (ou λ -calcul, ou ...)
- Équivalence entre modèles

4, 5, 6. Incalculabilité

- Il existe des fonctions non calculables (diagonalisation)
- Exemples concrets

7. Fonctions primitives récursives

► Et si on interdisait le while?

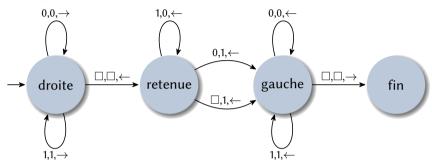
Table des matières

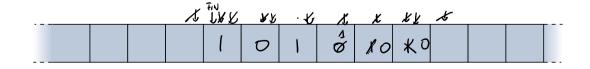
1. Informations générales

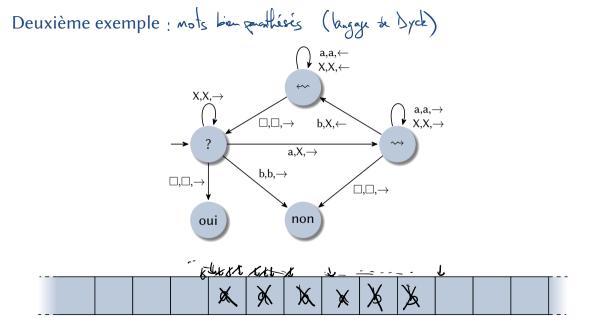
2. Introduction

3. Machines de Turing

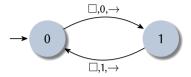
Premier exemple: increment

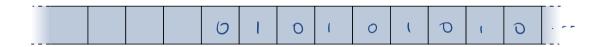




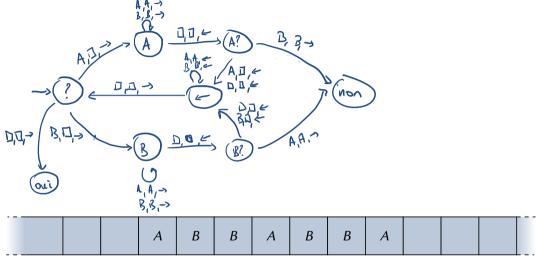


Troisième exemple : éaire ONO ---





Quatrième exemple : reconnaître des palindromes



Description des machines de Turing

Constituants d'une machine de Turing

- ▶ Un ensemble d'états Q, dont un état initial q_0
- \blacktriangleright Une table de transition δ
- ▶ Un *ruban* constitué d'une infinité de *cases*
- Une tête de lecture/écriture

Le ruban

- Chaque case du ruban contient un symbole d'un alphabet Σ
- L'alphabet contient un symbole spécial « blanc » 🗆
- lacktriangle Le ruban ne contient qu'un nombre fini de symboles $eq \Box$

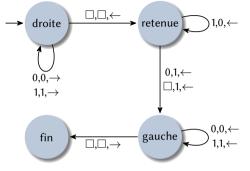
La table de transition

- Pour *certains* couples $(q, x) \in Q \times \Sigma$, $\delta(q, x) = (q', y, \leftrightarrow)$ où
 - ▶ $q, q' \in Q$ sont l'ancien et le nouvel état
 - ightharpoonup x et $y \in \Sigma$ sont les symboles lu et 'ecrit
 - ▶ \leftrightarrow \in $\{\leftarrow$, \rightarrow $\}$ est le déplacement
- ► Sinon, $\delta(q, x)$ est *indéfini*

sommets automate

case vide

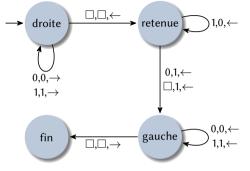
Représentation de la table de transition



	État	Lu	Écrit	Dépl.	Nv. état			
	droite	0	0	\rightarrow	droite			
	droite	1	1	\rightarrow	droite			
	droite			\leftarrow	retenue			
	retenue	1	0	\leftarrow	retenue			
	retenue	0	1	\leftarrow	gauche			
	retenue		1	\leftarrow	gauche			
	gauche	0	0	\leftarrow	gauche			
	gauche	1	1	\leftarrow	gauche			
	gauche			\rightarrow	fin			

