Exercise 1.

We consider the following key exchange protocol.

- 1 Alice samples k_A , $r \leftarrow \{0, 1\}^n$ and sends $s = k_A \oplus r$ to Bob.
- 2 Bob samples $t \leftarrow \{0, 1\}^n$ and sends $u = s \oplus t$ to Alice.
- ³ Alice computes $w = u \oplus r$ and sends w to Bob.
- 4 Bob computes $k_B = w \oplus t$.
- **1.** Prove that Alice and Bob share a common key $k_A = k_B$.
- **2.** Describe the transcript of the protocol.
- **3.** Prove that an adversary that has access to the transcript can compute the common key.

Exercise 2.

Let (G, \times) be a finite cyclic group of order n (that is, |G| = n). Let g be a generator of G and $h \neq g$ another element of G.

- **1.** Prove that $h^n = 1$. Use the discrete logarithm of h.
- **2.** An *inverse* of *h* is an element ℓ such that $h \cdot \ell = \ell \cdot h = 1$.
 - i. Express the discrete logarithm of ℓ with respect to the discrete logarithm of *h*. Deduce the unicity of the inverse.
 - **ii.** Give a formula for ℓ that uses only *h* and *n*.
 - iii. Deduce an algorithm to compute ℓ from *h* and analyze its complexity in terms of the number of multiplications in *G*.
 - iv. Analyze the bit complexity of the algorithm when $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ for some prime number *p*.
- **3.** The group $(\mathbb{Z}/29\mathbb{Z})^{\times}$ is generated by 2.
 - i. What is the order of $(\mathbb{Z}/29\mathbb{Z})^{\times}$. Describe a largest possible subgroup that has prime order.
 - ii. Compute the discrete logarithm (in base 2) of 17 is this group.

Insecure key exchange

Discrete logarithms

Exercise 3.

Random self-reducibility of the DLP

Let *G* be a group of prime order *p*, with generator *g*. We prove that given a algorithm that is able to compute the discrete logarithms of a constant fraction of the elements of *G*, we can build a (Las Vegas randomized) algorithm that computes the discrete logarithms of all the elements of *G* in the same (expected) time.

Let $h = g^t$ for some t, that we want to compute.

- **1.** Let $r \in \{1, ..., p-1\}$. Prove that given the discrete logarithm of h^r , one can compute the discrete logarithm of h.
- **2.** Assume we sample $r \leftarrow \{1, ..., p-1\}$. Prove that for all $x \in G$, $\Pr[h^r = x] = 1/p$. Use discrete logarithms.
- **3.** Let \mathcal{A} be a deterministic algorithm that takes as input an element $h \in G$ and either returns its discrete logarithm, or FAIL. Assume that the number of elements of which \mathcal{A} returns the discrete logarithm is $\geq \alpha p$ for some $\alpha > 0$. Design an efficient Las Vegas algorithm that returns the discrete logarithm of any $h \in G$.