Introduction to cryptology Final Exam

2024-05-03

Instructions

- No documents allowed.
- Except indicated otherwise, answers must be carefully justified to get maximum credit.
- Not all questions are independent, but you may admit a result from a previous question by clearly stating it.
- You may answer in English or French.
- Duration: 2 hours.

Notation & definitions

We recall some notation and definitions.

- $\cdot \parallel \cdot$ denotes bitstring concatenation.

Definition 1 (IND-CPA). We recall briefly and informally that an IND-CPA game is played in two phases. In a training phase, the Adversary has the possibility of sending query messages to the encryption scheme under analysis, and receives their encryption with some (fixed, a priori unknown, uniformly randomly picked) key. In a later challenge phase, the Adversary is tasked with deciding if an encrypted message c is an encryption of m_0 or an encryption of m_1 , where m_0 and m_1 are two messages of its choosing of the same length; it wins the game if it makes a correct guess, and its advantage is |2p - 1|, with p the winning probability.

Definition 2 (PRF advantage). Let $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ be a block cipher over the finite set \mathcal{M} . The *PRF advantage of E* is defined as:

$$\Pr_{A_{\mathbf{q},\mathbf{t}}}^{\mathrm{PRF}}(\mathbf{q},\mathbf{t}) = \max_{A_{\mathbf{q},\mathbf{t}}} \left| \Pr[A_{\mathbf{q},\mathbf{t}}^{\mathbb{O}}() = 1 \mid \mathbb{O} \twoheadleftarrow \mathrm{Funcs}(\mathcal{M})] - \Pr[A_{\mathbf{q},\mathbf{t}}^{\mathbb{O}}() = 1 \mid \mathbb{O} = E(\mathbf{k},\cdot), \mathbf{k} \twoheadleftarrow \mathcal{K}] \right|$$

where $\operatorname{Funcs}(\mathcal{M})$ denotes the set of all functions over the finite set \mathcal{M} , and $A_{q,t}^{\mathbb{O}}$ denotes an algorithm that runs in time t and makes q queries to the oracle \mathbb{O} it is given access to.

Definition 3 (UP security). Let $E : \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ be a block cipher over the finite set \mathcal{M} . Define the game Forge^E as follows:

- The Adversary is an algorithm with oracle access to $\mathbb{O} = E(\mathbf{k}, \cdot)$ for $\mathbf{k} \leftarrow \{0, 1\}^{\kappa}$
- The Adversary wins the game iff. it returns a couple (x, y) s.t.:
 - 1. x was not queried to \mathbb{O}

2.
$$E(k, x) = y$$

The UP security of E is then defined as:

$$\mathbf{A}_{E}^{\mathsf{UP}}(\mathsf{q},\mathsf{t}) = \max_{A_{\mathsf{q},\mathsf{t}}} \Pr[\mathsf{A}_{\mathsf{q},\mathsf{t}}^{\mathbb{O}}() \text{ wins Forge}^{E}]$$

where $A_{q,t}$ runs in time t and makes q queries to its oracle.

Definition 4 (EUF-CMA advantage). Let Sign be a signature algorithm, and Vrfy the corresponding verification algorithm. Define the game Forge^{Sign} as follows:

- The Challenger generates a pair of keys (sk, pk)
- The Adversary is given pk and oracle access to $\mathbb{O} = Sign(sk, \cdot)$
- The Adversary wins the game iff. it returns a pair (\mathfrak{m},σ) s.t.:
 - 1. m was not queried to \mathbb{O}

2.
$$Vrfy_{pk}(\mathfrak{m}, \sigma) = 1$$

The EUF-CMA advantage of Sign is then defined as:

where $A_{q,t}$ runs in time t and makes q queries to its oracle.

Definition 5 (CDH advantage). Let G be a cyclic group of order q and g be a generator of G. Define the CDH^G game as follows:

— The Challenger computes $(g^{\mathfrak{a}},g^{\mathfrak{b}})$ where a "- $\{0,\ldots,q-1\}$ and b "- $\{0,\ldots,q-1\}$

— The Adversary is given (g^a, g^b) and wins iff. it outputs g^{ab}

The CDH advantage in the group G is then defined as

$$\underset{G}{\overset{\text{CDH}}{Ad\boldsymbol{\nu}}}(t) = \max_{A_t} \Pr[A_t() \text{ outputs } g^{ab}]$$

where A_t runs in time t.

