TD 8 - Digital signatures

Exercise 1.

Complexity analysis of the extended Euclidean Algorithm
The goal of the exercise is to analyze the complexity of the extended Euclidean Algorithm, reminded below.

```
Input: \(a, b \in \mathbb{Z}_{\geq 0}, a>b\)
Output: \(g, u, v\) such that \(g=\operatorname{gcd}(a, b)=a u+b v\)
\(\left(r_{0}, u_{0}, v_{0}\right) \leftarrow(a, 1,0)\)
\(\left(r_{1}, u_{1}, v_{1}\right) \leftarrow(b, 0,1)\)
\(i \leftarrow 2\)
While \(r_{i-1} \neq 0\) :
    \(\left(q_{i}, r_{i}\right) \leftarrow \operatorname{QuoRem}\left(r_{i-2}, r_{i-1}\right)\)
    \(\left(u_{i}, v_{i}\right) \leftarrow\left(u_{i-2}-q_{i} u_{i-1}, v_{i-2}-q_{i} v_{i-1}\right)\)
    \(i \leftarrow i+1\)
Return ( \(r_{i-2}, u_{i-2}, v_{i-2}\) )
```

1. The first goal is to bound the number of iterations of the while loop. For two integers a and b, we define $s(a, b)=a+\frac{1}{\varphi} b$ where $\varphi=\frac{1}{2}(1+\sqrt{5})$, so that $\varphi^{2}=\varphi+1$.
i. Let $a \geq b \in \mathbb{Z}$ and $(q, r)=\operatorname{QuoRem}(a, b)$. Prove that $s(b, r) \leq \frac{1}{\varphi} s(a, b)$. Prove and use that $\varphi-1=\frac{1}{\varphi}$.
ii. Deduce that the number of iterations of the while loop is $O(\log a)$.
2. We now bound the growth of the u_{i} 's and v_{i} 's.
i. Prove that for all $i \geq 0, r_{i} v_{i+1}-r_{i+1} v_{i}=(-1)^{i} a$ and $r_{i} u_{i+1}-r_{i+1} u_{i}=(-1)^{i+1} b$.
ii. Prove that for all $i \geq 0, u_{2 i} \geq 0 \geq u_{2 i+1}$ and $v_{2 i} \leq 0 \leq v_{2 i+1}$.
iii. Deduce that for $i \geq 1,\left|u_{i}\right| \leq b / r_{i-1}$ and $\left|v_{i}\right| \leq a / r_{i-1}$.
3. Finally we bound the bit complexity of the algorithm. For, we remind that the product and Euclidean division of two integers a and b can be computed in time $O\left(\ell_{a} \ell_{b}\right)$ and $O\left(\left(\ell_{a}-\ell_{b}+1\right) \ell_{b}\right)$ respectively where $\ell_{a}=\log a$ and $\ell_{b}=\log b .{ }^{1}$ For $i \geq 0$, let $\ell_{i}=\log \left(r_{i}\right)$.
i. Prove that line 5 has cost $O\left(\left(\ell_{i-2}-\ell_{i-1}+1\right) \ell_{1}\right)$.
ii. Prove that line 6 has cost $O\left(\left(\ell_{i-2}-\ell_{i-1}\right)\left(\ell_{0}-\ell_{i-2}\right)\right)$.
iii. Conclude that the bit complexity of the algorithm is $O(\log (a) \log (b))$.

Exercise 2.

The Digital Signature Algorithm (DSA) is a standardized signature scheme based on the discrete logarithm problem. It uses an indentification protocol, which is transformed into a signature scheme (though not through Fiat-Shamir transform). In the exercise, p is a prime number and G is a (cyclic) subgroup of $(\mathbb{Z} / p \mathbb{Z})^{\times}$of prime order q with generator g. We define a pair keys $s k=x \in\{0, \ldots, q-1\}$ and $p k=h=g^{x}$.

1. The identification protocol works as follows: The prover chooses $k \leftarrow\{1, \ldots, q-1\}$ and sends $\ell \leftarrow g^{k}$; The verifier chooses $\alpha, r \leftrightarrow\{0, \ldots, q-1\}$ and sends them; The prover computes $s=k^{-1} \cdot(\alpha+x r) \bmod q$; The verifier accepts iff $s \neq 0$ and $g^{\alpha \cdot s^{-1}} \cdot h^{r \cdot s^{-1}}=\ell$ (where s^{-1} is the inverse of s modulo q).
i. Prove that if $s \neq 0$, the protocol is correct.
ii. Compute the probability that $s=0$.
2. To define the DSA signature scheme, we consider a hash function $H:\{0,1\}^{*} \rightarrow\{0, \ldots, q-1\}$. To sign with the private key x, the signer simulates the identification protocol, replacing the random choices of α and r by $\alpha \leftarrow H(m)$ and $r \leftarrow \ell \bmod q$. If $s=0$, the signer restarts with a new value k.
i. Write the algorithm Sign formally. What should be the output?
ii. Describe the verification algorithm Vrfy and prove that it is correct.
iii. We define a variant of DSA where the message space is $\{0, \ldots, q-1\}$, and where H is simply omitted. Show that this variant is insecure, that is one can forge a signature without knowing the private key. Is this an existential or a universal forgery?
[^0]
[^0]: ${ }^{1}$ The fastest algorithms have running time approximately $O\left(\ell_{a} \log \ell_{b}\right)$ for both problems.

