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Introduction

Up to now: Symmetric cryptography
> Symmetric encryption confidentiality
> Message authentication codes authenticity/integrity
— Both require parties to share a \[common secret

How do two parties agree on a common secret?

Bad solution
> Any pair of parties agree on a common key
> If N parties, it requires ©(N?) keys!
> To share a key, the parties must meet



One possible solution: key distribution centers (KDCs)

Idea
> Each party shares a (secret) key with the KDC
> If Alice wants to talk to Bob:
> Alice gets an encrypted session key k: Ency, (k)
> Bob gets the same encrypted temporary key: Ency, (k)
> Alice and Bob decrypt k and use it to communicate

Advantages

> Each party retains (in the long run) only one key
> Each party only needs to meet the KDC, once

Disadvantages

> The KDC is the central security point:
> If it is attacked, all security falls
> If it fails, no communication is possible

» Does not work in open system like Internet



Public-key cryptography
Key-exchange protocols

» Two parties discuss publicly
> At the end, both parties know a same secret k
> External observers do not learn the secret, even after reading all exchanged messages

Public-key encryption and signatures

> Direct protocols to ensure confidentiality, authenticity and/or integrity
> Based on a pair (public key, private key) — no common secret

In this course
» This lecture: Key-exchange protocols
> Next week: Public-key encryption
> In two weeks: Signatures public-key equivalent to MACs
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The goal of a key exchange

Allow two parties to agree on a key, remotely

Objective

> Alice and Bob exchange messages
> At the end of the exchange, they both know the same key k
> An attacker who sees all the messages has no information about k

Is this possible?

> The attacker sees as much as Alice and Bob ?
» No information — computational security



New Directions in Cryptography
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Abstract—Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise to a need for new types of cryptographic systems,
which minimize the need for secure key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of ion and ion are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

1. INTRODUCTION

E STAND TODAY on the brink of a revolution in
cryptography. The development of cheap digital
hardware has freed it from the design limitations of me-

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business
communications to large teleprocessing networks.



Definition of a protocol
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Key exchange protocol

» Public : messages m, ..., m; ; key space K
> Private : the a; known only to Alice, the b; only to Bob
» Correct protocol if Alice and Bob compute the same key k €

Vocabulary

> my, ..., my: the transcript

Freely inspired from: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.



Security of a protocol

Secure key exchange protocol: given my, ..., my, it is difficult to compute k

Game: key exchange indistinguishability

Challenger simulates the protocol ~ transcript my, ..., m; and key k € K
draws b «— {0,1} and returns k = k if b = 1and k « K otherwise
Adversary sees the transcript and k, and returns a bit b’

Advantages

> For a specific adversary A:
AV (4) = |Pr (B =1]b=1] — Pr [if = 1]b = 0] |~ 2Pr [success] 1

> For the protocol:
AP~ (1) = max AV (4,)

where A; denotes an algorithm with running time < t



Eavesdropper security and person-in-the-middle attack

Indistinguishability in the presence of an eavesdropper
> Security definition assumes an authenticated channel between Alice and Bob
» The adversary is only passive

Person-in-the-middle attack
> Eve intercepts messages between Alice and Bob
» She impersonates both Alice and Bob
> She creates a common secret with Alice, and another one with Bob
> Alice and Bob incorrectly think they share a common secret

Key exchange is not enough

Combine with authentication signatures
> Authenticated key exchange



A glimpse of Diffie-Hellman protocol

a
Protocol sketch A 2 s
Public: a number g (Z‘Q)o\ Ab N
Alice chooses a random’a; computes g* and sends g“ to Bob e (3)"’("

Bob chooses a random b, computes g” and sends g to Alice
Alice computes k = (gP)®= g®
Bob computes k = (g?)2 = g®

Outstanding issues

> How to choose g?

> Ifit is an integer, g%, g and g? are huge integers
» Why is this scheme secure?

> Eve sees g% and g’
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The multiplicative group of Z/pZ

@\/ > 2 has order 8
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The multiplicative group of Z/pZ
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The multiplicative group of Z/pZ
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The multiplicative group of Z/pZ

X3
/@ » 2 has order 8

» 4 has order 4
» 3 has order 16 — (generator

Theorem

For every p, (Z/pZ)* is a cyclic group: there

(Z/17Z) X exists a generator g € (Z/pZ)* such that

(z/pZ)* ={g":ne L}
={g":0<n<p-—1}

Remark

—» The generator is not unique

(ex.: 3,5, 6,7,10, 11, 12, 14)




Cyclic groups

Definition
A multiplicative 'cyclic group with (generator g is a set G such that G = {g' : t € Z}

Remarks
> The generator is not unique
> If |G| = nis finite with generator g, G = {g' : 0 < t < n} n: order
» forall x € G, there exists a uniquet € {0,...,n— 1} st. x = g'

» Each element x € G generates a subgroup G, = {x' : t€ Z} C G
> order of x = order of G,
> if x has order s, x" has order s/ccp(s, r)

More general definitions
» Cyclic group (G, *) with any binary operation x
> Additive cyclic group with generator g: G = {t-g:t € Z}
> Notation: (G, x), (G, +) or (G, ) to specify the type of cyclic group
> General (non-cyclic) groups cf. CM 7



Examples

Additive Multiplicative
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Graphical representation
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Discrete logarithm problem

Definitions
Given a cyclic group G with generator g,

» the discrete logarithm of x in base g is the unique 0 < t < |G| such that x = g*
> the 'discrete logarithm problem is, given x, to compute ¢t

The naive algorithm
» Compute g°, g', g% ... until we get g! = x
» Complexity O(t) = O(|C|) operations in G

Easy case: (Z/nZ,+)

