
Digital signatures
Introduction to cryptology

Bruno Grenet

M1 INFO, MOSIG & AM

Université Grenoble Alpes – IM²AG

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

https://membres-ljk.imag.fr/Bruno.Grenet/IntroCrypto.html
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


2/20

Introduction

Goal: authenticity of a message, in the context of public key cryptography

▶ The sender signs a message m with a private key sk → signature σ
▶ Anyone, with the sender’s public key pk, can verify the signature σ

Compare with MACs
▶ Public key/private key instead of a single key
▶ tag → signature

Advantages compared to MAC
Public verification: using the signer’s public key
Transfer: a signed message can be forwarded with its signature
Non-repudiation: the signer cannot deny having signed



3/20

Examples of use
Vaccine pass
▶ Vaccination → signature (QR code) with the authorities’ private key
▶ Verification → anyone can verify, with the authorities’ public key

Authenticated email
▶ Alice publishes her public key pkA
▶ When Alice sends an email, she sends it together with the corresponding signature
▶ The recipient can verify that the sender is Alice or. . . knows Alice’s secret key!

Software distribution
▶ A software company distributes softwares with a signature
▶ Users (customers) download a software and check the signature before installing it

Certificates
▶ How can one be sure that pkA really is Alice’s public key?
▶ A certificate authority signs pkA using its own secret key
▶ Web or tree of certificates



4/20

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts



5/20

Digital signature scheme
Definition
A signature scheme is given by three algorithms:

Genn() generates a pair of keys (pk, sk) n usually implicit
Signsk(m) computes a signature σ for m

Vrfypk(m, σ) returns 1 if the signature is valid, and 0 otherwise

Correction
The scheme is correct if for all (pk, sk)← Gen() and σ ← Signsk(m), Vrfypk(m, σ) = 1

Compare (again) with MACs
▶ Public key/private key instead of a single key
▶ tag → signature
▶ Mac → Sign



6/20

Security notions for digital signatures
Goals: unforgeability
Should be hard for an adversary to produce a valid signature without knowing the secret key
▶ Existential forgery: produce any pair (m, σ) such that Vrfypk(m, σ) = 1
▶ Universal forgery: given m, produce σ such that Vrfypk(m, σ) = 1

Means
▶ Key-Only Attack: the adversary only knows the public key
▶ Known Message Attack: the adversary knows some valid pairs (mi, σi)
▶ Chosen Message Attacks: the adversary can query signatures for messages mi

▶ Generic: queries must be sent before knowing the public key
▶ Non-adaptative: all queries must be sent before receiving any signature
▶ Adaptative: queries can be made adaptively after receiving some signatures

Strongness
▶ Standard: Adversary must sign a message for which it does not know any signature
▶ Strong: Adversary must produce a new signature



7/20

A formal definition of security
Existential Unforgeability Game

Challenger (pk, sk)← Gen()
Adversary queries messages mi and gets valid signatures σi ← Signsk(mi), 1 ≤ i ≤ q
Adversary outputs a candidate pair (m, σ) where m /∈ {m1, . . . ,mq}

Advantage
▶ Advantage of A: AdvEUF−CMA

Sign/Vrfy (A) = Pr
[
Vrfypk(m, σ) = 1

]
▶ Advantage function:

AdvEUF−CMA
Sign/Vrfy (q, t) = max

Aq,t
AdvEUF−CMA

Sign/Vrfy (Aq,t)

where Aq,t denotes an algorithm making ≤ q queries with running time ≤ t

Note
▶ Exactly identical to the definition for a MAC!



8/20

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts



9/20

General principle
Identification protocol: prove one’s identity to an interlocutor

Players: A prover: owns a secret key sk
A verifier: knows the corresponding public key pk

Goals for the prover:
▶ convince the verifier that they knows the secret key sk
▶ without revealing anything about sk to the verifier

Fiat-Shamir construction
▶ Given an identification protocol, we can build a signature scheme

Schnorr’s protocols
▶ Identification protocol
▶ Signature scheme via the Fiat-Shamir construction
▶ Example: DSA & ECDSA are variants of Schnorr’s scheme



10/20

Schnorr identification protocol (1989)
Protocol definition

Public: a group G of prime order q, with generator g
Keys: sk = x ∈ {0, . . . , q − 1} and pk = h = gx (public)

Protocol:
1. Prover: k ↞ {0, ..., q − 1} ; ℓ← gk ; Send ℓ
2. Verifier: r ↞ {0, ..., q − 1}; Send r r : the challenge
3. Prover: s ← (k − r · x) mod q ; Send s using sk = x
4. Verifier: accept iff ℓ = gs · hr using pk = h

Correction

Security definition
Game: an adversary observes several transcripts, and tries to impersonate a Prover

Advantage: probability for the adversary to convince a verifier



11/20

Schnorr identification security: proof sketch
Theorem
If the discrete logarithm problem is hard in G, Schnorr identification protocol is secure:
If an adversary is able to convince a verifier, it can compute discrete logarithms in G



12/20

Fiat-Shamir construction (1986)

Build a signature scheme from an identification protocol

Requires: an identification protocol and a hash function
Builds: a signature scheme

Signsk(m): simulation of the identification protocol where the challenge is produced by
the hash function; the signature is the challenge and the answer