Definition 6 (DDH advantage). Let G be a cyclic group of order q and g be a generator of G. Define the DDH^{G} game as follows:

- The Challenger computes (g^a, g^b) where a $\leftarrow \{0, \dots, q-1\}$ and b $\leftarrow \{0, \dots, q-1\}$
- The Challenger draws $x \leftarrow \{0, 1\}$ and computes g^c where $\begin{cases} c \leftarrow \{0, \dots, q-1\} & \text{if } x = 0 \\ c = ab & \text{if } x = 1 \end{cases}$

- The Adversary is given (q^a, q^b, g^c) and outputs a bit y

The *DDH* advantage in the group G is then defined as

$$\begin{array}{l} {}_{\text{DDH}}^{\text{DDH}}\\ {}_{\text{G}}^{\text{d}}\boldsymbol{\nu}(t) = \max_{A_t} \left| \Pr[A_t() \text{ outputs } 1 \mid x = 1] - \Pr[A_t() \text{ outputs } 1 \mid x = 0] \right. \end{array}$$

where A_t runs in time t.

Exercise 1: Short questions

All of those questions are independent and may be answered in any order.

Q.1: Let $H: \mathcal{M} \to \{0,1\}^n$ be a hash function.

- 1. Give the definition of a collision for H.
- 2. Give the definition of a second preimage (problem) for H.

Suppose that for all $x \in M$, the images H(x) are drawn uniformly and independently at random from $\{0,1\}^n$. In the two following questions, we consider a "generic" adversary that initially had no *a priori* knowledge about the outputs of H, and that then computed H on q inputs.

- 3. Without justification, give a non-trivial upper-bound on the probability that the adversary is able to find a collision for H.
- 4. Without justification, give a non-trivial upper-bound on the probability that the adversary is able to solve a second preimage problem for H.

Q.2: A certain version of the TLS protocol authenticates every packet of 384 bits using a MAC that has tags of bitlength 96. For every *session* of the protocol (what is a session is not important here, but in a typical day one expects much more than 2^{40} sessions to be created worldwide), an identifier that is expected to *uniquely* identify the session among all possible sessions (past and future) is taken to be the 96-bit tag of a designated packet that is part of the session.

- 1. Identify a problem in the above process.
- 2. Propose a simple solution to fix it.

Q.3: Let G be a cyclic group of order q, with generator g.

- 1. Define the discrete logarithm problem (DLP^G) in G (the inputs and outputs).
- 2. In the group G, CDH (resp. DDH, resp. DLP) is informally considered hard if any efficient adversary only has a small CDH advantage (resp. DDH advantage, resp. probability of success). What implications are there between CDH hardness, DDH hardness and DLP hardness? Only a brief justification is required.

Exercise 2: No confidentiality from unpredictability

Q.1: Let $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher whose unpredictability is "optimal", in the sense that for $q < 2^n$ and any t, $\mathbf{Adv}_E^{\mathbf{UP}}(q,t) = 1/(2^n - q)$. Further let x||b denote the bitstring of length n+1 formed by the concatenation of $\mathbf{x} \in \{0,1\}^n$ and $\mathbf{b} \in \{0,1\}$; then define $E': \{0,1\}^{\kappa} \times \{0,1\}^{n+1} \to \{0,1\}^{n+1}$ as $E'(\mathbf{k},\mathbf{x}||\mathbf{b}) = E(\mathbf{k},\mathbf{x})||\mathbf{b}$.

- 1. Show that E' is a block cipher, *i.e.*, that for all $k \in \{0,1\}^{\kappa}$, $E'(k, \cdot)$ is a permutation.
- 2. Show that:

$$\underset{E'}{\overset{\mathrm{UP}}{Adv}}(\mathsf{q},\mathsf{t})=1/(2^{\mathfrak{n}}-\mathsf{q})$$

by using a reduction.

3. Show that:

$$\mathop{\mathbf{Adv}}_{E'}^{\operatorname{PRF}}(1,1) \geqslant 1/2$$

by describing and analysing an explicit attack.

Q.2: Let CTR[E'] denote the encryption scheme obtained by applying any instance of the CTR mode¹ to E' from the previous question.

1. Show that:

$$\mathbf{Adv}_{\mathsf{CTR}[E']}^{\mathsf{IND-CPA}}(1,1) = 1$$

by describing and analysing an explicit attack.

Q.3: Let $F : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be an arbitrary block cipher, and SECDEF be some security definition for block ciphers. We (informally) say that the IND-CPA security of the CTR mode *reduces* tightly to SECDEF security if one has:

$$\underset{\mathsf{CTR}[F]}{\overset{\mathsf{IND-CPA}}{Ad\nu}}(\mathfrak{q},t) \leqslant \underset{F}{\overset{\mathtt{SECDEF}}{Ad\nu}}(\mathfrak{q},t) + \mathtt{small}_{\kappa,\mathfrak{n}}(\mathfrak{q},t)$$

where small_{κ,n} informally represents any function of q, t, κ , n such that if q and t are both "much less" than both of 2^{κ} and 2^{n} , then small_{κ,n}(q, t) is "much less" than 1.

