Birthday bounds

Classical birthday bound.

Let $y_1, ..., y_q$ be uniformly and independently drawn from a size-N set. Then

$$1 - e^{q(q-1)/2N} \le \Pr\left[\exists i \neq j, y_i = y_j\right] \le \frac{q(q-1)}{2N}.$$

If furthermore $q \le \sqrt{2N}$, the lower bound is $\ge \frac{q(q-1)}{4N}$.

Proof of the upper bound. The probability that two independent elements drawn from a size-N set are equal is at most 1/N. Therefore, using the union bound, $\Pr\left[\exists i \neq j, y_i = y_j\right] \leq \sum_{i \neq j} 1/N = q(q-1)/2N$.

Proof of the lower bound. Let N_i be the event "there is no collision amongst y_1, \ldots, y_i ." We want to lower bound $\Pr\left[\neg N_q\right]$, that is to upper bound $\Pr\left[N_q\right]$. Using the law of total probability, $\Pr\left[N_q\right] = \Pr\left[N_q \middle| N_{q-1}\right] \Pr\left[N_{q-1}\right] + \Pr\left[N_q \middle| \neg N_{q-1}\right] \Pr\left[N_{q-1}\right]$. But $\Pr\left[N_q \middle| N_{q-1}\right] = 0$. Therefore, $\Pr\left[N_q\right] = \Pr\left[N_q \middle| N_{q-1}\right] \Pr\left[N_{q-1}\right]$. Hence, by induction

$$\Pr[N_q] = \Pr[N_1] \cdot \Pr[N_2|N_1] \cdots \Pr[N_q|N_{q-1}].$$

Now, $\Pr[N_1] = 1$ (since there cannot be a collision between one element). And for i > 1, $\Pr[N_i | N_{i-1}]$ is the probability that y_i collides with a y_j , j < i, assuming they are all different. Since y_i is drawn independently of the previous y_j 's, $\Pr[N_i | N_{i-1}] = 1 - (i-1)/N$.

Together, we obtain that $\Pr[N_q] = \prod_{i=1}^{q-1} 1 - i/N$. Since $1 + x \le e^x$ for all x,

$$\Pr[N_q] \le \prod_{i=1}^{q-1} e^{-i/N} = e^{-\frac{1}{N} \sum_{i=1}^{q-1} i} = e^{-q(q-1)/2N}.$$

Hence $\Pr\left[\exists i \neq j, y_i = y_j\right] \geq 1 - e^{-q(q-1)/2N}$. Finally, if $q \leq \sqrt{2N}$, $q(q-1)/2N \leq 1$ and since $e^{-x} \leq 1 - x/2$ for $0 \leq x \leq 1$, the probability is at least q(q-1)/4N.

Variant of the birthday bound.

Let $y_1, ..., y_q, z_1, ..., z_q$ be uniformly and independently drawn from a size-N set. Then

$$1 - e^{-q^2/N} \le \Pr\left[\exists i, j, y_i = z_j\right] \le \frac{q^2}{N}.$$

If furthermore $q \le \sqrt{N}$, the lower bound is $\ge \frac{q^2}{2N}$.

Proof of the upper bound. The probability that two independent elements drawn from a size-N set are equal is at most 1/N. Therefore, using the union bound, $\Pr\left[\exists i, j, y_i = z_j\right] \leq \sum_{i,j} 1/N = q^2/N$.

Proof of the lower bound. Let N_i be the event "for all $j, y_i \neq z_j$. We want to lower bound $\Pr\left[\bigvee_i \neg N_i\right]$, that is to upper bound $\Pr\left[\bigwedge_i N_i\right]$. Assume that we first draw all the values $z_j, 1 \leq j \leq q$. Then N_i is the event" $y_i \notin Z$ " where $Z = \{z_1, \ldots, z_q\}$. Since the y_i 's are drawn independently, the N_i 's are independent events. Therefore, $\Pr\left[\bigwedge_i N_i\right] = \prod_i \Pr\left[N_i\right]$. Now, $N_i = \bigvee_j [y_i = z_j]$. Assume now on the contrary that we first draw y_i , then the z_j 's independently: We see that the events $[y_i = z_j]$ are independent. That is $\Pr\left[N_i\right] = \prod_j \Pr\left[y_i = z_j\right] = (1-1/N)^q$. Now using $1 + x \leq e^x$, $\Pr\left[N_i\right] \leq e^{-q/N}$ and $\Pr\left[\bigwedge_i N_i\right] \leq e^{-q^2/N}$. Therefore, $\Pr\left[\exists i, j, y_i = z_j\right] \geq 1 - e^{-q^2/N}$. If $q \leq \sqrt{N}, q^2/N \leq 1$ and since $e^{-x} \leq 1 - x/2$ for $0 \leq x \leq 1$, the probability is at least $q^2/2N$.