
RSA public-key encryption and signatures

Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


2/24

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems
R. Rivest, A. Shamir & L. Adleman (1978)

▶ Basics of RSA encryption scheme

▶ Signature using the encryption scheme in reverse mode

Pros

▶ First proposal of a public-key encryption scheme

▶ Use of computational difficulty as security

Cons

▶ As presented, the encryption scheme is completely unsafe!

▶ The signature is not a good idea!

Remark

▶ Already known to GHCQ (UK) in 1973, declassified only in 1997 Clifford Cocks



3/24

Contents of this lecture

1. The maths of RSA: the trapdoor permutation

▶ Z/NZ where N = p× q
▶ Designing a trapdoor permutation

→ ± the content of the original paper

2. RSA encryption scheme

▶ What should be added to obtain a proper encryption scheme?

3. RSA signatures

▶ How to obtain a proper signature scheme?



4/24

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures



5/24

Representation and ring operations

General context

N = p× q where p, q are prime numbers; computations modulo N

Representation and modular operations

▶ Z/NZ = {0, 1, . . . ,N − 1} with modular addition, subtraction and multiplication:

1. Perform the operation in the integers

2. Reduce the result modulo N
▶ Modular reduction: Euclidean division

▶ Given a ∈ Z, there exists a unique (q, r) s.t. a = q · N + r with 0 ≤ r < N
▶ (q, r)← QuoRem(a,N) in time O(log2 N) or O(logN log logN)

→ Operations in time O(log2 N) or O(logN log logN)

Example: Z/35Z



6/24

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: a, b ∈ Z, a > b ≥ 0

Output: g, u, v ∈ Z s.t. g = au + bv
and g = gcd(a, b)

1. (r0, u0, v0)← (a, 1, 0)
2. (r1, u1, v1)← (b, 0, 1)
3. i ← 2

4. While ri−1 ̸= 0:

5. (qi, ri)← QuoRem(ri−2, ri−1)
6. (ui, vi)← (ui−2 − qiui−1, vi−2 − qivi−1)
7. i ← i + 1

8. Return (ri−2, ui−2, vi−2)

Correction

▶ For all i, gcd(a, b) = gcd(ri, ri+1)
▶ For all i, ri = a · ui + b · vi

Consequence

gcd(a, b) = 1 ⇐⇒
there exists u, v ∈ Z s.t. 1 = a · u + b · v

Complexity

The bit complexity of the extended

Euclidean Algorithm is O(log(a) log(b))



6/24

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: a, b ∈ Z, a > b ≥ 0

Output: g, u, v ∈ Z s.t. g = au + bv
and g = gcd(a, b)

1. (r0, u0, v0)← (a, 1, 0)
2. (r1, u1, v1)← (b, 0, 1)
3. i ← 2

4. While ri−1 ̸= 0:

5. (qi, ri)← QuoRem(ri−2, ri−1)
6. (ui, vi)← (ui−2 − qiui−1, vi−2 − qivi−1)
7. i ← i + 1

8. Return (ri−2, ui−2, vi−2)

Correction

▶ For all i, gcd(a, b) = gcd(ri, ri+1)
▶ For all i, ri = a · ui + b · vi

Consequence

gcd(a, b) = 1 ⇐⇒
there exists u, v ∈ Z s.t. 1 = a · u + b · v

Complexity

The bit complexity of the extended

Euclidean Algorithm is O(log(a) log(b))



6/24

Detour by a fundamental algorithm

The extended Euclidean Algorithm (xGCD)

Input: a, b ∈ Z, a > b ≥ 0

Output: g, u, v ∈ Z s.t. g = au + bv
and g = gcd(a, b)

1. (r0, u0, v0)← (a, 1, 0)
2. (r1, u1, v1)← (b, 0, 1)
3. i ← 2

4. While ri−1 ̸= 0:

5. (qi, ri)← QuoRem(ri−2, ri−1)
6. (ui, vi)← (ui−2 − qiui−1, vi−2 − qivi−1)
7. i ← i + 1

8. Return (ri−2, ui−2, vi−2)

Correction

▶ For all i, gcd(a, b) = gcd(ri, ri+1)
▶ For all i, ri = a · ui + b · vi

Consequence

gcd(a, b) = 1 ⇐⇒
there exists u, v ∈ Z s.t. 1 = a · u + b · v

Complexity

The bit complexity of the extended

Euclidean Algorithm is O(log(a) log(b))



7/24

Inversion and division in Z/NZ
Definition

a ∈ Z/NZ is invertible if there exists b ∈ Z/NZ s.t. a× b = 1 modular ×
▶ one can divide by a in Z/NZ

Theorem
a ∈ Z/NZ is invertible modulo N iff gcd(a,N) = 1

Algorithms

Inverse: Use the extended Euclidean Algorithm

Running time: O(log2 N) or O(logN log2 logN)
Division: Use multiplication and inverse

Same running time



8/24

Invertible elements of Z/NZ
Definition

▶ The multiplicative group Z/NZ×
is the set of invertible elements of Z/NZ

▶ Its number of elements is denoted φ(N)

Proposition

If N = p× q with primes p ̸= q, φ(N) = (p− 1)(q − 1)



9/24

The multiplicative group is not cyclic!