Vrfypk(σ): check that the answer is consistent with the challenge

Theorem (admitted) Pointcheval, Stern (1996)
If the identification protocol is secure and H is random, the resulting signature scheme is
EUF-CMA secure

Remarks
▶ An identification protocol is an interactive zero-knowledge proof ZKP
▶ Fiat-Shamir construction turns any ZKP into a non-interactive one NIZKP



13/20

Schnorr signature scheme (1989)
Protocol description

Public: A cyclic group G of order q ≃ 2n and generator g, H : {0, 1}∗ → G
Keys: sk = x ↞ {0, . . . , q − 1} and pk = h← gx

Signsk(m): Simulation of the identification protocol: m ∈ {0, 1}∗
1. k ↞ {0, ..., q − 1}; ℓ← gk

2. r ← H(ℓ∥m); s ← k − rx mod q challenge and answer
3. Return the signature (r, s)

Vrfypk(m, r, s): 1. ℓ← gs · hr
2. Accept iff H(ℓ∥m) = r

Correction

Theorem Pointcheval, Stern (1996)
If the DLP is hard in G and H is random, Schnorr signature is EUF-CMA secure

ℓ = gshr as before + "H(ℓ‖m) = H(ℓ‖m)"



14/20

Contents

1. Definitions and security

2. Schnorr identification protocol and signature scheme

3. Additional concepts



15/20

Hash-and-sign
Rationale
▶ Signature schemes are less efficient than MACs
▶ Some signature schemes are designed for fixed-length messages only

Obvious idea
▶ Compute the signature of a hash of the message, rather than the message
▶ Remark: used in Schnorr’s signature scheme

Construction
Given a signature scheme (Sign,Vrfy) for fixed-length messages m ∈M

a hash function H : {0, 1}∗ →M
Build a signature scheme (Sign′,Vrfy′) for messages in {0, 1}∗:

Sign′
sk(m): Signsk(H(m))

Vrfy′pk(m, σ): Vrfypk(H(m), σ)



16/20

Hash-and-sign security
Theorem
If (Sign,Vrfy) is EUF-CMA secure and H is collision resistant, then (Sign′,Vrfy′) is
EUF-CMA secure

Hyp: 𝓐 an adversary against (Sign',Vrfy')
- Queries m_i ↝ signatures σ_i = Sign'_sk(m_i) = Sign_sk(H(m_i))
- Produces a valid pair (m,σ)

Case 1 : there exists m_i such that H(m) = H(m_i) ↝ H is not collision resistant

Case 2 : for all m_i, H(m) ≠ H(m_i). 
Let h = H(m) and h_i = H(m_i) for all i. 
𝓐 knows (h_i, σ_i) and computes (h,σ) such that Vrfy_pk(h,σ) = 1
⇒ (Sign,Vrfy) is not EUF-CMA secure

Remark: Add probabilities for a real proof



17/20

Signcryption

Combine signature and public-key encryption

A problem with Encrypt-then-sign
Keys: (pkS, skS) for the Sender and (pkR, skR) for the Recipient

Sender computes c ← EncpkR(m) and σ ← SignskS (c)
Recipient decrypts c using DecskR(c) and verifies it with VrfypkS (σ)

Adversary intercepts c and computes σA ← SignskA(c)
→ the adversary can pretend to be the sender

Workaround
▶ Each user X has a unique identity idX
▶ Each participant can obtain the public-key pkX associated to idX
▶ Signature of the message or ciphertext and the identity



18/20

Secure signcryption
Two examples
Encrypt-then-sign: c ← EncpkR(m); σ ← SignskS (c∥idS)
Sign-then-encrypt: σ ← SignskS (m); c ← EncpkR(m∥σ∥idS)

Security definition
IND-CCA: standard game/advantage, but including the signature
INT-CTXT: game of ciphertext forgery ciphertext integrity

Result (informally)
Both Encrypt-then-Sign and Sign-then-Encrypt are secure if the encryption scheme and the
signature schemes are (sufficiently) secure



19/20

Public-Key Infrastructures

Where do I find public-keys? How to be sure of the real owner of a key?

Certificates
▶ certB→C = SignskB(idC∥pkC): B certifies that C’s public-key is pkC
▶ If A trusts B:

▶ C can send pkC together with certB→C
▶ A can verify certB→C and accept pkC as the public-key of C

Certificate authorities and chains
Certificate authority: trusted entities, used as roots in certificate chains e.g DigiCert
Certificate chains: trees of certifications, from authorities to end users

Certificate revokation
▶ Short-lived certificates: add an expiration date certB→C = SignskB(idC∥pkC∥T )
▶ Certification revokation lists, using a serial number for each certificate



20/20

Conclusion
Signature scheme
▶ Goals:

▶ Authenticity: identity of the sender
▶ Non-repudiation: commitment of the sender

▶ Asymmetric (and more powerful!) version of MACs

Constructions
▶ Based on the same problems as asymmetric encryption (discrete log., RSA, LWE, . . . )
▶ Combination with hashing for efficiency
▶ Links with zero-knowledge proofs
▶ Public-key infrastructures: a whole subject!

Authentication without encryption can be useful. . .
. . . encryption without authentication is useless!


	Definitions and security
	Schnorr identification protocol and signature scheme
	Additional concepts

