TD 5 - Message authentication codes and authenticated encryption

Exercise 1.

Let $H: \{0,1\}^* \rightarrow \{0,1\}^n$ be a Merkle-Damgård hash function. Define $\mathsf{SuffixMac}_H: \{0,1\}^\kappa \times \{0,1\}^* \rightarrow \{0,1\}^n$ by SuffixMac_{*H*}(k, m) = H(m||k).

- 1. **i.** What is the (generic) complexity of finding a collision for (m, m') for *H*?
 - ii. Does the complexity changes if one requires *m* and *m'* to be of the same length $\ell > n$?
- **2.** Let (m, m') be a colliding pair for *H*, with *m* and *m'* having the same length.
 - **i.** Give an existential forgery attack for SuffixMac_{*H*} with query cost 1.
 - ii. What is the total cost of the attack, if one has to compute (m, m')?
 - **iii.** Is the attack interesting if $\kappa = n/2$? And if $\kappa = n$?

Exercise 2.

GMAC security

The goal of this exercise is to study the security of the message authentication code GMAC.

In the following we identify 128-bit strings with elements of the finite field with 2^{128} elements $\mathbb{F}_{2^{128}}$. For $m \in \{0, 1\}^*$, write $m = m_0 \| \cdots \| m_{\ell-1}$ where each m_i has 128 bits. (We ignore the need for some padding if $m_{\ell-1}$ is shorter.) For any $k \in \{0, 1\}^{128}$, we write $m(k) = m_0 k + m_1 k^2 + \cdots + m_{\ell-1} k^{\ell}$ where the computation is done in $\mathbb{F}_{2^{128}}$.

Let *E* be a block cipher with block size 128. Let $\text{GMac}_{k_1 \parallel k_2}(m) = (r, m(k_1) + E_{k_2}(r))$ where $r \leftarrow \{0, 1\}^{128}$. We defined the "strong universal unforgeability under chosen message attack experiment" $Exp_{GMac}^{sEUF-CMA}(A)$: The challenger draws a random key $k = k_1 || k_2$; The adversary queries q messages m_1, \ldots, m_q and gets corresponding valid tags $t_i = (r_i, s_i)$; Then, the adversary must output a message m with a valid tag t = (r, s)where $(m, t) \notin \{(m_1, t_1), \dots, (m_a, t_a)\}$. The result of the experiment is 1 if the pair is valid, and 0 otherwise. Note that the adversary can output a pair (m, t) where $m = m_i$ for some *i*, but then *t* must be different from t_i . Our goal is to upper bound the advantage of an adversary *A* in Exp^{SEUF-CMA}_{GMac}(*A*).

- **i.** Assume there exists $i \neq j$ s.t. $r_i = r_j$. Prove that the adversary can compute a (small) set of possible values k_1 , and output a valid pair (m, (r, s)) with good probability.
 - **ii.** Let *R* be the event "the values of r_i are not pairwise distinct." Give an upper bound for Pr[*R*].

In the rest of the exercise, we replace E_{k_2} in GMac by a random function f from $\{0, 1\}^{128}$ to itself.

- 2. Intuitively, why is the advantage of an adversary almost the same with a good block cipher E or a random function *f*?
- **3.** Let (m, (r, s)) be the pair output by the adversary. Let *S* (*success*) be the event "Exp^{sEUF-CMA}_{GMac}(*A*) = 1" and *N* be the event " $r \neq r_i$ for all *i*."
 - **i.** Prove that $\Pr[S] \leq \Pr[R] + \Pr[S|N] + \Pr[S|\neg R \land \neg N]$. This is true for any event S, R, N.
 - ii. Prove that $\Pr[S|N] \le 2^{-128}$. Translate $\Pr[S|N]$ into plain English.
- **4.** We now bound $\Pr[S|\neg R \land \neg N]$. We assume that $\neg R \land \neg N$ holds.
 - **i.** Translate $\Pr[S|\neg R \land \neg N]$ in plain English.
 - ii. Prove that the adversary does not learn any information on k_1 from its queries.

 - iii. Prove that there exists *i* such that (r, s) is a valid tag for *m* if and only if $m(k) m_i(k) = s s_i$. iv. Deduce that $\Pr[S|\neg R \land \neg N] \le \ell/2^{135}$ where ℓ is the maximal bitlength of *m* and the m_i 's.
- 5. Conclude on the maximal advantage of an adversary, independently of its running time.

Suffix – MAC