- δ : Tableau à cinq colonnes (état, lu, écrit, dépl., nv. état)
- \blacktriangleright δ suffit à représenter \mathcal{M} :
 - Q: liste des états dans la table
 - \triangleright Σ : liste des symboles dans la table
 - $ightharpoonup q_0$: 1^{er} état de la table (par convention)

Représentation de la table de transition



	État	Lu	Écrit	Dépl.	Nv. état			
	droite	0	0	\rightarrow	droite			
		1	1	\rightarrow	droite			
				\leftarrow	retenue			
	retenue	1	0	\leftarrow	retenue			
		0	1	\leftarrow	gauche			
			1	\leftarrow	gauche			
	gauche	0	0	\leftarrow	gauche			
		1	1	\leftarrow	gauche			
				\rightarrow	fin			

- δ : Tableau à cinq colonnes (état, lu, écrit, dépl., nv. état)
- $ightharpoonup \delta$ suffit à représenter ${\cal M}$:
 - Q: liste des états dans la table
 - \triangleright Σ : liste des symboles dans la table
 - $ightharpoonup q_0$: 1^{er} état de la table (par convention)

Fonctionnement d'une machine de Turing

Une étape de calcul

- Machine dans l'état q
- 1. Lecture de la lettre x sur le ruban
- 2. Si $\delta(q,x)$ n'est pas dans la table : arrêt (définitif) de la machine
- 3. Si $\delta(q, x) = (q', y, \leftrightarrow)$:
 - i. la machine passe dans l'état q'
 - ii. la tête écrit y à la place de x
 - iii. la tête est déplacée à gauche (si $\leftrightarrow = \leftarrow$) ou droite (si $\leftrightarrow = \rightarrow$)

Calcul complet

- ightharpoonup Configuration initiale: état q_0 , entrée w sur le ruban, tête sur la 1ère lettre de w
- ► Tant que c'est possible, appliquer une étape de calcul
 - Soit la machine se bloque : calcul terminé

 $\delta(q,x)$ indéfini

- Sinon: la machine boucle
- ightharpoonup Remarque: pas de *sémantique* ightharpoonup reconnaissance de langage, calcul de fonction, . . .

Utilisation d'une machine de Turing

Reconnaissance de langage

- ► Hypothèse : M contient un état spécial « oui »
- ► Langage $L(\mathcal{M})$ reconnu par \mathcal{M} : sur l'entrée w,
 - ▶ si le calcul termine dans l'état « oui » : $w \in L(M)$
 - ▶ sinon (calcul non terminé ou autre état final): $w \notin L(M)$

pas besoin de « non »

Calcul de fonction

- Fonction $f_{\mathcal{M}}$ calculée par \mathcal{M} : sur l'entrée w
 - ightharpoonup si le calcul termine, $f_{\mathcal{M}}(w)$ est le mot inscrit sur le ruban à la fin du calcul
 - ▶ sinon $f_{\mathcal{M}}(w)$ est *indéfini*, noté $f_{\mathcal{M}}(w) \uparrow : \mathcal{M}$ boucle sur w

Remarques

- Autres conventions possibles
 - États d'acceptation et de rejet
 - Prise en compte de l'état final et du contenu final du ruban en même temps
- Définition possible d'énumération (infinie)

Formalisation: machine de Turing

Définition

Une machine de Turing est un quadruplet $\mathcal{M} = (Q, \Sigma, q_0, \delta)$ où

- Q est un ensemble fini d'états
- ∑ est l'*alphabet* contenant le blanc □
- $q_0 \in Q$ est l'état initial
- $\delta: Q \times \Sigma \to Q \times \Sigma \times \{\to, \leftarrow\}$ est la table de transition

Remarques

- Ruban implicite et non borné plutôt qu'infini
- lacktriangle Table de transition : fonction $partielle
 ightarrow \delta(q,x)$ peut être indéfini
- Il existe d'autres formalisations équivalentes