» Generators: 1or any g such that cep(g, n) =1
> Discrete logarithm of x: ts.t. x =t- gmod n
> Case g = 1: nothing to do!
> General case:

1. Computeu,vst.u-g+v-n=1

2. Returnt = u-x mod n

=2 27T wed €
é:; g,t. e gW\aA\’L
X= -}
=> Ll

Extended Euclidean Algorithm
t-g=u-x-g=xmodn



Baby step-giant step: A picture is worth a thousand words
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Baby step-giant step: the algorithm
(Shanks, 1971)

Input: a cyclic group G of order n, with generator g, and x € G
Output: the discrete logarithm t of x in base g

return (i —m- j) mod n

Analysis

1. m<+ [y/n]

2. B+ [1,8,8%...,8™]

5 (hy.)) < (g7 %,0) |
4. whiley ¢ B: (y,j) < (y - h,j+1) Giant steps: y = x - g™/
5. i + index such that y = g’ Collision found: x - g™/ = g
6.

Correction: by Euclidean division, there exist i, j < m such that t = i — mj mod n

Complexity: Baby steps & giant steps: O(+/n)

Collision search: O(y/n) (naive), O(log n) (dichotomy), O(1) (hash tables)

= O(+/n) (same in space)



DLP hardness

Theorem (baby-step giant-step)

In any cyclic group G, the discrete logarithm problem can be computed in time O(1/|G|)
> Easily parallelizable
> Variants with better space complexity: Pollard’s p or kangaroos (a.k.a. \) algorithms

» Pohlig-Hellman (1978): O(,/p) largest prime divisor of |G|
Choice of G
» (Z/nZ,+) or |G| small: easy DLP!
» (Z/pZ*, x): usually hard, though not maximally hard < +/p
> record: p of 795 bits, 3100 core-year Boudot et al., 2019
> Points of an elliptic curve over a finite field: maximally hard O(+/n)
> record: group of 114 bits, 13 days on GPU Zieniewicz & Pons, 2020

Additional remarks
» One should use prime order groups
> Algorithm polynomial in log n on a quantum computer Shor, 1997
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The protocol

Diffie-Hellman protocol

Input : Group G of order n and generator g € G
Alice draws t4 « {0, ...,n — 1}, computes hy = g and sends h4 to Bob
Bob draws tg «— {0, ...,n — 1}, computes hg = g'8 and sends hg to Alice
Alice computes kg = hg‘
Bob computes kg = hff.

Correctness
The protocol is correct: ky = (g8)" = ghals = (g') = kg

Freely inspired from: J. Katz, Y. Lindell. Introduction to modern cryptography. 3rd ed, CRC Press, 2021.



Use in practice

Where do the secret lives?
> Shared secret k € G, while usually one needs it in {0, 1}*

» Key derivation function KDF : G — {0,1}* ~ hash function
Person-in-the-middle attack a.k.a Man-in-the-middle

> Requires an authentication between Alice and Bob

> Out-of-scope of this lecture — c.f. signatures CMé6

Cost of the protocol

P> Requires two exponentiations in G
» O(log|G|) operations in G binary powering
» O(log? plog log p) bit-operations for Z/pZ



Binary powering

. glt/2l . gli/2l if t is even
g = g-glt/d . glt/2l i tis odd

S ok wd -

Input: g € G, t € Z>g

Output: gt Complexity
he1 » O(logt) multiplications in G
while t # 0:

if tis odd: b« h- g Comeenes

g g g nvariant: n- g =g

t <+ |t/2]

return h



The Computational Diffie-Hellman (CDH) hypothesis

CDH Game
Challenger simulates the DH protocol — transcript g, xi, x, € G
Adversary is given the transcript and outputs y € G

Success of the adversary if y = g where x; = g" and x, = g”

Advantage

> AdvEPY(t) = maxa, Pr [success(A;)] where A, is an algorithm that runs in time < ¢
CDH hypothesis: AdvEPY(t) is negligible for reasonable t in particular < /|G|
Remarks

» CDH for G = the discrete log. is hard in G cf contrapositive

> gﬁtz — (gi'])tz — (gtz)ﬁ + gﬁgtz



The decisional Diffie-Hellman (DDH) hypothesis

DDH Game
Challenger simulates the DH protocol — (xi, x,, k) < (g", 8", &"*)
draws b « {0, 1}andsetsk<—k|fb—1 ke« Gifb=0
Adversary is given the transcript (g, xi, x2) and k, and outputs b’

Advantages

> AdvEPH(A) = |Pr[b =1|b=1] — Pr[b = 0|b =1]|
> Adv2PM(t) = maxs, Adv2PT(A;) where A; runs in time < t

CDH hypothesis: AdvEPH(t) is negligible for reasonable t in particular < /|G|

Relation with other hypotheses
DDH for G = CDH for G = hardness of DLP



Security of the Diffie-Hellman protocol

Theorem
If the DDH hypothesis holds for G, then the Diffie-Hellman protocol with group G is
IND-EAV secure

Proof. Advg\lHD(E)EAV(t) = Adv2PH(t) by definition!



Conclusion

50 shades of Diffie-Hellman
» The DH protocol is essentially the only key exchange protocol
» But many choices of cyclic group G : (Z/pZ)*, elliptic curve, isogenies, ...
» Key derivation function to go from G to {0,1}*

Security of the protocol

» Three hypotheses: DLP hardness, CDH, DDH
> DDH <= IND-EAV security
» DDH = CDH = DLP hardness

Inherent vulnerability: person-in-the-middle

> Charlie stands between Alice and Bob, and intercepts, modifies, etc. all messages
between Alice and Bob
> Requires authentication between Alice and Bob signatures
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