1

9

13

17

19

18

16

26

27

23 29

22

31

34

8

2

4

×31

×8

3

24

11
12

6

32

33

(ℤ/35ℤ)×

0

21

28 7

×7

14

5

20

15

25

×5

10

30

Non-invertible elements



9/24

The multiplicative group is not cyclic!

1

9

13

17

19

18

16

26

27

23 29

22

31

34

8

2

4

×31

×8

3

24

11
12

6

32

33

(ℤ/35ℤ)×

0

21

28 7

×7

14

5

20

15

25

×5

10

30

Non-invertible elements



10/24

The “RSA theorem”

Theorem
Let N = p× q with primes p ̸= q. Then for all a ∈ Z/NZ, a1+φ(N) = a.



11/24

The RSA trapdoor permutation

The original (unsafe!) RSA encryption scheme

Definition as an encryption scheme

Public key: (N , e) where N = p× q with primes p ̸= q and gcd(e, φ(N)) = 1

Private key: (N , d) where d × e mod φ(N) = 1

Encryption: Given m ∈ Z/NZ, compute c = me mod N
Decryption: Given c ∈ Z/NZ, compute m = cd mod N

Correction



12/24

The algorithms and complexities

Key generation

1. Generate two random primes p ̸= q O(log3 N)
▶ Sample random (odd) integers O(logN) samples

▶ Test their primality O(log2 N)

2. Compute N = p× q and φ(N) = (p− 1)× (q − 1) O(log2 N)
3. Generate e, d such that e × d mod φ(N) = 1 O(log3 N)

▶ Sample random integers e 1 + O(1/
√

N) samples

▶ Apply xGCD(e, φ(N)) to test invertibility and get d O(log2 N)

Encryption and decryption

▶ Modular exponentiation in Z/NZ

▶ Binary powering, using an =

{
a⌊n/2⌋ · a⌊n/2⌋

for even n

a · a⌊n/2⌋ · a⌊n/2⌋
for odd n

▶ Complexity; O(log3 N)



13/24

Attacks on the trapdoor

Possible goals

Key recovery: Given (N , e), compute d s.t. d × e mod φ(N) = 1

Plaintext recovery: Given (N , e) and c, compute m s.t. me mod N = c

Computational problems

Modular e-th root: Given N , c, e, compute m s.t. me mod N = c
Computation of φ: Given N = p× q (for unknown p, q), compute φ(N) = (p− 1)(q − 1)
Factorization: Given N = p× q, compute p and q

Reductions between problems

▶ Plaintext recovery ⇐⇒ modular e-th root

▶ Computation of φ =⇒ Key recovery =⇒ plaintext recovery

▶ Computation of φ ⇐⇒ Factorization of N :



14/24

Integer factorization

Complexity of integer factorization

▶ Brute force algorithm: O(
√

N) = O(2
log N

2 )
▶ . . .

▶ General Number Field Sieve: 2
O(log

1

3 N log
2

3 log N) Lenstra, Lenstra (1993) and others. . .
▶ Quantum algorithm: O(log3 N) = O(23 log log N) Shor (1994)

(Remark: no known NP-hardness result → could be polynomial in logN)

Current record: 829-bit (250-digit) integer factorization

▶ Boudot, Gaudry, Guillevic, Heninger, Thomé, Zimmermann (Feb. 2020)

▶ Software: CADO-NFS

▶ Hardware: (mainly) academic clusters

▶ Approx. 2,700 core-years in a few months

https://cado-nfs.gitlabpages.inria.fr/


15/24

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures



16/24

The original RSA scheme is unsafe!

Deterministic encryption

▶ Two ciphertexts are equal iff the corresponding messages are equal

▶ The scheme cannot be IND-CPA/CCA secure

Examples of other difficulties

Small exponent: If e and m are small: me mod N = me
in Z → e

√
c in Z

Related messages: Given the ciphertexts of m and m + δ with small δ → m
Multiple receivers: Given the ciphertexts of m with several distinct keys → m

The original RSA encryption scheme is severely flawed and should never be used!