Concept important: configurations

Configuration: état global de la machine à un instant donné

Définition

- Trois informations: état q; mot w sur le ruban; position de la tête sur w
- Formellement : triplet C = (q, w, i) où i = position tête de lecture sur w
 - ► $-1 \le i \le |w|$: la tête peut être sur un \square
 - ightharpoonup graphiquement : « $q: w_{[0]} \cdots \check{w}_{[i]} \cdots w_{[n-1]}$ »

ightharpoonup Configuration initiale $C_0=q_0:\check{w}_{[0]}w_{[1]}\ldots$ où w est l'entrée

Exemples

```
D: 101\check{1}0 état D; mot 10110 sur le ruban; i=3 q: Xa\check{b}b état q; mot Xabb; i=2 0: 01\check{\Box} état 0; mot 01; i=4
```

Suites de configurations

Notations

- $ightharpoonup C \vdash C'$ si on passe de C à C' en une étape de calcul
- $ightharpoonup C \vdash^* C'$ si on passe de C à C' en une ou plusieurs étapes de calcul

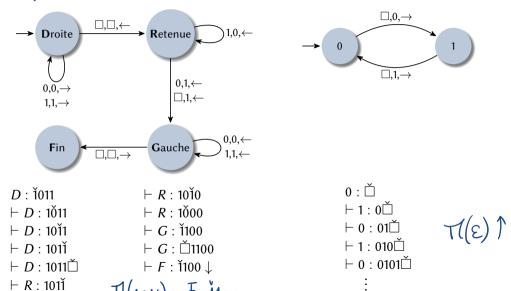
 $ightharpoonup C \downarrow$ si aucune règle de la table de transition ne s'applique à C (calcul terminé)

Calcul d'une machine

- Deux possibilités :
 - ▶ si la machine boucle : suite infinie $C_0 \vdash C_1 \vdash C_2 \vdash \cdots$
 - ▶ sinon: suite finie $C_0 \vdash C_1 \vdash \cdots \vdash C_k \downarrow$
- Résultat du calcul de M sur w :
 - $ightharpoonup \mathcal{M}(w) = C_k \text{ si } C_0 \vdash^* C_k \downarrow$
 - ▶ Notation $\mathcal{M}(w) \uparrow$ si la suite est infinie

configuration finale aucune configuration finale

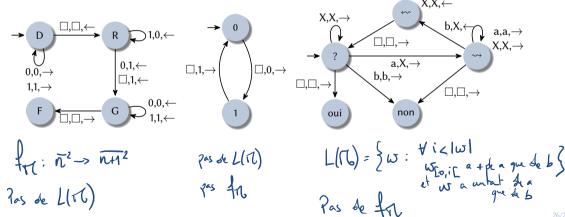
Exemples



Langage et fonction

Définitions

- \blacktriangleright $L(\mathcal{M}) = \{w : \mathcal{M}(w) \text{ existe et son état est « oui »}\}$
- $ightharpoonup f_{\mathcal{M}}: w \mapsto w' \text{ tel } \mathcal{M}(w) \text{ existe et son mot est } w'$



 a,a,\leftarrow

Conclusion

Machine de Turing

- Extension des automates avec un ruban non borné et une table de transition
- Définitions formelles :
 - ► Machine de Turing : $\mathcal{M} = (Q, \Sigma, q_0, \delta)$
 - ► Table de transition : δ = tableau à cinq colonnes $(q, x, q', y, \leftrightarrow)$
 - Configuration: C = (q, w, i) $q: w_{[0]} \cdots \check{w}_{[i]} \cdots w_{[n-1]}$
 - ightharpoonup Calcul: $C_0 \vdash C_1 \vdash C_2 \vdash \cdots$

Utilisation des machines de Turing

- Reconnaissance: $L(\mathcal{M}) = \{ w : \text{sur l'entrée } w, \mathcal{M} \text{ termine dans l'état « oui »} \}$
- ► Calcul: $f_{\mathcal{M}}(w)$ = mot sur le ruban en fin de calcul, ou \uparrow si la machine boucle
- Autre possibilité: énumération infinie

À savoir faire

- Exécuter une machine (simple) sur une entrée
- Décrire le calcul effectué / le langage reconnu par une machine (simple)
- Créer une machine pour un problème simple