TD 6 - Key exchange

Exercise 1.

Insecure key exchange
We consider the following key exchange protocol/

```
1 Alice samples \(k_{A}, r \leftrightarrow\{0,1\}^{n}\) and sends \(s=k_{A} \oplus r\) to Bob.
Bob samples \(t \leftrightarrow\{0,1\}^{n}\) and sends \(u=s \oplus t\) to Alice.
Alice computes \(w=u \oplus r\) and sends \(w\) to Bob.
Bob computes \(k_{B}=w \oplus t\).
```

1. Prove that Alice and Bob share a common key $k_{A}=k_{B}$.
2. Describe the transcript of the protocol.
3. Prove that an adversary that has access to the transcript can compute the common key.

Exercise 2.

Discrete logarithms
Let (G, \times) be a finite cyclic group of order n (that is, $|G|=n$). Let g be a generator of G and $h \neq g$ another element of G.

1. Prove that $h^{n}=1$. Use the discrete logarithm of h.
2. An inverse of h is an element ℓ such that $h \cdot \ell=\ell \cdot h=1$.
i. Express the discrete logarithm of ℓ with respect to the discrete logarithm of h. Deduce the unicity of the inverse.
ii. Give a formula for ℓ that uses only h and n.
iii. Deduce an algorithm to compute ℓ from h and analyze its complexity in terms of the number of multiplications in G.
iv. Analyze the bit complexity of the algorithm when $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$for some prime number p.
3. The group $(\mathbb{Z} / 29 \mathbb{Z})^{\times}$is generated by 2 .
i. What is the order of $(\mathbb{Z} / 29 \mathbb{Z})^{\times}$. Describe a largest possible subgroup that has prime order.
ii. Compute the discrete logarithm (in base 2) of 17 is this group.

Exercise 3.

Random self-reducibility of the DLP
Let G be a group of prime order p, with generator g. We prove that given a algorithm that is able to compute the discrete logarithms of a constant fraction of the elements of G, we can build a (Las Vegas randomized) algorithm that computes the discrete logarithms of all the elements of G in the same (expected) time. Let $h=g^{t}$ for some t, that we want to compute.

1. Let $r \in\{1, \ldots, p-1\}$. Prove that given the discrete logarithm of h^{r}, one can compute the discrete logarithm of h.
2. Assume we sample $r \leftarrow\{1, \ldots, p-1\}$. Prove that for all $x \in G, \operatorname{Pr}\left[h^{r}=x\right]=1 / p$. Use discrete logarithms.
3. Let \mathcal{A} be a deterministic algorithm that takes as input an element $h \in G$ and either returns its discrete logarithm, or FAIL. Assume that the number of elements of which \mathcal{A} returns the discrete logarithm is $\geq \alpha p$ for some $\alpha>0$. Design an efficient Las Vegas algorithm that returns the discrete logarithm of any $h \in G$.
