TD 7 – Public-key encryption

Exercise 1.

- Generalities
- 1. Let (Gen, Enc, Dec) be a public-key encryption scheme for fixed-length messages. Prove that an unbounded adversary that is given the public key pk and a ciphertext $c \leftarrow Enc_{pk}(m)$ can compute m with success probability 1.
- 2. Let (Gen, Enc, Dec) be an IND CPA secure public-key encryption scheme. Assume that the length of a ciphertext *c* is uniquely determined by the length of the plaintext *m*.
 - **i.** Why must |c| be larger than |m|?
 - **ii.** Let $\ell = |c| |m|$. Give a time bound *t* such that the advantage $Adv_{Enc}^{IND-CPA}(t)$ is 1. **iii.** More generally, give a lower bound on $Adv_{Enc}^{IND-CPA}(t)$ in terms of *t* and ℓ .
- **3.** We have seen that ElGamal encryption scheme is malleable: Given $c \leftarrow \text{Enc}_{pk}(m)$ and any $\alpha \in G$, it is possible to compute c' such that $\text{Dec}_{sk}(c') = \alpha \cdot m$ without knowing m not sk.
 - **i.** Recall how to build *c*['] from *c*.
 - ii. In the previous construction, the first component of c' is the same as the first component of c. An observer may find this suspicious. Show how to build c'' such that $\text{Dec}_{sk}(c'') = \alpha \cdot m$, such that *c* and c'' share no component.

Exercise 2.

Let *G* be a cyclic group of *prime* order *q*, with generator *g*.

- i. Recall how ElGamal encryption scheme works: Describe the three algorithms Gen, Enc and Dec. 1. ii. Prove its correction.
 - iii. Recall under which hypothesis is the scheme IND CPA secure. Is it IND CCA secure?

We define a variant of ElGamal encryption where the ciphertext for a message m is the pair $c = (m \cdot g^y, h^y)$ where $h = g^x$ is the public key and $y \leftarrow \{0, \dots, q-1\}$ uniformly.

- i. Describe the decryption algorithm for this variant, and analyze its complexity. Hint. The private key 2. can be inverted modulo q (using which algorithm?).
 - ii. Justify that this variant has the same security as the original scheme.

We are interested in *re-encryption*. As an example, imagine a user Alice that has two distinct email addresses on a same server (say a professional one and a personal one). Each mailbox is encrypted with the variant of ElGamal encryption scheme, using the same group G and same generator g. Alice has two pairs of keys (sk_1, pk_1) and (sk_2, pk_2) . In the first mailbox, each email is encrypted with pk_1 and in the second one with pk_2 . Alice would like the server to be able to move an encrypted email c_1 from the first mailbox to the second one: For, the server must *re-encrypt* c_1 with the second public key. Formally, given c_1 , the server must compute c_2 such that $\operatorname{Dec}_{sk_1}(c_1) = \operatorname{Dec}_{sk_2}(c_2)$.

3. Propose an obvious solution if the server knows the private keys of Alice. What is the drawback?

- **4.** Alice provides a *re-encryption key* $r_{1 \rightarrow 2} = sk_2 \cdot sk_1^{-1} \mod q$ to the server.
 - i. Why does this key give no information on sk_1 and sk_2 to the server?
 - ii. Prove that the server can re-encrypt a ciphertext c_1 into a ciphertext c_2 such that $\text{Dec}_{sk_1}(c_1) =$ $Dec_{sk_2}(c_2)$, using only the re-encryption key.

ElGamal re-encryption