TD 9 - The RSA ecosystem

Exercise 1. Attacks on textbook RSA

Using the RSA trapdoor function directly as an encryption scheme or a signature scheme is insecure. We present a few more attacks in this exercise. We remind that the RSA trapdoor function uses a public key (N,e) and a private key (N,d) where $N=p\times q$ for two distinct primes p and q, and $ed \mod \varphi(N)=1$ where $\varphi(N)=(p-1)(q-1)$. The trapdoor function is $m\mapsto m^e \mod N$ where $m\in \mathbb{Z}/N\mathbb{Z}$. The inverse function, kwowing the trapdoor d, is $c\mapsto c^d \mod N$.

- 1. We consider the original RSA encryption scheme.
 - i. We first design a chosen ciphertext attack. Describe an adversary that, given the public key (N, e) and a ciphertext c, is able to compute m such that $m^e \mod N = c$. Hint. The adversary is allowed to query the decryption of any ciphertext $c' \neq c$.
 - ii. We now show that using two keys with the same modulus N is insecure. Let us assume that Alice has the pair of keys $((N,e_1),(N,d_1))$ and Bob the pair $((N,e_2),(N,d_2))$. We further assume that $GCD(e_1,e_2)=1$. Consider an adversary that intercepts two ciphertexts c_1 and c_2 , that are encryption of a same message m but with Alice's and Bob's keys respectively. Prove that the adversary can compute m. Specify which algorithm the adversary uses.
- 2. We now consider the original RSA signature scheme.
 - i. Remind the attack in which an adversary is given two valid pairs (m_1, σ_1) and (m_2, σ_2) and is able to forge a new valid pair (m, σ) with $m \notin \{m_1, m_2\}$.
 - ii. Propose a variant of the attack which is a universal forgery using one chosen-message query. That is, the adversary chooses to sign a message m, and to this end is allowed to query the signature of one message $m' \neq m$.

Exercise 2. Padded RSA signature

Let (N,e) and (N,d) be public and private RSA keys, where N is n-bit long. We consider a padded RSA signature scheme, for messages of length $\ell < n$. To sign $m \in \{0,1\}^{\ell}$, we take a uniform $r \leftarrow \{0,1\}^{n-\ell}$ such that $r | m \in \mathbb{Z}/N\mathbb{Z}$ and compute $\sigma = (r | m)^d \mod N$.

- **1.** Why could it be the case that $r||m \notin \mathbb{Z}/N\mathbb{Z}$? What is the probability that this happens and how to deal with this?
- 2. Describe the verification algorithm for this protocol.
- **3.** Show that this signature scheme is not secure. *Hint. One of the attacks described in the lecture against the original RSA signature scheme still applies.*

Exercise 3. Attacks on RSA-FDH

In RSA-FDH, the signature of a message $m \in \{0,1\}^*$ with a private key (N,d) is $H(m)^d \mod N$ for some hash function H. The verification of a signature σ with the public key (N,e) checks whether $H(m) = \sigma^e \mod N$. This scheme is proven secure if H is a random oracle. We sketch attacks when H is not resistant enough hash function.

- **1.** Assume that *H* is not first preimage resistant. Prove that almost the same attack as for the original RSA works in that case.
- **2.** Assume that *H* is not second preimage resistant. Prove that an adversary with a signature oracle can perform a universal forgery.
- **3.** Assume that *H* is not collision resistant. Prove that an adversary with a signature oracle can perform an existential forgery.