▶ Solution: use (random) padding



17/24

The padded RSA encryption scheme: overview

Construction

Parameters: n: number of bits of N ; ℓ: length of the messages

Genn(): 1. p, q ↞ two random primes s.t. p× q has bit-length n
2. N ← p× q, φ(N)← (p− 1)× (q − 1)
3. e ↞ random integer invertible modulo φ(N), d ← e−1 mod φ(N)
4. return pk = (N , d), sk = (N , e)

Encpk(m): 1. r ↞ {0, 1}n−ℓ m ∈ {0, 1}ℓ
2. if m̂ = r∥m ∈ Z/NZ, return c = m̂e mod N
3. otherwise, restart with a new r

Decsk(c): 1. m̂← cd mod N
2. Return m = m̂[n−ℓ..n[

Correction

▶ As for the original RSA



18/24

Security of padded RSA

The security depends on n− ℓ number of padding bits

Small values of n− ℓ
▶ 2

n−ℓ
possible paddings

▶ Sufficient to break 2
n−ℓ

original RSA instances

→ Not secure!

Very large value of n− ℓ: ℓ = 1

▶ If computing e-th root in Z/NZ is hard, IND-CPA secure encryption scheme

▶ Very inefficient secure encryption scheme, one bit at a time

▶ Slightly better if used as a KEM still useless!

Medium values of n− ℓ
▶ Open problem!



19/24

Padded RSA in practice

RSA PKCS1

▶ Standardized by RSA laboratories

▶ Padding: m→ 0x00∥0x02∥r∥0x00∥m where r is random

▶ Attack using failure of the unpadding procedure Bleichenbacher (1998)
▶ Used against SSL 3.0

▶ Workaround: in case of failure, return a random value

▶ Prevents IND-CCA security

RSA Optimal Asymmetric Encryption Padding (OAEP) Bellare, Rogaway (1994)

▶ Padding: m→ s∥t where

▶ G, H: hash functions

▶ r : random bits

▶ Standardized as PKCS1 v2

▶ IND-CCA secure under two assumptions

▶ RSA trapdoor is one-way
▶ G and H are random oracles

m‖0k r

G

H

s t

Source : J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021. (modif.)



20/24

Contents

1. The maths of RSA: the trapdoor permutation

2. RSA encryption scheme

3. RSA signatures



21/24

Original (broken. . . ) version

Construction

Genn(): 1. p, q ↞ two random primes s.t. p× q has bit-length n
2. N ← p× q, φ(N)← (p− 1)× (q − 1)
3. e ↞ random integer invertible modulo φ(N), d ← e−1 mod φ(N)
4. return pk = (N , d), sk = (N , e)

Signsk(m): 1. return md mod N m ∈ Z/NZ

Vrfypk(m, σ): 1. test whether m = σe mod N

Correction

▶ As for the original RSA encryption scheme

Attacks existential forgeries
1. The adversary chooses σ and computes m = σe mod N
2. The adversary sees (m1, σ1) and (m2, σ2) and computes m = m1 ·m2 and σ = σ1 · σ2



22/24

RSA FDH (Full Domain Hash)

Construction

Genn(): 1. Compute pk = (N , d), sk = (N , e) as previously

2. Choose a hash function H : {0, 1}∗ → Z/NZ

Signsk(m): 1. return H(m)d mod N m ∈ {0, 1}∗

Vrfypk(m, σ): 1. test whether H(m) = σe mod N

What should H satisfy to avoid attacks?

1. σ → h = σe → H(m) = h first preimage resistance
2. m1, m2 → H(m) = H(m1) · H(m2) mod N “non-multiplicative”
3. If H(m1) = H(m2), σ1 = σ2 collision resistance
4. The image of H should be the full Z/NZ full domain

Bad and good news

▶ We do not know how to build a satisfying H no security proof
▶ Security proof if RSA trapdoor is one-way and H is a random oracle



23/24

Proof sketch of RSA FDH

(Informal) theorem
If e-th roots in Z/NZ are hard to compute and H is random, RSA FDH is secure



24/24

Conclusion

RSA is a one-way trapdoor function

▶ One direction is easy to compute: (m, e)→ me mod N
▶ The other direction is (hopefully!) hard to compute: (c, e)→ e

√
c mod N

▶ But there is a trapdoor: given d = e−1 mod φ(N), easy to compute m = cd mod N

Use of RSA trapdoor function

▶ No direct use!

▶ Public-key encryption scheme → RSA OAEP

▶ Digital signatures → RSA FDH

Security

▶ No formal proof that RSA is one-way assumption
▶ Related but not equivalent to the difficulty of integer factorization

▶ Typical key sizes: N with ≥ 2048 bits

▶ Many other pitfalls: implementation, randomness quality, dependent keys, . . .


	The maths of RSA: the trapdoor permutation
	RSA encryption scheme
	RSA signatures