- 1. Deduce from the previous questions that the IND-CPA security of the CTR mode does not reduce tightly to UP security.
- 2. Justify the informal assertion: "unpredictability is not useful for encryption".
- 3. Give an example of application where unpredictability may be useful (no justification is necessary).

¹You may for instance assume the simplified "one-way" mode for one-block messages of the lecture.

Exercise 3: BLS signature

In this exercise, we are given two cyclic groups G and Γ of the same prime order q, and generators g and γ of G and Γ respectively. We are also given a *pairing*, namely a function $e: G \times G \to \Gamma$ which is *non-degenerate*, i.e., $e(g,g) = \gamma$, and *bilinear*, i.e., $e(g^a, g^b) = \gamma^{ab}$ for all a, $b \in \{0, \ldots, q-1\}$.

Q.1: We consider the following signature scheme (due to Boneh, Lynn and Shacham), where G, Γ , q and e are as above and $H : \{0, 1\}^* \to G$ is a hash function, all publicly known:

- Gen samples $x \leftarrow \mathbb{Z}/q\mathbb{Z}$ and outputs $(pk, sk) = (g^x, x)$;
- $\operatorname{Sign}_{sk}(\mathfrak{m}) = H(\mathfrak{m})^{\chi}$ for a message $\mathfrak{m} \in \{0, 1\}^*$;
- $Vrfy_{pk}(m, \sigma) = 1$ if and only if $e(\sigma, g) = e(H(m), pk)$.
- 1. Show that this signature scheme is correct.

We aim to show that the BLS signature scheme is EUF-CMA secure if CDH is hard in the group G, when $H(\cdot)$ is modeled as a random oracle. Reminder: $H(\cdot)$ being a random oracle means that the only way to access a value H(m) is to ask the oracle, and that this value is uniform in G, independent from the other H(m').

Q.2: Let \mathcal{A} be an adversary in the game Forge^{Sign}, with running time T and advantage ϵ . Since H is modeled as a random oracle, \mathcal{A} has also oracle access to $H(\cdot)$. We make the following assumptions on \mathcal{A} :

- When it queries $Sign_{sk}(m)$ for some m, it also queries H(m);
- Before returning (m, σ) , it queries H(m);
- It does not query $H(\cdot)$ twice on the same value;
- The total number of queries to $H(\cdot)$ is t, denoted m_1 to m_t (in order).
- 1. Show that if ${\mathcal A}$ does not query H(m) before returning $m,\sigma,$ its advantage is 1/q.

Q.3: Given \mathcal{A} , we build an adversary \mathcal{C} in the CDH^G game, that uses \mathcal{A} : \mathcal{C} plays the role of the challenger in the game Forge^{Sign} and gets the result that \mathcal{A} finally returns; to be the challenger, \mathcal{C} has to answer the queries of \mathcal{A} . We first make a strong assumption on \mathcal{A} : we assume that if it returns (m, σ) at the end, m is actually the last query to $H(\cdot)$, that is $m = m_t$.

To answer a query $H(m_i)$, i < t, C samples $r_i \leftarrow \{0, \ldots, q-1\}$ and sets $H(m_i) = g^{r_i}$. And then to answer the related query $\text{Sign}_{sk}(m_i)$, it outputs $\sigma_i = pk^{r_i}$. For the last query $H(m_t)$, it outputs g^b . Finally, if A returns (m, σ) where $m = m_t$, C outputs σ .

- 1. Justify that $H(m_i)$, i < t, is indeed uniform in G.
- 2. Prove that σ_i is a valid signature for m_i for all i < t.
- 3. Prove that if (m, σ) is a valid pair, then $\sigma = g^{ab}$.

Q.4: We now remove the strong assumption: m may be any m_i . Therefore, C first guesses i (that is, samples i $\leftarrow \{1, \ldots, t\}$). It answers queries $H(m_j)$, $j \neq i$, in the same way as before, and answers $H(m_i)$ with g^b . If \mathcal{A} queries $\text{Sign}_{sk}(m_i)$, C stops with FAILURE.

- 1. What is the probability that the guess of $\mathcal C$ is correct?
- 2. Express the advantage and the running time of C in terms of ϵ and T.
- 3. Draw a conclusion: Why do the previous questions allow to conclude that if the CDH is hard in G and H is modeled as a random oracle, then the BLS signature scheme is EUF-CMA secure?